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Recordings of the Earth's surface oscillation as a function of time (seismograms) can be sonified by
compressing time so that most of the signal's frequency spectrum falls in the audible range. The pattern-
recognition capabilities of the human auditory system can then be applied to the auditory analysis of
seismic data. In this experiment, we sonify a set of seismograms associated with a magnitude-5.6
Oklahoma earthquake recorded at 17 broadband stations within a radius of ∼300 km from the epicenter,
and a group of volunteers listen to our sonified seismic data set via headphones. Most of the subjects
have never heard a sonified seismogram before. Given the lack of studies on this subject, we prefer to
make no preliminary hypotheses on the categorization criteria employed by the listeners: we follow the
“free categorization” approach, asking listeners to simply group sounds that they perceive as “similar.”
We find that listeners tend to group together sonified seismograms sharing one or more underlying
physical parameters, including source–receiver distance, source–receiver azimuth, and, possibly, crustal
structure between source and receiver and/or at the receiver. This suggests that, if trained to do so,
human listeners can recognize subtle features in sonified seismic signals. It remains to be determined
whether auditory analysis can complement or lead to improvements upon the standard visual and
computational approaches in specific tasks of geophysical interest.

& 2015 Elsevier Ltd. All rights reserved.
1. Introduction

Seismologist Hugo Benioff first implemented a technique to
accelerate seismograms to the range of audible frequency, compiling a
set of sonified seismograms that was commercially released in 1953 in
the form of an LP album (Karney, 2015). It was then suggested that
earthquakes could be discriminated from man-made explosions by
simply listening to the associated sonified time series, exploiting the
high resolving power of the human auditory system (Speeth, 1961;
Frantti and Levereault, 1965). This proposed approach was never put
into practice: with the advent of digital seismology in the 1970s,
automated software could accurately estimate hypocenter locations
and source mechanisms by processing large seismic databases (Dzie-
wonski et al., 1981; Ekström et al., 2012).

In principle, auditory analysis could contribute to current
research topics in seismology. Humans have a powerful facility to
understand physical characteristics of a process through sound,
by E. Motta.

té).
such as the mechanical nature of an impact. We assess the
materials involved (metal, wood, glass, plastic) and the magnitude
of forces involved. The question for this study is: Can we use this
ability to characterize physical aspects of an unknown process,
such as an earthquake? And for future work, can this ability be
trained? How do we build this capacity, and then integrate it into
practical analysis?

Research on the nature of earthquake rupture could also benefit
from auditory display. As an example, the Source Inversion Validation
initiative (Mai et al., 2012) was a blind test of multiple methods of
dynamic and kinematic inversion of seismic observations (Ruiz and
Madariaga, 2013) to produce a map of an earthquake rupture (the
displacement along a fault during a single seismic event). Results
show that the current signal processing techniques do not lead to
robust models of earthquake rupture (the displacement along fault
during a single seismic event). It is worthwhile to explore whether
auditory analysis can help discriminating signals originating from
different types of earthquake rupture. Study of human auditory ana-
lysis could lead to improvements in the signal processing algorithms
for analysis of seismograms. Such improvements could also aid
methods of engineering and real time control of fluid pumping in
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reservoirs, for hydrocarbons extraction, carbon sequestration and
geothermal energy systems. Other potential applications are discussed
at the end of the paper.

Over the years, a small community of researchers has continued to
sonify seismic data for a number of (often educational or artistic)
applications (Steinbrugge,1974; Hayward,1994; Dombois, 2001, 2002;
Meier and Saranti, 2008). However, even though interest around
sonification seems now to be growing in seismology (Hermann et al.,
2011; Dombois and Eckel, 2011; Michael, 2011; Kilb et al., 2012; Peng
et al., 2012; Holtzman et al., 2014) as well as other disciplines (Cowen,
2015; Worrall, 2009), the capability of the human auditory system
(Benade, 1990; Hartmann, 1999; Roederer, 2008) to recognize patterns
in seismic sound has not been studied quantitatively. No study so far
has dealt with the discrimination of sonified seismic signals by human
listeners, or, more generally, with our strategies (if any) of hearing,
listening to, recognize, organize, or process such signals. The unique
experiment of (Speeth, 1961) explored the human ability to distin-
guish sonified records of explosions vs. seismic events: a relatively
simple, and very specific task.

In the experiment presented here, we proposed the listeners to
categorize freely a set of sonified seismic data. As explained in
Section 3, no information on the nature of such data (other than the
fact that they were recordings of earthquakes) was provided, and the
only criterion for grouping the data was their perceived “similarity.”
Since all signals were generated by the same seismic event, we
expected listeners to discriminate based on source–receiver distance,
source–receiver azimuth and/or crustal structure between the source
and the receiver. In the free-categorization approach, however, no
specific hypothesis is tested directly, and it is a priori possible for a
listener to group data according to a valid criterion not anticipated by
the researchers.

Individual audio signals used in this study are produced by simple
time-compression of seismic signals and are administered to listeners
monophonically (the same signal is played through the two channels
of the headphones, in phase) one at a time. This deliberately simple
study is a first step towards the auditory analysis of spatialized seismic
Fig. 1. Topography of the study area. The CMT focal mechanism (Dziewonski et al., 1981;
CMT epicenter location (compressional quadrants are shaded), suggesting a strike-slip
stations, whose names are specified. Different colors represent different elevations of
boundaries of our area of study. (For interpretation of the references to color in this fig
data; preliminary experiments in the spatialization of seismic sounds
are described by Holtzman et al. (2014).
2. Seismic signals

2.1. Brief geology and seismology overview

Our newly compiled database of sonified seismograms is based
on records of a recent sequence of 40 Oklahoma earthquakes of
magnitude ranging between 3 and 5, recorded by 17 stations at
local epicentral distances (Fig. 1). All data were collected in the
framework of the USArray experiment (Kerr, 2013) and were
recorded by broadband seismic sensors. In order to achieve the
best possible signal quality, we limited ourselves to the largest
event (magnitude 5.6, November 6, 2011) in the sequence (Kera-
nen et al., 2014). Throughout this study, only vertical-component
records are used. The 17 stations contributing to our database are
located at latitudes 34°N to 37°N and longitudes 94°W to 97°W.
The earthquakes are demonstrably caused by injection of large
volumes of wastewater from “hydrofracturing” (Keranen et al.,
2014; van der Elst et al., 2013), for long-term storage, in formations
that contained oil that was previously extracted. The high fluid
pressures trigger earthquakes, particularly when the fluid accu-
mulates on old, inactive faults, reactivating them (Fig. 2). These
events have been selected for the large quantity and high quality
of available data recorded locally at diverse azimuths and dis-
tances, for the reliability of hypocenter locations, and, after a
preliminary auditory analysis, for the perceived quality of sonified
signals.

The character of observed waveforms propagating through the
region of interest is related to the properties of the underlying crust
(Udías, 1999; Aki and Richards, 2002). These are best summarized by
surface-wave phase velocities at different periods, each sampling a
different depth range as illustrated, e.g., by Fry et al. (2010). The most
recent and most complete surface-wave velocity model of North-
America is that of Ekström (2013). We show in Fig. 3 a few examples
Ekström et al., 2012) of the November 6, 2011, magnitude-5.6 event is plotted at the
fault with roughly SW-NE or SE-NW strike. Red triangles denote available seismic
the Earth's surface with respect to sea level. The dashed white line denotes the
ure caption, the reader is referred to the web version of this paper.)



Fig. 2. A qualitative representation of the sedimentary rocks of Oklahoma, where
earthquakes have been triggered by wastewater injection. Seismic energy is
reflected off the sediment/basement interface and the “Moho.” The sedimentary
layers can have large velocity contrasts and add to the coda and complexity and
character of the seismic wave and thus the sound.
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of surface-wave phase-velocity perturbations according to Ekström
(2013). The phase velocities of shorter-period waves in Fig. 3 are most
sensitive to the thickness and elastic properties of young sedimentary
rocks, forming a shallow layer that overlies the older, crystalline
“basement”; 30–40 s Love and Rayleigh waves are strongly affected by
variations in the depth to the Mohorovicic Discontinuity (also
“Moho”), the interface between the crust and mantle, which has a
high contrast in seismic wave speeds (on the order of 20%) at about
30–40 km depth in the area of study.

At most periods, both Love- and Rayleigh-wave velocities are
highest in the north-eastern portion of the study area, and gen-
erally higher north of the 35°N parallel. A linear low-velocity
anomaly can be distinguished to the south of and/or along the
35°N parallel, trending WSW-ENE. The south-east corner of the
study area is, again, relatively fast at most periods.

The topography (Fig. 1) is relatively flat; some topographic
highs to the south west are correlated with low long-period
velocity of Rayleigh waves, and thus (probably) thicker-than-
average crust. On the contrary, north of the 35°N parallel the
topography is relatively high ( 500 m> ) and so are crustal
velocities.

The study of Reed et al. (2005) shows that the pattern of surface
geology (age of sedimentary rocks) is correlated with that of topo-
graphy, with older (Mississippian) outcrops found throughout the
areas of higher topography in the eastern part of the study area,
Pennsylvanian rocks along the 35°N parallel and 96°W meridian, and
Permian further west, where topography again grows.

2.2. Sonification of seismic signals

All seismograms were sonified by changing their sampling fre-
quency, from 40 Hz to 6000 Hz. The resulting signals (converted to
wav files) are accordingly played 6000/40 150= times faster than
their actual speed, and so translated to the audible frequency range.
These sounds are somewhat reminiscent of gunshots, with a short
release of impulsive, non-harmonic sound. Much of the signal that is
usually analyzed by seismologists falls within the “attack” and in the
first part of the “coda” (or “resonance”). The audio signals (impulse
and coda) presented to the subjects have a 2 s-duration, correspond-
ing to seismic signals of duration 300 s. The 300 s-long seismic signals
to be sonified start 10 s (about 7 ms in audio scale) before the first
important peak (the P wave) on the seismogram. Fig. 4 shows two
sonified signals, with both audio and seismic wave scales. Fig. 4a
shows the recording of the selected magnitude-5.6 event, by a station
(V35A) which is close to the event location. The P- and S-wave arrivals
do not have time to separate as they cover the short distance from
source to receiver (Udías, 1999; Aki and Richards, 2002), and, when
sonified, the recording is characterized by a single “detonation.”
Fig. 4b is the recording of the same event, by a station (W38A) which
is far from the event location. The P- and S-wave arrivals are now well
separated, and two distinct apparent “detonations” might be typically
recognized in the sonified recording.

The dynamic range of seismic signals is greater than the
dynamic range of audio signals, so the sonified signals have to be
normalized. Each sonified signal was normalized with respect to
its maximal value. This way, even though signal attenuates quickly
as spherical seismic waves propagate away from the source, sig-
nals recorded at relatively large distances from the epicenter can
still be heard and analyzed. This means, however, that the lower
signal-to-noise ratio of lower-amplitude signals results in artifi-
cially large background noise; in other words, while the maximum
amplitude (loudest peak) of the sonified signal is constant
throughout our sonified database, signal-to-noise ratio system-
atically grows with decreasing source–receiver distance. Nearby
events are not “louder”, but have a better signal-to-noise ratio
than far-away events. This is a delicate issue that will be the
subject of further study.
3. Experimental protocol

This section describes the experimental protocol used to test
the sensitivity of the human auditory system to sonified seismic
signals. First a short overview of the theoretical background (the
categorization and the natural categories theory) from which the
experimental method derives is given (Section 3.1). The experi-
mental method is described in Section 3.2.

3.1. Theoretical background

Classic psychophysical methods are based on an underlying phy-
sical theory and are only valid as far as controlled physical parameters
(e.g., the magnitude of an earthquake and amplitude of the corre-
sponding signal) can be assumed to be linked to measurable psy-
chological parameters (e.g., perceived “loudness”). This is not neces-
sarily the case in this study: because our experiment is the first of its
kind, we have no a priori knowledge of human responses to sonified
seismic signal to rely on; we do not know what the relevant psy-
chological parameters for the sonified seismic signals are, and have no
elements on which to base assumptions.

The “free sorting” or “free categorization” method is more appro-
priate to the present scenario, as it requires little or no prior knowl-
edge of the relationship between physical and psychological para-
meters. Free categorization task is now a classic method for instance in
sensory analysis (Ballester et al., 2009; Dubois, 2009) or acoustics
(Gaillard, 2000; Parizet and Koehl, 2011; Guastavino, 2007; Ballester
et al., 2009; Morel et al., 2012; Paté et al., 2014). The method is based
on the theory of categorization, which is comprehensively described
in the field of cognition and cognitive psychology in Rosch and Lloyd
(1978) and Dubois (1991): the human cognition process is described
with the concept of natural categories, as opposed to formal categories,
defined as follows.

Two objects (or stimuli) are placed in the same formal category
if and only if they both fulfill a set of properties. Two objects do
not belong to the same formal category if they differ in one
property. This approach implies the assumption that the subject
must have an analytical approach making him analyze each sti-
mulus as a sum of independent properties. But, while the physical
description of sound objects is classically based on a list of inde-
pendent physical parameters, the corresponding perceptual para-
meters may be dependent/linked: for example, sound intensity
and frequency are independent physical properties, but the
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Fig. 3. Rayleigh-wave (left) and Love-wave (right) phase-velocity variations (with respect to the regional average) according to (Ekström, 2013), at periods of (top to bottom)
5, 12 and 35 s. The region is the same as that depicted in Fig. 1.
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perceived sound intensity changes with frequency (Benade, 1990;
Roederer, 2008).

On the other hand, two objects can be put into the same natural
category if they share some features, and separated into different
categories if they differ in some other respects: this aspect of the
theory of natural categories can take into account the diversity of
objects within a group, and the relationship between attributes, which
are not assumed to be independent, and can be unknown a priori.

3.2. Free categorization method

We apply the free categorization method, consistent with the
theory of categorization outlined in Section 3.1. The recordings by
17 stations of the array described in Section 2.1 are sonified as
described in Section 2.2: 17 sound samples are then to be listened
to and categorized by the subjects. In the following, we take the
psychoacoustical perspective and we use the word “stimulus” for
“sound sample”. Two examples of such stimuli, corresponding to
stations V35A (near the epicenter) and W38A (far from the epi-
center), are shown in Fig. 4.

Of the K¼24 subjects who took part in the experiment, none
reported to have prior expertise in the listening of sonified seismic
signals. All subjects nevertheless had backgrounds in Earth sciences,
acoustics or sound engineering, so have an a priori expertise in either
listening or seismology.



Fig. 4. Recording of the magnitude 5.6 Oklahoma event, made at (a) station V35A (short propagation distance), and (b) station W38A (long propagation distance). Notice that
the same onset time is used for all seismic records, which explains the slight delay between P-wave arrivals in (a) and (b).

Fig. 5. (a) Drawing of the experimental setup and (b) example of subject during the listening test.
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3.2.1. Experimental setup
An external soundcard RME Fireface UCX connected to a computer

was used for playing the sounds. Sennheiser HD380 Pro headphones
were plugged to the output of the soundcard as illustrated in Fig. 5.
For this preliminary study, involving only monophonic signals and no
spatialization, listening through headphones is preferable to loud-
speakers: the setup is simpler, and room effects are eliminated. The
subjects could set and change the sound level in the headphones at
any time during the test.

All tests were conducted on the same computer, where subjects
used Pascal Gaillard's software TCL-LabX (Gaillard, 2014) to complete
the proposed free categorization exercise. The TCL-LabX graphic
interface displays the 17 stimuli as 17 small square icons, numbered
randomly. A stimulus can be played back by double clicking on the
corresponding icon, and a click-and-drag operation allows the subject
to move each iconwithin the entire interface area. A screenshot of the
interface is shown in Fig. 6.

3.2.2. Task and instructions
The subject is asked to sort the 17 stimuli into groups (the

words “group” and “category” are used as synonyms throughout
this study) that include stimuli perceived as similar by the subject.
We report below a English translation1 of the instructions:
1 The original French instructions are: Nous vous demandons de procéder à un tri
des extraits sonores qui vous sont présentés. Pourriez-vous regrouper les extraits qui se
ressemblent et placer dans des groupes différents ceux qui vous semblent différents ?
Vous faites autant de groupes que vous le souhaitez.
Please sort the sound samples presented to you. You can group the
samples which seem similar to you, and put in different groups
those which seem different to you. You may form as many groups
as you wish.

These instructions leave the subject quite free in selecting the
similarity criteria, the number of groups to be formed, etc. The
subject is allowed to group all stimuli into one group if no sig-
nificant difference is perceived, and can form only groups that
contain a single stimulus (“singleton” groups), if all stimuli are
perceived as individuals sharing no particular similarity. Yet, all
stimuli must belong to a group, and no stimulus can belong to two
different groups. The subject is not asked to use a specific strategy
in the spatial arrangement of the groups on the interface plane. In
particular, the subject does not have to put far one from another
groups that are perceived as more dissimilar: the position of
groups and icons is not taken into account in the analysis phase,
only the stimulus-group association matters.

No other information about the nature of the data (other than
that they were originated from seismograms) were provided. Prior
knowledge of the origin of the sound samples potentially would
have induced expectations and listening strategies, reducing the
“freedom” that was given to subjects. However, no subject repor-
ted the use of his/her knowledge of seismology, and no one knew
what particular earthquakes were used.

24 subjects (16 males, 8 females) took part in the experiment.
The mean duration of the test was 15.5 min (standard deviation:
9.5 min, maximal duration: 44.7 min, minimal duration: 6.5 min).



Fig. 6. Screenshot of the computer interface during the test. Each of the 17 square icons represents a sound stimulus. The subject first moves (click-and-drag operation) the
icons within the interface area (this figure) and second gives each icon a color corresponding to the group to which it belongs (see Fig. 7a for the second stage).

Fig. 7. The partition made by one subject. (a) Screenshot of the test interface taken at the end of the test; icons belonging to the same group have the same color. (b) The
same partition displayed on the latitude/longitude plane. Station locations are indicated by colored crosses accompanied by station names, while a star denotes the epicenter
location; the color code is the same as in (a).
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A single stimulus was played 9.5 (mean value) times in average
(standard deviation: 2.1): the most often played stimulus is the
recording from station V38A (13.6 times in average), the less often
played stimulus is the recording from station W38A (6.8 times in
average).
4. Analysis of experimental data

Each of our 24 subjects provided a “sorting” (or “partition”) of the
17 stimuli. The output data of the test then consists of 24 sets of 1–17
categories/groups of stimuli. We call “individual partition” each of
those 24 partitions. Fig. 7 shows an example of an individual partition:
this sample partition can be displayed as the final organization of
icons in the test interface (Fig. 7a), or on the latitude/longitude plane
(Fig. 7b). The data can be analyzed in several ways; after briefly
quantifying the global inter-subject consensus (Section 4.1), we
describe two analysis approaches in Sections 4.2 and 4.3, and discuss
their outcomes in Section 4.4.

4.1. Inter-subject consensus

In order to characterize differences between different parti-
tions, the Rand index can be used (Rand, 1971). One value of the
Rand index is computed for each possible pair of subjects; with K
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subjects, this amounts K K 1 /2( − ) pairs to be compared, i.e. 276
pairs if K¼24. For subjects A and B, the Rand index is defined as
R a b a b c d/= ( + ) ( + + + ), where

� a is the number of pairs of stimuli put in the same category by
subject A and in the same category by subject B;

� b is the number of pairs of stimuli put in different categories by
subject A and in different categories by subject B;

� c is the number of pairs of stimuli put in the same category by
subject A, and in different categories by subject B;

� d is the number of pairs of stimuli put in different categories by
subject A, and in the same category by subject B.

In practice, R can take values from 0 to 1, with R¼0 corresponding
to total disagreement between the partitions of subjects A and B
(a¼b¼0), and R¼1 to total agreement (c¼d¼0).

4.2. Tree analysis

The tree analysis aims at defining a perceptual distance between
stimuli, and to represent this distance on an “additive tree”. We follow
the classic criteria described by, e.g., Paté et al. (2014) and Guastavino
(2003), which can be summarized as follows:

(i) Compute an “individual” co-occurrence matrix Mk (square matrix
whose size is defined by the number of stimuli, i.e. 17�17 in the
present case) for each subject k (k 1, 2, , 24= … ):

� M 1ij
k = if stimuli i and j are in the same group according to

subject k;
� M 0ij

k = if stimuli i and j are in different groups according to
subject k.

(ii) Calculate the total co-occurrence matrix, defined as the sum of
all K individual co-occurrence matrices: M Mij k

K
ij
k

1= ∑ = (Mij is
large if stimuli i and j are often grouped together, and 0 if they
are never grouped together).

iii) Convert the co-occurrence measure into the distance matrix D
such that D M1 /17ij ij= − (Dij is small if Mij is large; D 0ij = if
stimuli i and j are always grouped together, and 1 if they are
never grouped together).

The matrix D is a “consensual” measure of perceptual distance,
since it expresses a consensus among subjects, and smooths the dif-
ferences between subjects. The information contained in D can be
visualized by a “tree,” as described by Barthélémy and Guénoche
(1991): each sound stimulus is represented by a “leaf,” and leaves are
linked together through “branches,” whose length is proportional to
the perceptual distance D between leaves/stimuli. For instance, if one
has to climb (or descend) along many and/or long branches to go from
leaf A to leaf B, that means that stimuli A and B have been perceived as
very different by the subjects. We find the best-fitting tree to our D via
Jacques Poitevineau's Addtree software (Poitevineau, 2014a).

4.3. Central partition analysis

The central partition analysis consists essentially of identifying one
or more “consensual” partitions, each representing an “average” of the
individual partitions produced by an ensemble of subjects. As opposed
to the tree analysis, of Section 4.2, this approach does not provide a
notion of “distance” between stimuli. Each central partition then
describes a consensus between subjects; this approach to data ana-
lysis does not allow one to visualize differences in subjects' responses,
nor the individual listening behaviours or grouping strategies.

The central partition corresponding to a group of K subjects can
be identified by the following procedure, based on Marcotorchino
and Michaud (1982) and Brenac (2002), which we implement via
Jacques Poitevineau's wpartcent software (Poitevineau, 2014b):
(i) Compute the “individual” co-occurrence matrix Mk, defined in
Section 4.2, for each subject k (k K1, ,= … ).

(ii) Calculate the total co-occurrence matrix, as defined in Section 4.2,
associated with the K subjects.

iii) Determine a matrix C of size N N× with N the number of
stimuli (i.e., 17), such that M K C2i

i N
j
j N

ij ij1 1∑ ∑ ( − )=
=

=
= is maximum;

the matrix C is sought via optimization (Poitevineau, 2014b)
within the space of all real N N× matrices sharing the
following properties:

� Cij is either 0 or 1;
� C Cij ji= (symmetry);
� C C C 1ij jk ik+ − ≤ (transitivity);
� C 1ii = (reflexivity).

(iv) The central partition is defined based on the so determined
matrix C, placing stimuli i and j in the same group if C 1ij = , and
in different groups otherwise.

To understand the algorithm, notice, e.g., that for large Mij,
optimization will tend to pick C 1ij = rather than 0; conversely, if
Mij is close to 0, its contribution to the function to be optimized is
negative, and it will be preferable to pick C 0ij = . If Mij is neither
large nor small, its contribution is close to negligible and either
value of Cij might be picked.

4.4. Outcome of the analysis

Instructed to form groups of stimuli, the subjects actually tried
and managed to do so. Fig. 8a shows the distribution of the
number of categories in individual partitions. As we can see, no
subject chose to form one single group containing all stimuli, or to
form as many singleton groups as there were stimuli. While dif-
ferences between stimuli within a group might be perceived,
subjects have nevertheless recognized common properties, that
allowed them to group the stimuli together.

Fig. 8b shows the distribution of the number of stimuli in
categories. It can be seen that 34 categories (over a total amount of
132 categories when summing over the 24 individual partitions)
contain only 1 stimulus, so that the grouping of stimuli according
to the identification of common features or similarity may not
always be the universal strategy to evaluate such stimuli. However,
the large majority of the other categories contain 2–6 stimuli. We
conclude that the subjects succeeded in producing a categorization
of the sound stimuli.

It can be noticed that out of 34 singleton categories, 7 (21% of the
singleton categories) consist of stimulus U38A, 5 (15%) of stimulus
W37B, and 3 (9%) of stimulus V35A: those seem to be the most unique
stimuli in the present 17-stimuli-corpus. On the contrary, stimulus
TUL1 was never placed alone into a singleton category: all subjects
identified common properties between stimulus TUL1 and others (in
particular stimulus V36A, which is put only 1 time in a singleton
category, and 19 times in the same category as TUL1).

4.4.1. Measured inter-subject consensus
Fig. 9 shows the distribution of the R over the 276 pairs of

partitions, ranging from 0.38 (fairly good agreement) to 0.96 (very
strong agreement) with an average value of 0.76. In summary, R is
fairly high, indicating that there is some consensus amongst sub-
jects in categorizing the stimuli. No “outliers” are found, and the
entire database will be the object of our further analysis in the
following.

4.4.2. Outcome of the tree analysis
Fig. 10 shows the matrix D defined in Section 4.2, computed

from all 24 partitions, visualized via the Addtree software. It is
apparent from Fig. 10 that some stimuli are often grouped together
(e.g., X38A, X37A, X39A, and W38A), other only very rarely (e.g.,



Fig. 8. Histogram showing (a) the distribution of the number of categories in partitions and (b) the distribution of the number of stimuli in categories.

Fig. 9. Histogram of the Rand indices computed from the 276 pairs of partitions.
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W35A, U37A, and X39A). Some “consensual” groups can be
identified:

� group a: X38A, X37A, X39A, W38A;
� group b: W35A, V35A (less frequently W36A);
� group c: TUL1,V35A (less frequently U36A);
� group d: V37A,V38A;
� group e: U37A, U38A.

Members of groups d and e are all relatively close in Fig. 10 and
these two groups could also be merged in a single, larger group.
Keeping in mind the geographical distribution of receivers (Fig. 1),
one can already notice that group b essentially consists of sounds
from stations close to the epicenter, group c of sounds from
intermediate-distance stations, and groups a, d and e of sounds
from relatively far stations. Sections 4.4.3 and 5 below confirm
that source–station distance is likely to play an important role in
the categorization strategy.

4.4.3. Outcome of the central partition analysis
The central partition analysis (Section 4.3) allows to define a

single partition, most representative of the choices made by the
entire population of 24 listeners. We visualize such central parti-
tion in Fig. 11 on a latitude/longitude plane, each color denoting
one category.

With the exception of group {X35A, W37B}, these “average” cate-
gories include stimuli from stations that lie close one to another: on
the latitude/longitude plane, the groups appear more as “lumps” of
stations than as a “scattering” of stations. This indicates that stimuli
may be grouped according to spatial proximity or common geological
properties of the corresponding stations.

The geographical organization of the average groups seems to
confirm the importance of the source–receiver distance as a grouping
criterion: group {V35A, W35A} is made up of stimuli from stations
close to the source, groups {V36A, TUL1, U36A} and {X35A, W37B} are
made up of stimuli from stations at a medium distance from the
source, and groups {U37A, U38A} and {V37A, V38A} are made up of
stimuli from stations far from the source. However, there must be
other parameters relevant to explain the groupings, as for example
category {X36A, X37A, X38A, X39A, W38A} is made up of stimuli from
stations at very different distances from the source. Section 5 inves-
tigates the relation between the perceptual similarities and the geo-
physical parameters.
5. Linking perceived similarities to geophysical parameters

The seismograms we record and sonify are known to be con-
trolled by several geophysical parameters (e.g., source–receiver
distance, Earth structure, topography at the receiver, and the
mechanical properties of the seismic source), resulting in sound
features that the auditory system seems able to discriminate.

The two stations that are most often grouped together are V35A
and W35A, which 21 out of 24 listeners have placed in the same
category, and which are closest to the epicenter. At such a short
source–receiver distance, P and S waves hit the receiver almost
simultaneously, which is not the case at larger source–receiver
distances included in our data set. Preliminary analysis of the
subjects' textual comments (which we shall analyze in detail in a
separate publication) confirms that most listeners have used the
lack of separation between the P- and S-wave arrivals as a criterion
for categorization.

Stations TUL1 and V36A, which are very close to one another,
were placed in the same category by 19 out of 24 subjects. 10 of
these subjects have also included station U36A in the same group.
The resulting consensual category {TUL1, U36A, X36A} includes
signals that are characterized by similar crustal structure and
distance between source and receiver, as well as similar receiver
elevation.

Fig. 1 and the top panels of Fig. 3 (Rayleigh- and Love-wave velo-
city at 5 s period, corresponding to shallow crust) show that stations
X36A, X37A, X38A X39A and W38A sit on similar terrain, characterized
by low surface-wave velocity and (with the exception of station X36A)
relatively high topography (roughly 300–500m above sea level).
These five stations were recognized as a single category by 10 subjects
(plus one additional subject who also included other stimuli in the
category). 7 other subjects exclude X36A from what is otherwise the
same category: notice that station X36A lies on slightly different ter-
rain and is much closer to the epicenter.

Stimuli associated with stations V37A, V38A, U37A and U38A,
which all lie in the highest-topography area of the study region
(Fig. 1), are perceived as relatively similar (Fig. 10), and 7 listeners
have chosen to place them all in one category. There is, however, a
pronounced tendency to form two separate categories, one con-
sisting of U37A and U38A (grouped together 17 times), the other of



Fig. 10. Additive tree representing the perceptual distances between stimuli, computed from all 24 partitions. Each line (or “branch”) ends in a stimulus or “leaf,” or is
connected to another branch. The perceptual distance between two stimuli is proportional to the distance between the corresponding leaves, measured along the branches
that connect them. Leaves are labelled with station names, and epicenter-station distance in km. Gray circles indicate the groups identified in the analysis (a–e): solid lines
denote groups of stimuli often grouped together, and dashed lines add stimuli perceived as similar as well, but less frequently included in those groups.

Fig. 11. The central partition computed from the 24 individual partitions, displayed
on the latitude/longitude plane. Station names and locations (crosses) share the
same color if the corresponding stimuli are found to belong to the same category in
the central partition. The brown star indicates the epicenter localization. For
comparison purpose, the gray circles correspond to the groups identified in the tree
analysis (Fig. 10). (For interpretation of the references to color in this figure caption,
the reader is referred to the web version of this paper.)
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V37A and V38A (16 times). The underlying Earth's structure might
slightly differ between northern stations U37A and U38A, and
southern stations V37A and V38A (Fig. 3).

In summary, Fig. 11 suggests that audio signals have been cate-
gorized by most listeners in terms of (i) distance between source and
receiver, and (ii) geographic location of the receiver. Source–receiver
distance controls the delay between the arrival of P and S waves,
which is a prominent feature of audio signals (as a result, stations
V35A andW35A are almost always grouped together). Source–receiver
distance, however, is not the only parameter affecting the listeners’
categorization strategies; for instance, stations V37A and X37A, which
lie at approximately the same distance from the epicenter, are never
or rarely grouped together; the same holds for V38 and W38.

Receiver location determines the Earth structure sampled by
seismic waves, resulting in different frequency content, dispersion,
scattering of the waveform and, consequently, of the sonified seis-
mogram. We have identified in Fig. 11 a tendency to group together
stations that lie on similar terrain; it is harder to determine whether
ray paths that sample similar terrain also result in sonified seismo-
grams that are perceived as similar: this will be the subject of future
work.

Receivers that lie at the same distance from a seismic source,
but at different azimuths (e.g., again, V37A and X37A), stand in a
different geometrical relationship with the seismic fault: Fig. 1
shows, e.g., that stations X35A and X36A are in the focal mechan-
ism's “compressional quadrant” while the majority of stations to
the east lie in the “extensive quadrant” (Aki and Richards, 2002;
Dziewonski et al., 1981; Ekström et al., 2012). It is likely that this
also affects the seismic waveform in a way that is reflected by the
sonified seismograms, but the available data do not yet allow us to
make any strong inferences on this issue, which will have to be
explored with ad-hoc experiments.
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6. Conclusions and future work

Our analysis shows that listeners perceive “clues” in sonified
seismic signals, and use such clues to try to discriminate them.
While the number of listeners is too small for a rigorous statistical
analysis, there are clear similarities between the responses of
different listeners.

The way subjects categorize sonified seismic events seems to be
consistent with some physical properties of these events. The tree
analysis (Fig. 10) showed that, to a first approximation, the groups are
defined according to the epicenter-station distance. This is presumably
related to the auditory discrimination of P- and S-wave onset times.
There are, however, exceptions to this grouping strategy, suggesting
that the subjects make use of other clues in the signal in order to
perform the categorization task. The central partition analysis (Fig. 11)
shows that the average categories (computed from all subjects) are
well explained in terms of geographical and geological similarities: the
average categories tend to group together stimuli from stations which
are close one to another (in Fig. 11 we see more “lumped” groups than
“scattered” groups). This is in agreement with the fact that source–
receiver azimuth, underlying Earth structure, station elevation all
affect the seismic waveform, and thus its sonified counterpart.

In summary, we have found that the effects of several physical
parameters that affect a seismic waveform can also be identified, by
the human auditory system, in sonified seismograms. Disentangling
the role of each parameter is a nontrivial problem requiring further
work. We shall address it by new experiments, using “synthetic”
seismic waveforms based on very simple theoretical seismic models;
controlled-source (rather than earthquake) data from a particularly
homogeneous region could also be employed. We plan to form a
database of “seismic sounds” that only differ by one or few, well-
known parameters; the sensitivity of listeners to each parameter/
combination of parameters will thus be quantified. The performance
of listeners at specific tasks will serve to evaluate more precisely the
applicability of auditory analysis to real seismic signals.

Plans for future work include the application of current audi-
tory scene synthesis (Berkhout et al., 1993; Corteel, 2007; Spors
et al., 2011) techniques to seismic sonification, representing the
seismic wave field by a three-dimensional soundscape in which
listeners can move freely, making use of a set of simultaneous
seismic records from a dense broadband array. It can be envisaged
that the location of a receiver in real space will define that of a
source in virtual space, and seismic wave propagation observed in
areas that are well covered by seismic instruments will be repre-
sented fairly accurately by a synthesized soundscape. The spatia-
lization can be achieved by current spatial audio technology, or
even binaurally if the listener's HRTF (head-related transfer func-
tion) is convolved with the synthesized sounds, while the liste-
ner's motion is tracked in real time to render the soundfield
according to his/her viewpoint and orientation. The ability to
explore the seismic wave field in three dimensions will facilitate
auditory analysis and presumably lead to better performance
(Wightman and Kistler, 1999; Begault et al., 2001).

Furthermore, while most classic seismology applications only
involve seismic records spanning not more than a few hours after an
event, reconstructing the impulse response of the Earths crust from
ambient signal by two-receiver interferometry (Campillo and Paul,
2003; Stehly et al., 2006) requires the analysis of very long continuous
records, from several days to an entire year depending on frequency
range and source distribution; the time-acceleration, of a factor 103∼ ,
inherent to seismogram sonification makes it possible to “play” such
records in a reasonable amount of time, so that open questions on the
nature of the observed seismic background signal could then be
addressed by listening experiments.
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