Dallas Abbott, William Menke, Michael Hobart and Roger Anderson

Evidence for excess pore pressures in Southwest Indian Ocean sediments

Journal of Geophysical Research(March 1981), 86(B3):1813-1827

Index Terms/Descriptors: Agulhas Plateau; anomalies; clastic sediments; clay; convection; cores; Crozet Basin; experimental studies; geophysical methods; geophysical surveys; geopressure; heat flow; Indian Ocean; Madagascar Basin; marine environment; marine sedimentation; marine sediments; materials, properties; permeability; physical properties; pore pressure; pressure; rates; sedimentation; sediments; seismic methods; soil mechanics; Southwest Indian Ridge; surveys; temperature; theoretical studies; West Indian Ocean

Latitude & LongitudeS44°00'00'' - S20°00'00'' and E20°00'00'' - E70°00'00''

Abstract:

Brown clay cores from the Madagascar and Crozet basins show the following evidence of excess pore pressures: large amounts of flow-in, increasing average sedimentation rate with age, and nonlinear temperature gradients. Additionally, many hilltops in these basins have no visible sediment cover. The bare hilltops may result from periodic slumping caused by excess pore pressures. Calculated excess pore pressures which equal or exceed the overburden pressure were inferred from water fluxes predicted by nonlinear temperature gradients and laboratory permeability measurements by using Darcy's law. Since pore pressures which exceed the overburden pressure are unreasonable, we attribute this discrepancy to laboratory measurements which underestimate the in situ permeability. The widespread presence of overpressured sediments in areas of irregular topography provides a process for resuspension of clay-sized particles. This mechanism does not require high current velocities for the erosion of clay and therefore can be applied to many areas where no strong currents are evident. Carbonate-rich sediments from the Madagascar Ridge, the Mozambique Ridge, and the Agulhas Plateau had almost no flow-in and occurred in areas where all topography was thickly draped with sediment. Since the age and tectonic location of the ridges and plateaus preclude water circulation in the basement, we attribute these differences between the brown clay and the carbonate-rich material to an absence of significant excess pore pressures in the plateau and ridge sediments.