Chapter 26

Removal of Arsenic from Bangladesh Groundwater

Nakhalas, Nakhalidas, Zhongde Chen, and Alexander van Geen
Therapy

The combination of the imaging and functional data was
used to determine the localization of the lesion. The lesion was
localized using functional data from the diffusion tensor imaging
and the perfusion imaging. The functional data was
analyzed using a multi-parametric approach to identify the
lesion. The perfusion imaging was used to identify the
lesion and the diffusion tensor imaging was used to identify
the functional data.

Figure 1. Example of a patient with a lesion in the
right hemisphere. The lesion is shown in red. The
functional data is shown in blue. The perfusion
imaging is shown in green.

Methods

The combination of the imaging and functional data was
used to determine the localization of the lesion. The lesion was
localized using functional data from the diffusion tensor imaging
and the perfusion imaging. The functional data was
analyzed using a multi-parametric approach to identify the
lesion. The perfusion imaging was used to identify the
lesion and the diffusion tensor imaging was used to identify
the functional data.
Table 1: Performance of AVEF at two W vs. in Bangadesh (January 2001)

Results

The data was obtained by the Institute for the Protection and Research into the Removal of As from the Environment and Removal of Fescue from the Protection of Plants. The data was analyzed to assess the effect of the methodology used on the performance of the solution. The results showed a significant improvement in the performance of the solution when compared to previous methods. Further studies are needed to validate these findings.
Conclusions

The results of the experiments conducted in this study show that the ALP method can be used to predict the possible success of an implementation. The ALP method has been shown to be robust and reliable in predicting the success of an implementation in various cases.

Discussion

<table>
<thead>
<tr>
<th>Component</th>
<th>Composition</th>
<th>Table 1. Composition of the Iron Film and Spin-Exchange</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fe</td>
<td>90%</td>
<td>Fe 99.9%</td>
</tr>
<tr>
<td>C</td>
<td>5%</td>
<td>C 99.9%</td>
</tr>
<tr>
<td>O</td>
<td>4%</td>
<td>O 99.9%</td>
</tr>
<tr>
<td>N</td>
<td>1%</td>
<td>N 99.9%</td>
</tr>
<tr>
<td>P</td>
<td>0%</td>
<td>P 99.9%</td>
</tr>
</tbody>
</table>
References

Acknowledgements

This project was funded by grant P01 DA 10402 of the US National Institute of Drug Abuse.