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How are vertical shear wave splitting measurements affected by
variations in the orientation of azimuthal anisotropy with depth?
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SUMMARY
Splitting measurements of teleseismic shear waves, such as SKS, have been used to
estimate the amount and direction of upper mantle anisotropy worldwide. These
measurements are usually made by approximating the anisotropic regions as a single,
homogeneous layer and searching for an apparent fast direction (w̃) and an apparent
splitting time (Dt̃) by minimizing the energy on the transverse component of the back-
projected seismogram. In this paper, we examine the validity of this assumption. In
particular, we use synthetic seismograms to explore how a vertically varying anisotropic
medium affects shear wave splitting measurements. We find that weak heterogeneity
causes observable effects, such as frequency dependence of the apparent splitting
parameters. These variations can be used, in principle, to map out the vertical variations
in anisotropy with depth through the use of Fréchet kernels, which we derive using
perturbation theory. In addition, we find that measurements made in typical frequency
bands produce an apparent orientation direction that is consistently different from
the average of the medium and weighted towards the orientation of the anisotropy
in the upper portions of the model. This tendency of the measurements to mimic the
anisotropy at the top part of the medium may explain why shear wave splitting
measurements tend to be correlated with surface geology.

When the heterogeneity becomes stronger, multiple scattering reduces the amplitude
of the tangential-component seismogram and the associated splitting time, so that a
null result may be obtained despite the fact that the waves have travelled through a
strongly anisotropic medium. Regardless of the amount of vertical heterogeneity, we
find that there is very little dependence on backazimuth for the measured fast-axis
direction or splitting time if the top and bottom halves of the medium average to
similar fast-axis directions. If, however, the average fast-axis direction in the top half
of the model differs from that in the bottom half, splitting-time measurements will
show a significant dependence on backazimuth, but fast-axis direction measurements
will remain relatively constant.
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(e.g. Forsyth 1975; Nataf et al. 1984; Tanimoto & Anderson
1 INTRODUCTION

1985; Montagner & Tanimoto 1990), the last decade has seen
an explosion in shear wave splitting studies using verticallyMeasurements of seismic anisotropy are used to infer mantle
propagating shear waves (see reviews by Silver 1996 anddeformation and flow patterns. While several different methods
Savage 1999). Typically, these analyses are performed on wavesfor constraining upper mantle anisotropy have been developed,
such as SKS or SKKS because they have a known polarizationsuch as Pn refraction surveys (e.g. Raitt et al. 1969; Shearer
direction (SV ) as a result of passing through the liquid outer& Orcutt 1986) and surface wave polarization analyses
core. The standard procedure is to find the inverse splitting
operator C−1 which, when applied to the observed waveform,*Now at: School of Earth and Atmospheric Sciences, Georgia Institute

of Technology, Atlanta, GA, USA. minimizes the energy on the tangential component (Silver &
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Chan 1991). When other phases such as S and ScS are used, the
2 PROBLEM FORMULATION

splitting parameters are found either by assuming a rectilinear
Because our purpose is to investigate some elementary aspectssource mechanism (Ando & Ishikawa 1982; Ando 1984) or
of vertical shear wave propagation, we adopt a very simpleby explicitly diagonalizing the covariance matrix of surface-
model for the mantle comprising a heterogeneous, anisotropiccorrected horizontal particle motions (Vidale 1986; Fouch &
layer of thickness d overlying a homogeneous, isotropic half-Fischer 1996).
space (Fig. 1). The anisotropy is assumed to be hexagonallyA basic assumption in interpreting measurements using these
symmetric with a horizontal axis of symmetry, and the lateraltechniques is that the splitting operator C corresponds to a single
heterogeneity is assumed to be sufficiently smooth that hori-homogeneous layer in which the anisotropy has a horizontal
zontal gradients in the wave velocities can be ignored. Verticallysymmetry axis and a constant magnitude. The parameters
propagating shear waves can thus be represented as linearused to describe this model (the splitting parameters) are the
combinations of orthogonal eigenwaves with shear velocitiespolarization azimuth of the fast eigenwave, w, and the travel-
v1 and v2 that depend on the depth coordinate z. To simplifytime difference between the fast and slow eigenwaves, Dt. It is
the problem further, we assume that the mean velocity

straightforward to construct the splitting operator for an
v:= (v1+v2 )/2 and the velocity difference Dv=v1−v2 are con-

arbitrary stack of layers with depth-dependent properties and
stants, and we label the eigenwaves such that Dv>0. The

more general forms of anisotropy using propagator matrices
heterogeneity in the medium is specified by a single function

(e.g. Keith & Crampin 1977; Mallick & Frazer 1990), but it is
of depth that we take to be the azimuth of the fast (v1 ) axis,

less clear how one might use such constructions to make
w(z), measured clockwise from the x-axis.

inferences about anisotropic structure. A potentially fruitful
For the calculations in this paper, we adopt a layer thick-

direction is to fit the waveform data by optimizing the homo- ness of d=200 km and a mean velocity of v:=4.54 km s−1,
genous-layer operator and then interpret the two recovered and we take the velocity of the isotropic half-space to equal
quantities, denoted here by w̃ and Dt̃, as apparent splitting this mean velocity. The maximum splitting time for shear waves
parameters which are functionals of the vertical structure. This propagating from the base of the anisotropic layer to the
approach was adopted by Silver & Savage (1994), who showed surface—we ignore the crust—is Dt=d (v1−v2 )/v1v2#dDv/v:2,
how an approximation to the variation of w̃ and Dt̃ with the which represents the ‘splitting strength’ of the model. We refer
incident polarization angle could be inverted for a two-layer to Dt in some of our numerical experiments as the ‘true’
anisotropic model. They also discussed the generalization of splitting time.
their approximate functional relations, which are valid for

forward scattering at low frequencies (wave periods &Dt), to
2.1 Forward problem: synthetic seismogramsan arbitrary layer stack. Rümpker & Silver (1998) have recently

expanded this theoretical discussion of vertical heterogeneity We use a stack of thin, homogeneous layers to represent the
to include expressions for the apparent splitting parameters medium, and a propagator-matrix method to propagate shear
valid at high frequencies, as well as some statistical properties waves vertically through the layers (e.g. Kennett 1983). For all
of the parameters for random layer stacks, and they have tested our calculations, these layers are less than 1 km thick, in order
various aspects of their theory with numerical calculations. to ensure that seismic wavelengths do not approach layer thick-

In this paper, we consider several additional aspects of this ness. Boundary conditions restrict displacements and tractions
to be continuous at the interfaces between the layers, andinterpretation problem. Using a propagator-matrix method
tractions to be zero at the surface. The Fourier-transformed,that includes both forward- (upgoing) and back-scattered

(downgoing) waves, we compute synthetic seismograms for

various types of depth dependence, including smooth models

as well as those with discontinuous variations in the anisotropy

axis. We investigate the behaviour of the apparent splitting

parameters with increasing amounts of vertical heterogeneity

in the azimuthal anisotropy, and use the results to define

three wave-propagation regimes corresponding to weak, inter-

mediate, and strong scattering. For weakly heterogeneous media,

we employ perturbation theory to calculate the sensitivity

(Fréchet) kernels for band-limited, apparent-splitting measure-

ments, and show how these measurements sample the depth

dependence as a function of frequency and incident polarization

angle. In realistic situations, the centre frequencies of the

observations are sufficiently small that the kernels are one-

sided, and we can define an apparent depth of sampling that

we demonstrate is biased towards the upper part of the
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structure. In principle, the Fréchet kernels can be used to set
Figure 1. Model used in the calculations. A vertically travelling,

up the problem of inverting frequency-dependent splitting
rectilinearly polarized shear wave impinges at depth d on the base of

measurements for depth-dependent anisotropy. We show that
a heterogeneous, anisotropic layer in which the fast-axis direction w

in practice, however, strong scattering by vertical heterogeneity varies as a function of depth z. The two eigenvelocities, v1 and v2 ,can invalidate the assumptions that underlie this linearized are constant throughout the layer, and the velocity of the isotropic

half-space is taken to be equal to their mean.approach, especially at higher frequencies.
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density-normalized stress vector t(z, v)=r−1[T
xz

T
yz

]T is

related to the depth derivative of the displacement vector
u(z, v)=[u

x
u
y
]T by the Christoffel matrix

C(z)=Cv2
1

cos2 w(z)+v2
2

sin2 w(z) (v2
1
−v2

2
) cos w(z) sin w(z)

(v2
1
−v2

2
) cos w(z) sin w(z) v2

1
sin2 w(z)+v2

2
cos2 w(z)D .

(1)

The equations of motion are ∂
z
f=Af, where the displacement-

stress vector and system matrix are given by

f (z, v)=Cu(z, v)

t(z, v)D , (2)

A(z, v)=C 0 C−1 (z)
−v2I 0 D . (3)

The rotation operator

U(w(z))=Ccos w(z) −sin w(z)

sin w(z) cos w(z) D (4)

diagonalizes the Christoffel matrix: Ĉ¬diag[v2
1
, v2
2
]=UCUT.

The propagator matrix for this problem and some of its
approximations are discussed in Appendix A. For an upgoing
wave u

I
(v) incident at the base of the anisotropic layer, the

free-surface displacement vector can be written

u(0, v)=[P
uu
+ivv:Put+(P

uu
− ivv:Put)R]u

I
(v) , (A16)

where P
uu

and P
ut

are 2×2 submatrices of the propagator

matrix (A7), R is the 2×2 matrix of reflection coefficients
(A15), and U

z
=U(w(z)).

The pulse shape at the base of the anisotropic layer in

all of our calculations is taken to be of the form u
I
(t)=

exp[−a/(t−t0 )− (t−t0 )/b] H(t−t0 ) with a duration a=2 s

and a decay constant b=4 s. The convolution of this initial
pulse shape with the broad-band instrument response and pre-
filter is given in Fig. 2(a). There is no energy on the tangential

component because the initial pulse is radially polarized; how-
ever, propagation of the pulse through an anisotropic layer
produces energy on both the radial and tangential components

of the surface seismogram. An example of a synthetic seismo-
gram calculated for a homogeneous anisotropic layer is shown
in Fig. 2(b) for a velocity contrast of Dv/v:=4.54 per cent.

This corresponds to a splitting strength of Dt=2 s, which
lies towards the high end of the observations summarized
by Silver (1996) and Savage (1999). The azimuth of the fast

axis, measured clockwise from the radial (x̂) direction, is 45°.
The seismograms in this example are ‘broad-band’ with a
corner at 50 mHz and at 300 mHz, and a centre frequency of

~140 mHz.
A simple model of a heterogeneous anisotropic layer, used
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extensively in our numerical illustrations, is one in which w(z)
Figure 2. Radial- and tangential-component seismograms at (a) thevaries linearly with depth:
base of the anisotropic layer, (b) the surface after passing through a

w(z)=w
0
+kz=w

d
+k(z−d) . (5) homogeneous anisotropic layer, (c) the surface after passing through

a weakly heterogeneous anisotropic layer in which the fast-axis
The constant k=dw/dz is the vertical rotation rate. The

direction (Dw) linearly rotates 30°, (d) intermediate heterogeneous
orientation of the fast axis varies from w0 at the surface to w

d anisotropic layer in which the fast-axis direction (Dw) linearly rotates
at the base of the layer, and the total change in the orientation 100°, and (e) strongly heterogeneous anisotropic layer in which the
Dw=w

d
−w0=kd measures the strength of the heterogeneity. fast-axis direction (Dw) linearly rotates 1000°. Seismograms are band-

Figs 2(c) to (e) show synthetic seismograms for the linear- pass filtered with a Butterworth filter to frequencies between 50

and 300 mHz.rotation model with a splitting strength of Dt=2 s and
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increasing amounts of heterogeneity: Dw=30°, 100°, and 1000°, The behaviours illustrated in Fig. 3 are typical of three

respectively. In all three examples, the incident polarization scattering regimes that can be qualitatively described as ‘weak’,
was chosen such that the mean orientation of the fast axis was ‘strong coherent’, and ‘strong incoherent’.
45°; that is,

3 WEAK-SCATTERING REGIMEw:¬
1

d P d
0

w(z)dz=w
0
+Dw/2=p/4 . (6)

When the scattering is weak, the effects of the heterogeneity
In the case where Dw=30°, the surface seismograms (Fig. 2c) on the apparent splitting parameters can be approximated
are very similar to those produced in the homogeneous with a linearized perturbation theory. In this section, we derive
anisotropic case (Fig. 2b). Both the radial- and tangential- analytical expressions for perturbations from a homogeneous
component seismograms have a comparable amount of energy. starting model, test their applicability with numerical calcu-
As Dw increases to 100°, the energy on the radial com- lations, and use them to gain insight into how the sensitivity
ponent becomes greater than that on the tangential component of the apparent splitting parameters varies with depth.
(Fig. 2d), and when Dw is as large as 1000°, the net effect of

the anisotropy is to put very little energy onto the tangential
component (Fig. 2e). 3.1 Fréchet kernels

The linearized equations that relate a structural perturbation
2.2 Inverse problem: apparent splitting parameters dw(z) to perturbations in the apparent splitting parameters, dw̃

and dt̃, can be written as integrals over the layer:
If the incident pulse is known to be radially polarized, then
the apparent splitting parameters w̃ and Dt̃ can be defined as

the values that minimize the energy on the transverse (ŷ) dw̃#P d
0

G
w
(z)dw(z)dz , (8)

component of the displacement field back-projected to z=d
using a homogeneous-layer splitting operator (Silver & Chan

1991). Parseval’s theorem allows the transverse-component dt̃# P d
0

G
t
(z)dw(z)dz . (9)

energy to be written as a frequency-domain integral:

This approximation ignores terms of order dw2. G
w
(z) and G

t
(z)

e2(w∞, Dt∞)=P2

−2
|ŷTC−1h (w∞, Dt∞)u(0, v) |2dv . (7)

are the sensitivity functions, or Fréchet kernels. They generally

depend on the structural model that is being perturbed, as
Here C−1h is the inverse of the splitting operator given by well as on the spectral properties of the waves being measured.
eq. (A24). In practice, the determination of these so-called For the structures considered here, a model is specified by the
splitting parameters requires a search over a grid of fast-axis fast-axis orientation function {w(z): 0≤z≤d} and the two
directions and delay times. For typical teleseismic observations, velocity constants v1 and v2 .these parameters can be determined to within ±10° and 0.15 s The Fréchet kernels can be numerically approximated for
(Fouch & Fischer 1996; Silver & Chan 1991). Fig. 3 shows the an arbitrary starting model by computing the small change in
‘energy map’ contoured as a function of w∞ (0° to 180°) and the splitting parameters due to a small perturbation in the
Dt∞ (0–4 s) for the three linear-gradient examples shown in the fast-axis orientation distributed over a thin layer. However, in
previous section, and Fig. 4 shows the inferred seismograms at the special case of a homogeneous starting model (w(z)=w0 ),the base of the layer, calculated by back-projecting the splitting the kernels for narrow-band pulses can be derived analytically.
parameters and assuming propagation of waves through a The details are relegated to Appendix B. The approximate
homogeneous, anisotropic layer. results for a pulse with centre frequency v0 and half-bandwidth

The energy map for the seismograms computed for a homo-
s are

geneous layer (Fig. 3a) shows a well-defined minimum at the

correct values of splitting parameters (w̃=45°, Dt̃=2 s). For
G
w
=

g
4
+[g

5
cos 4w

0
+g

6
](s2/v2

0
)

g
1
+ (g

2
cos 4w

0
+g

3
) (s2/v2

0
)
Dk+OA s4

v4
0
B , (10)weak heterogeneity (Dw=30°), the energy minimum remains

close to the layer mean (w̃=48°, Dt̃=1.9 s), and the bulk of

the tangential-component energy has been removed (Fig. 4c).
At intermediate values of the heterogeneity (Dw=30°), the G

t
=

g
7
+[g

8
cos 4w

0
+g

9
](s2/v2

0
)

g
1
+ (g

2
cos 4w

0
+g

3
)(s2/v2

0
)
Dk cot 2w

0
+OAs4

v4
0
B ,

energy minimum is still well defined (Fig. 3c), but it is displaced
away from the layer mean by 18° (w̃=63°). Moreover, the (11)
scattering from the vertical gradients in the anisotropy is

sufficient to reduce the apparent splitting time significantly where Dk=v0 (v−12 −v−1
1

) is the differential wavenumber.
below its true value (Dt̃=1.5 s). When the heterogeneity gets The three parameters appearing in the denominator of these
to be very large (Dw=1000°), the scattering is sufficiently strong expressions are independent of depth z:
as to cause destructive interference that nearly wipes out the
arrivals on the transverse component (Fig. 2e). The resulting g

1
= (1−cos Dkd)2 , (12a)

energy map (Fig. 3d) is characteristic of a ‘null measurement’,

with the lowest values occurring near the horizontal axis g
2
=Dkd[sin2 Dkd+ (Dkd−2) sin Dkd cos Dkd] , (12b)

where Dt∞=0 and along vertical ridges corresponding to the
degenerate azimuths of w=0° and 90°. g

3
=g

2
+2(Dkd)2[sin2 Dkd+ (1−cos Dkd) cos Dkd ] . (12c)
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Figure 3. Energy diagrams for (a) a homogeneous anisotropic layer, (b) a weakly heterogeneous anisotropic layer (Dw=30°), (c) an intermediate

heterogeneous anisotropic layer (Dw=100°), and (d) a strongly heterogeneous anisotropic layer (Dw=1000°).

The other six can be written in terms of trigonometric functions The relative bandwidth s/v0 , which is less than 0.5 in most
seismological applications (e.g. Silver 1996; Fouch & Fischerof the height variable r=d−z:

1996; Wolfe & Solomon 1998), is sufficiently small that it is
g
4
(r)= (1−cos Dkd) sin Dkr , (13a)

safe to ignore the fourth-order terms in (10) and (11). Fig. 5
displays kernels computed under this approximation for ag

5
(r)= (Dkd−1) sin Dkd cos Dkr+ (Dkd−DkdDkr) sin Dkd

range of initial polarizations and centre frequencies. The
×sin Dkr−Dkd cos Dkd cos Dkr , (13b)

sinuosity of the kernels increases with frequency, reflecting the
first-order trigonometric dependence on Dk z. The kernel forg

6
(r)=g

5
(r)+ (Dkd)2 cos Dkd sin Dkr+2(Dkd)(Dkr) sin Dkd

the apparent splitting azimuth satisfies the lower boundary
×cos Dkr− (Dkr)2(1−cos Dkd) sin Dkr , (13c)

condition, G
w
(d)=0, which can be verified from the analytical

expressions.g
7
(r)= (1−cos Dkd)2 cos Dkr− (1−cos Dkd) sin Dkd sin Dkr ,

Integration of these expressions show that the kernel for dw̃
(14a)

is unimodular and the kernel dt̃ averages to zero:

g
8
(r)=sin Dkd(sin Dkd−2 cos Dkd)

P d
0

G
w
(z)dz=1 , (15)×[Dkd cos Dkr−(Dkd)(Dkr) sin Dkr]

+ (Dkd)2 sin Dkd cos Dkd cos Dkr , (14b) P d
0

G
t
(z)dz=0 . (16)g

9
(r)=g

8
(r)+2(Dkd)2

×[sin2 Dkd+(1−cos Dkd) cos Dkd ] cos Dkr
These properties must apply to the exact forms of the Fréchet
kernels, not just to their narrow-band approximations given− (1−cos Dkd)2[Dkr sin Dkr+(Dkr)2 cos Dkr] . (14c)
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by (10) and (11), because a constant perturbation maintains

the structural homogeneity of the starting model. In other
words, setting the perturbation in (8) and (9) to a constant
value of dw must always yield dw̃=dw and dt̃=0.

3.2 Limiting forms of the kernels

By considering the zero-bandwidth limit, we gain additional
insight into the nature of the sensitivity kernels:

G0
w
(z)¬ lim

s�0
G
w
(z)=

sin Dk(d−z)

1−cos Dkd
Dk , (17)

G0
t
(z)¬ lim

s�0
G
t
(z)

=Ccos Dk(d−z)−
sin Dkd sin Dk(d−z)

1−cos Dkd DDk cot w
0
. (18)

The splitting-time kernel (18) varies like the cotangent of 2w0
and is thus singular at w0=np/2, which corresponds to incident
polarizations aligned with an eigenwave orientation in the
unperturbed model. In contrast to this singular behaviour,

the splitting-azimuth kernel (17) is independent of the initial
polarization, and remains well defined even at its degenerate

values.
This important theoretical point deserves special emphasis.

A shear wave with a polarization aligned with one of the

eigenwave directions is not split by propagation through
the reference model, and the tangential-component energy
of the back-projected displacement field is thus identically zero

at w∞=w0=np/2 for arbitrary values of Dt∞>0. Consequently,
the energy map displays vertical nodal lines at these azimuths,
as well as a horizontal nodal line at Dt∞=0, and the inversion

of the seismograms for the apparent splitting parameters via
the minimization of (7) becomes unstable (e.g. Silver & Chan
1991). Nevertheless, the apparent splitting azimuth remains

formally defined in this limit by the orientation of the appro-
priate vertical node; that is, w̃ equals either w0 or w0+p/2.
Moreover, w̃ is Fréchet differentiable, because a small per-

turbation to the model will result in a small, well-defined
perturbation of the node in the w∞ direction. The splitting-time
functional Dt̃, on the other hand, is not Fréchet differentiable

at the nodes, which is why its kernel is singular. This behaviour
generalizes to pulse shapes with finite bandwidths, as is evident
from eq. (11).

The cotangent dependence of the splitting-time kernel also
implies that G

t
(z)=0 for w0=np/4, which means that at

polarization angles near 45° the apparent splitting time is only

weakly dependent on perturbations to the local splitting
orientation.

Eqs (17) and (18) show that, in the zero-bandwidth limit,
both kernels become unbounded at Dkd=2 np, where the total
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Figure 4. Radial- and tangential-component seismograms. After deter- splitting time Dt is an integral multiple of the wave period
mining the apparent splitting parameters, the seismograms can be 2p/v0 . A finite bandwidth introduces a weak (~s2/v2

0
) depen-

back-projected to the base of the layer again using those same dence of G
w

and G
t
on the initial azimuth through the cos 4w0parameters and assuming a homogeneous layer. (a) Input pulse at the term, which suppresses this resonance singularity.

base of the anisotropic layer to be compared with back-projected
The expressions for the kernels presented thus far apply to

seismograms from (b) homogeneous anisotropic layer, (c) weakly
splitting strengths that are arbitrarily large. At low frequencies,

heterogeneous anisotropic layer (Dw linearly rotates 30°), (d) inter-
when the splitting strength is much less than the wave period,mediate heterogeneous anisotropic layer (Dw linearly rotates 100°),
the maximum phase shift between the two eigenwaves is small,and (e) strongly heterogeneous anisotropic layer (Dw linearly rotates
Dkd=v0Dt%1. If we expand the trigonometric functions and1000°). Seismograms are band-pass filtered with a Butterworth filter

to frequencies between 50 and 300 mHz. retain only the leading terms, the single-frequency kernels
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Figure 5. Fréchet kernels for the apparent splitting parameters computed from eqs (10) and (11) to second order in the relative bandwidth s/v0 .
The reference model is a 200-km thick homogeneous layer with Dt=2 s. Left panels show the apparent azimuth kernels G

w
(z), and right panels

show the apparent splitting-time kernels G
t
(z). The initial polarization w0 increases downwards from 20° (top panel ) to 80° (bottom panel ). In

each panel, the centre frequencies v0 range from 0.1 to 0.8 Hz (lowest frequencies are solid lines, intermediate are dashed, and highest frequencies

are dotted), while the relative bandwidth is held constant at s/v0=0.125.

become linear functions of depth: of the apparent splitting time to azimuthal heterogeneity is
zero in the middle of the layer, and it is of equal magnitude
and opposite sign at the top and bottom of the layer.G0

w
(z)#

2(d−z)

d2
, (19)

3.3 Apparent depth of samplingG0
t
(z)#2DtA2z−d

d2 B cot w
0
. (20)

The previous discussion shows that the Fréchet kernel for the

apparent splitting azimuth will be non-negative when the centreThus, in the low-frequency limit, the apparent splitting azimuth
is insensitive to heterogeneity at the base of the layer and most period of the wavegroup, 2p/v0 , is greater than or equal to

twice the splitting time Dt (i.e. Dkd≤p). Under this condition,sensitive to heterogeneity at the top of the layer. The sensitivity
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which applies to most observations of teleseismic shear wave prediction, corresponding to the fast-axis direction approxi-

mately one-third of the way down the layer. This increase insplitting, we can define an apparent depth of sampling by the
centroid of the kernel: sensitivity to the fast-axis direction near the surface may explain

why shear wave splitting measurements tend to correlate with

tectonic deformation observed at the surface (Silver 1996).zapp=P d
0

G
w
(z)zdz . (21)

Most shear wave splitting measurements are made on seismo-
grams with relatively low centre frequencies (<200 mHz), soUsing (15), we obtain for the zero-bandwidth limit
that the apparent depth of sampling is less than the mean
thickness of the layer. There are significant variations in the

z0app= lim
s�0

zapp=
sin Dkd−Dkd cos Dkd

Dkd(1−cos Dkd)
. (22)

centre frequencies used by different researchers, however, so

this apparent depth varies from study to study.
In the low-frequency limit, where the w̃ kernel becomes a linear
function of depth, the apparent depth of sampling goes to

one-third of the layer thickness. This value increases to half 3.4 Numerical tests
of the layer thickness as the centre period approaches the

We conducted a series of numerical experiments to test the
splitting time. Fig. 6 shows three low-frequency w̃ kernels and

perturbation theory derived for a homogeneous model. To
their apparent depths of sampling for a 200-km thick, aniso-

investigate the sensitivity of the kernels to the reference
tropic layer. In the low-frequency limit, the apparent depth of

structure, we have computed them by numerical perturbation
sampling is just 66 km, whereas, for data low-pass filtered at

to heterogeneous starting models. The results for starting
100 mHz, the depth of sampling increases to 71 km, and, for

models with a linear gradient and a step-wise discontinuity in
data low-pass filtered at 200 mHz, it increases to 88 km.

w(z) are compared with the homogeneous-layer case in Fig. 7.
This bias in the sensitivity to near-surface structure explains

The average orientation was chosen to be the same for all
why the recovered value for w̃ in the weak scattering case

three models, w:¬d−1 ∆d
0

w(z)dz=45°, while the total variation
(Fig. 3b) is greater than the layer mean by about 3°. In this

in w(z) was taken to be 20° for the two heterogeneous models.
model, the fast axis rotates linearly from 40° at the base of the

The kernels are very similar, indicating only a weak dependence
layer to 50° at the top. The kernels predict that the upper part

on the starting model when the heterogeneity is of this magni-
of the model, where the fast axis ranges between 45° and 50°,

tude. In particular, the apparent depths of sampling for the
will dominate the shear wave splitting measurement, and

layered and linear models are 91 km and 90 km, respectively,
indeed the value found numerically (w̃=48°) agrees with this

essentially the same as the value of 88 km calculated for the
homogeneous model. The properties found for the homo-

geneous-layer kernels, such as their dependence on frequency,
bandwidth, and incidence azimuth, should therefore pertain
more generally in the weak-scattering regime.

We also compared the perturbations calculated from the
Fréchet kernels using eqs (8) and (9) with the results of a
direct numerical calculation that minimized the tangential-

component energy on back-projected synthetic seismograms.
Fig. 8 shows several examples of these comparisons as a
function of the average polarization direction w: for an initial

pulse with a centre frequency at 60 mHz and corners at 45 mHz
and 75 mHz. Fig. 9 shows the results for w:=45° for increasing
values of the centre frequency v0 . We note that care must

be taken in the numerical calculations when evaluating the
apparent splitting parameters near the azimuthal nodes at
w0=np/2, because the energy surfaces can be very flat in the

Dt∞ direction, and the location of the minimum is susceptible
to numerical inaccuracies that can cause a p/2 ambiguity.

When the heterogeneity is small (Dw=10°) in the linear-

gradient models, the kernels do a good job of predicting w̃
and Dt̃ for all backazimuths (Fig. 8a). For heterogeneity with

a total rotation angle as large as 60° (Fig. 8b), the kernels
typically overestimate the apparent splitting time by about
0.3 s, and, near the nodes, w̃ can be off by as much as 20°. This

failure of the kernels with greater heterogeneity reflects a
breakdown in the small-angle approximations (e.g. eq. B5).
Inclusion of the back-scattering terms in the calculation of

synthetic seismograms (solid dots in Fig. 8) does not produce
significantly different results from those obtained using just
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the forward-scattering terms.Figure 6. Low-frequency Fréchet kernels and the apparent depth of
In a second set of comparisons, we use what is perhaps asampling computed with eq. (20). The solid line is the kernel in the

more geologically relevant model comprising 10 layers, eachlow-frequency limit, the dashed line is the low-passed kernel for

100 mHz, and the dotted line is the low-passed kernel at 200 mHz. 20 km thick, of differing orientations constrained such that the
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Figure 7. A comparison of Fréchet kernels for three starting models. Panel (a) is a plot of w(z) for the homogeneous-layer (solid line), constant-

gradient (dotted line), and two-layer (dashed line) models. Panels (b) and (c) show the corresponding kernels for these models, G
w
(z) and G

t
(z),

respectively. The kernels were calculated by a numerical perturbation scheme for v0=0.14 Hz, s=v0/6 Hz, which are similar to the values used

in the processing of teleseismic shear waves. The models have the same average azimuth, w:=45°. Eq. (10) shows that G
t
(z)=0 for a homogeneous

layer with this initial azimuth. The agreement illustrates the weak dependence of the kernels on the starting model.

fast-axis directions varies between 0° and 30°. When the layer at higher frequencies (Figs 9b and d) than at lower frequencies.

In these examples, Dt=2.14 s. At frequencies approaching 1/Dtorientations are distributed randomly, such that the average
orientation in the top half of the model is similar to that in (~0.46 Hz) the kernels predict highly oscillatory behaviour in

w̃. This also corresponds to the frequency at which the kernelsthe bottom half, the agreement between the numerical results
and the predictions of the analytical kernels is usually very become unbounded in the single-frequency limit.
good (Fig. 8c). In addition, both the exact values of the

apparent splitting parameters and perturbation-theory pre-
4 STRONG-SCATTERING REGIME

dictions show very little dependence on the polarization angle,
with the variations in the apparent splitting time associated The numerical experiments demonstrate that the first-order

perturbation theory expressed in eqs (8) and (9) provides anwith nodal singularities compressed into a narrow range of
azimuths. accurate description of the apparent splitting parameters in

situations where the magnitude of the vertical heterogeneity isWhen the layer orientations are skewed, however, such that

the average orientation in the top half of the model differs small. As this magnitude increases, the perturbation theory
fails because the small-angle approximations employed insignificantly from that in the bottom half (Fig. 8d), the p/2

periodicity in Dt̃ associated with the nodal singularities obtaining the scattering matrix (B5) and the linearized mini-

mization condition (B12) become inaccurate, owing to thebecomes more pronounced. This difference in the variation of
Dt̃ with initial azimuth results from the fact that G

t
(z) is accumulating effects of multiple forward-scattering. The com-

bination of these strong-scattering effects causes the behaviourapproximately a linear function of depth that averages to

zero, as seen from its low-frequency form (18); that is, the of the apparent splitting parameters to deviate from the
weak-scattering results.perturbation to the apparent splitting time will be small and

the p/2 periodicity will be suppressed when the first moment Aspects of this behaviour were noted in the previous

discussion of Fig. 3, which displays the numerical results for∆d
0

w(z)zdz is small. For a specified level of heterogeneity, the
constant-gradient case has the largest first moment of any a constant-gradient model. In these calculations, Dt=2 s,

w:=45°, and all forward- and back-scattering terms weremodel, which is why the initial-azimuth dependence in Figs

8(a) and (b) is so pronounced. retained. For a 45° average polarization, the general form of
the kernel (11) shows that the splitting-time perturbationThese results can be used to qualify Silver & Savage’s (1994)

argument that a p/2 periodicity in initial azimuth should should be zero to first order; that is, the apparent splitting

time Dt̃ should equal the total splitting strength Dt. Strongbe diagnostic of vertical heterogeneity. This periodicity will be
relatively weak for heterogeneous structures where the azimuth scattering acts to reduce Dt̃ below this theoretical limit, so that

the ratio (Dt−Dt̃)/Dt, to the extent that it can be accuratelyof the anisotropy does not vary systematically with depth.
On increasing the heterogeneity in the 10 random layers so estimated, measures the higher-order effects. For the 30°

rotation in Fig. 2(c), this reduction is only about 5 per cent,that the fast-axis direction ranges over 120°, we find azimuthal

discrepancies of up to ±5° and splitting-time discrepancies consistent with the weak-scattering approximations. The
120° rotation in Fig. 2(d) gives a much more substantial effectexceeding 1 s (Figs 8e and f ). At this level of heterogeneity,

back-scattering effects, given by the differences between the (~35 per cent), indicating that these approximations are not

accurate for heterogeneity of this magnitude. For the 1000°open and solid circles, begin to become important.
A comparison of the analytical and numerical results for rotation, the scattering is sufficiently large that the tangential-

component arrivals are incoherent, so that the long-perioddifferent frequencies at a single backazimuth shows that the

kernels do a nice job of predicting w̃ and Dt̃ up to 0.5 Hz when amplitude is nearly zero, and the energy diagram looks nodal.
In this case, there is no well-defined energy minimum, and itthe heterogeneity is weak (Figs 9a and c), but that when the

heterogeneity gets stronger, the kernels break down more quickly is difficult to measure the apparent splitting parameters.
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Figure 9. Comparison of numerical and analytical results. Left panels show w̃ and right panels show Dt̃, plotted as a function of frequency. Solid

lines are analytical predictions from the kernels. Solid circles are the numerical results with both forward- and back-scattering, and open circles

include just forward-scattering. (a) Weakly heterogeneous (Dw=10°) linear rotation model. (b) Strongly heterogeneous (Dw=60°) linear rotation

model. (c) Weakly heterogeneous 10-random-layer model (maximum Dw=30°). (d) Strongly heterogeneous 10-random-layer model (maximum

Dw=120°).

In Fig. 10, we extend these calculations to constant-gradient Section 3 is valid. The deviation of these contours towards the
horizontal defines a region where the scattering is too strongmodels with w:=45° and a range of splitting and heterogeneity

strengths. The ordinate is taken to be 1/k, a quantity pro- for perturbation theory to apply but not so strong as to

prohibit the estimation of the apparent splitting parameters.portional to the inverse of the heterogeneity gradient, which
defines a vertical correlation length. The contours of apparent The boundary between these two scattering regimes, indicated

by the dashed line in Fig. 10, is given by a correlation lengthsplitting time on this plot can be used to delineate the three

scattering regimes. The region with nearly vertical contours that increases exponentially with the anisotropy strength. As
the correlation length of the vertical heterogeneity decreasesat large values of the correlation length corresponds to weak

scattering, where Dt̃#Dt and the perturbation theory of at constant Dt, the apparent splitting time decreases, at first

© 2000 RAS, GJI 141, 374–390



Shear wave splitting with variable anisotropy 385

0 0.5 1 1.5 2 2.5 3
0.1

0.3

1

3.2

10

32

100

strength of anisotropy, ∆t=∆s⋅d  (s)

ve
rt

ic
al

 c
or

re
la

tio
n 

le
ng

th
, 1

/κ
, (

km
/d

eg
)

small

strong, incoherent scattering

weak scattering

strong, coherent scattering

0.5s 1.0s 1.5s 2.0s 2.5s

−1°

−3°

−10°

−30°

−100°

−300°

−1000°

anisotropy
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anisotropy in the models (Dt∞), and the vertical axis shows the range of vertical heterogeneity in the models (k is the rotation rate). Splitting

measurements cannot be made when Dt∞<0.5 s or 1/k<1 km deg−1.

slowly then rapidly. Below some critical value of the correlation The applicability of this procedure is likely to be limited by
difficulties in extracting apparent splitting parameters at higherlength (~50 km in this example, corresponding to k=1° km−1),

the scattering becomes so strong that Dt̃ cannot be defined. frequencies. Above 0.1 Hz, observed shear waveforms become

increasingly complex due to microseisms, crustal scattering,As this diagram makes clear, it is not possible to distinguish
on the basis of low-frequency splitting observations the differ- and other sources of ‘noise’. In addition, split shear waves have

distinct ‘holes’ in their amplitude spectra at frequencies withence between highly heterogeneous anisotropy (Dt and k large)

and weak anisotropy (Dt small ). Analysis of horizontally integer multiples of 1/Dt (Silver & Chan 1991), which com-
plicate analysis at higher frequencies. As a result, most shearpropagating surfaces waves (e.g. Jordan & Gaherty 1996) is

one way to distinguish between these two cases. wave splitting analyses in the literature utilize centre frequencies

that fall within a relatively narrow frequency band of approxi-
mately 0.05–0.2 Hz (e.g. Silver 1996; Fouch & Fischer 1996;

5 DISCUSSION
Wolfe & Solomon 1998). Our numerical experiments in the

weak-scattering regime indicate that, across this bandwidth,For the case of weak scattering, differences in the sensitivity
kernels as a function of frequency can, in principle, be exploited variations in Dt̃ and w̃ are generally less than 0.1 s and 5°,

respectively (Figs 8a and 9a). These variations are smaller thanto invert frequency-dependent shear wave splitting measure-

ments for a picture of anisotropic variation with depth. To do the typical error estimates in observational studies, and thus
they cannot resolve changes in anisotropy with depth.so, one applies standard splitting analysis to broad-band

recordings in order to obtain an apparent fast direction to In the case of strong scattering, the approximations made

in deriving the kernels are no longer valid, so that the kernelsbe used as a starting estimate for w: . Frequency-dependent
apparent splitting parameters are then extracted by applying cannot be used to solve the inverse problem. We can, how-

ever, utilize the numerical results in the interpretation ofthe back-projection procedure to narrow-band filtered seismo-
grams, and their kernels constructed from (10) and (11). splitting observations. Marson-Pidgeon & Savage (1997) report

frequency-dependent shear wave splitting results from NewAdherence to the weak-scattering regime can be checked by

confirming that minimal signal remains on the tangential- Zealand (between 50 and 200 mHz) that are consistent with
our numerical results for the strong coherent scattering regimecomponent seismogram after back-projection via the apparent

splitting parameters (Fig. 4). The frequency-dependent splitting (Figs 9b and d), implying significant vertical heterogeneity

with depth. In addition, splitting results from cratons in Southparameters can then be inverted for w(z). (In all of our
calculations, the difference between the speeds of the two Africa (Gao et al. 1998), Australia (Clitheroe & van der Hilst

1998; Özalaybey & Chen 1999), India (Chen & Özalaybeyeigenwaves remained constant throughout the model. In the

real world, this parameter, like the anisotropy orientation, 1998), and Tanzania (Hill et al. 1996) all find splitting times
that are smaller (generally <0.6 s) than for many other con-probably varies with depth. It is a simple matter, however, to

extend the theory to depth-dependent wave speeds.) tinental environments (e.g. Silver 1996). Such observations are
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typically interpreted as evidence for little or no anisotropy. of the figures were generated using GMT software freely

Our calculations provide an alternative explanation for these distributed by Wessel & Smith (1991). This research was
null results in terms of strong incoherent scattering in an upper funded by NSF Grant EAR-9526702.
mantle that is anisotropic, but has a high degree of vertical

heterogeneity. Other data, such as horizontally propagating
surface waves, are necessary to distinguish between these two
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APPENDIX A: PROPAGATOR MATRICES
AND SPLITTING OPERATORS where

The system matrix A(z) is rotated into the eigenwave coordinate
system by the 4×4 block-diagonal matrix U=diag[U, U],

S(z)=C 0 a(z) 0 b*(z)

−a*(z) 0 b*(z) 0

0 b(z) 0 a*(z)

b(z) 0 −a(z) 0 D dw

dz
. (A9)

Â=UAUT=C 0 C−1
−v2I 0 D , (A1)

and is diagonalized by a matrix whose columns represent
The depth-dependent coefficients a and b depend exponentiallythe downgoing and upgoing eigenwaves: D−1ÂD=
on the wavenumber Dk=k2−k1 and the wavenumber averagei diag[k1 , k2 , −k1 , −k2]. Here, k

j
=v/v

j
( j=1, 2) are the

k:=(k1+k2 )/2, respectively:eigenwavenumbers, and

a(z)=
v:

√v
1
v
2
eiDkz , (A10a)D=CD

u
D
u

D
t

D*
t
D , D−1=CD−1

u
D−1
t

D−1
u

D*−1
t
D , (A2)

where the 2×2 blocks are b(z)=
Dv

2√v
1
v
2
e2ik:z . (A10b)

The propagator Q (z, z0 ) is a 4×4 differential scatteringD
u
=Ce

1
0

0 e
2
D , D

t
=Civv

1
e
1

0

0 ivv
2
e
2
D . (A3)

matrix for the eigenwaves, which we write in block form as

Kennett’s (1983, eq. 2.63) energy normalization procedure
Q=CQ++ Q+−

Q−+ Q−−D . (A11)yields e
j
= (2v

j
)−1/2.

In a homogeneous layer [w(z)=constant], the eigenwave
propagator from z0 to z is

The submatrices Q++ and Q+− describe, respectively, the

forward scattering of downgoing (+) and upgoing (−) eigen-
waves by gradients in w(z), and Q−+ and Q+− describe theE(z, z

0
)=CE(z, z

0
) 0

0 E*(z, z
0
)D , (A4)

corresponding backward scattering. These scattering operators
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satisfy the reciprocal relations In the case of a homogeneous layer, these expressions reduce

to P̂h
uu
=P̂h

tt
=diag[cos k

j
(z−z

0
)], P̂h

ut
=diag[(vv

j
)−1 sin k

j
d],

Q−−=Q*++ , (A12a)
and P̂h

tu
=diag[−(vv

j
) sin k

j
d].

A useful approximation, almost always employed in verticalQ+−=Q*−+ . (A12b)

shear wave splitting analysis, is to ignore back-scattering and
From eqs (A8) to (A10) we can see that the strength of forward

reverberations within the anisotropic layer. This amounts to
scattering in a depth increment dz is proportional to

ignoring terms of order Dv/v: in eq. (A17). Under this approxi-
a0 exp(iDkz)dw(z), while the strength of the back scattering

mation, a0=1 and b0=0, so that Q+−=Q−+=0. A little
goes like b0 exp(2ik:z)dw(z). If the relative difference in the

algebra obtains
eigenvelocities is small, then forward scattering will tend to
dominate because b0%a0~1. Moreover, in this situation of
small anisotropy, Dk%2k: , so that the back-scattering kernel R=U

d
QT++E2Q++UT

d
,

u(0)=2U
0
EQ++UT

d
u∞
I
(d) .H (no back-scattering) .

(A18a)

(A18b)will be more oscillatory and its integral contributions will tend
to cancel if w(z) is smooth.

At zero frequency, S=S0 depends on z only through Eq. (A18b) shows that, when back-scattering can be ignored,
ẇ¬dw/dz. Therefore, S0 commutes with its integral, and the the eigenwave propagator is just EQ++ It will be convenient
solution to (11) is Q(z, z0 )=exp(SDw), where Dw=w(z)−w(z0 ). to pull out the phase factor corresponding to the mean
Using the fact that traveltime through the layer, t:=k:d/v, and rewrite these

expressions in terms of the eigenwave splitting matrix,S2n
0
= (−1)nDw2nI and S2n+1

0
= (−1)nDw2nS

0
,

we can sum the exponential series. This yields a good approxi-

mation to the propagator across a layer that is thin compared H=exp (−ivt:)E=Cexp (−ivDt/2) 0

0 exp(ivDt/2)D , (A19)
with a wavelength; that is, for k:Dz%1,

which is unimodular; that is, det[H]=1. We define the
Q++ (z+Dz, z)#C cos Dw a(z) sin Dw

−a*(z) sin Dw cos Dw D , (A13a) splitting operator,

C=U
0
HQ++UT

d
. (A20)

Q−+ (z+Dz, z)#C 0 b(z) sin Dw

b(z) sin Dw 0 D . (A13b)

The surface displacement is thus u(0)=2 exp(ivt:)Cu∞
I
(d), and

the reflection matrix is R=exp(2ivt:)CTC. The factor of twoWe note that this approximation is independent of the form
in the former comes from the constructive interference of theof w(z) and, for example, does not require w(z) to be a smooth
upward-going wave and its surface reflection. In the case of afunction of depth. Indeed, it provides the generalization of
homogeneous layer, Q++=I, and (A20) becomesthe propagator to self-affine (fractal) media for which ẇ may

not be well defined. Eqs (A7) and (A13) are the basis of our
Ch(w, Dt)=U(w)H(Dt)UT (w)(homogeneous layer) . (A21)computational algorithm.

For an upgoing wave u
I
(z)~exp(−ik:z) incident at the base

All of the matrices in (A20) are both unitary and unimodular;of the anisotropic layer, the displacement–stress vector in the
for example, C−1=C†¬(C*)T, det[C]=1. (The unimodularityhalf-space can be expressed as
of Q++ follows from tr[S++ (z)]=0; see Kennett 1983, p. 42.)
Therefore, all of the matrix operations associated with forward-

f ∞(d)=C (I+R)

ivv:(I−R)D u
I
(d) , (A14)

scattering belong to the group SU(2). This symmetry can be

used to simplify the analysis. Any member of this group can
where R is a 2×2 matrix of reflection coefficients. Satisfying be written in it terms of two complex numbers,
the zero-traction boundary conditions at the surface yields

R=U
d
(ivv:P̂

tt
−P̂

tu
)−1 (ivv:P̂

tt
+P̂

tu
)UT

d
. (A15) C a b

−b* a*D , where |a|2+|b|2=1 . (A22)
From here on, U

z
=U(w(z)) and it is understood that,

unless otherwise specified, the propagators are taken from
An SU(2) matrix thus depends on three real parameters andthe base of the anisotropic layer to the surface; for
can be written in the following general forms (Varshalovich &example, P̂

uu
¬UT

0
P
uu

(0, d)U
d
. In this notation, the free-surface

Moskalev 1988):displacement vector is

u(0)=U
0
[P̂

uu
+ ivv:P̂ut+ (P̂

uu
− ivv:P̂ut)R̂]UT

d
u∞
I
(d) . (A16)

C=Cexp[−i(a+c)/2] cos b/2 exp[i(a+c)/2] sin b/2

exp[−i(a+c)/2] sin b/2 exp[i(a+c)/2] cos b/2DThe symmetries in (A2), (A4) and (A12) can be used to
express the propagator submatrices as the following (real-valued)
expressions:

=C cos V/2− i cos H sin V/2 −i exp (iW) sin H sin V/2

−i exp(−iW) sin H sin V/2 cos V/1+ i cos H sin V/2D .
P̂
uu
=D

u
Re[E(Q+++Q+− )]D−1

u
, (A17a)

P̂
ut
= iD

u
Im[E(Q+++Q+− )]D−1

t
, (A17b) (A23)

P̂
tu
= iD

t
Im[E(Q+++Q+− )]D−1

u
, (A17c)

SU(2) is homomorphic (with a two-fold ambiguity) to O+(3),
the group of proper orthogonal transformations in 3-space,P̂

tt
=D

t
Re[E(Q+++Q+− )]D−1

t
. (A17d)
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which allows the splitting operations to be visualized as 3-D Since the perturbed model is homogeneous above z and

below z+dz, its splitting operator can be written in the formrotations. In the first form in (A23), the parameters (a, b, c)
correspond to the Euler angles of the 3-D rotation; in the

C=U(w
0
)H(Dt)Q++UT (w

0
) , (B3)second, the 3-D rotation is through an angle V about an axis

with polar coordinates (H, W). Eq. (A21) can be recast as
where H is given by (A19). For a constant perturbation dw in

a layer (z, z+dz), Q satisfies (A8) with a0=1, b0=0, and
Ch=Ccos vDt/2−i cos 2w sin vDt/2 −i sin 2w sin vDt/2

−i sin 2w sin vDt/2 cos vDt/2+i cos 2w sin vDt/2D .

ẇ(f)=dw[d(f−z)−d(f−z−dz)] . (B4)

(A24)
Integrating up from the base of the layer across the discon-

tinuities yields an expression for Q++ that is the product ofThe splitting matrix for a homogeneous layer thus corresponds
two matrices in the form of (A13a), one for an azimuthalto a 3-D rotation through an angle vDt about an axis located
change of dw at z+dz, and one for a change of −dw at z.at colatitude 2w and zero longitude
Multiplying these out and using the small-angle approxi-
mations, we can express the forward-scattering matrix in terms
of a perturbation parameter dX¬Dk dz dw exp[iDk(d−z)]:

APPENDIX B: FRÉCHET KERNELS FOR A
HOMOGENEOUS STARTING MODEL

Q++=C 1 −idX

−idX* 1 D . (B5)
To calculate the Fréchet kernels defined by (8) and (9), we
perturb the splitting orientation function w(z) by a small

constant amount dw in a thin layer of thickness dz at a depth The apparent splitting parameters minimize the energy on the
0<z<d and compute the corresponding perturbations dw̃(z) transverse component of the back-projected displacement field,
and dt̃(z). The kernels G

w
(z) and G

t
(z) are then given as given by the quadratic form (7). In the present notation, this

the limiting values of the ratios dw̃(z)/dwdz and dt̃(z)/dwdz, integral becomes
respectively. This calculation can be done numerically for

arbitrary starting models and pulse shapes (e.g. Fig. 7). Here
e2 (w∞, Dt∞)=2 P2

0
|ŷTC−1h (w∞, Dt∞)Cx̂|2 |u

I
(v) |2dv . (B6)we present an analytical derivation for narrow-band pulses in

the special case of a homogeneous starting model.

Because the perturbations are small, the forward-scattering
The homogeneous-layer splitting operator in this expression

approximation applies. Vertical propagation through a homo-
corresponds to the perturbed apparent splitting parameters

geneous anisotropic layer with a fast-axis orientation w0 w∞=w0+dw∞ and Dt∞=Dt+dt∞, which can be expressed in a
and splitting time Dt yields the Fourier-transformed vertical

form similar to (B3):
displacement u(0, v)=2 exp(ivt: )Ch (w0 , Dt)u

I
(v), where the

homogeneous-layer splitting operator Ch is given by eq. (A24).
Ch(w∞, Dt∞)=U(w

0
)H(Dt)Q∞++UT (w

0
) . (B7)

We assume that the incident pulse is radially polarized,
u
I
(v)=u

I
(v)x̂=[u

I
(v) 0]T, and we approximate its energy

Equating (B6) with Ch(w∞, Dt)=U(w∞)H(Dt∞)UT (w∞) yields the
spectrum by a Gaussian:

scattering matrix

|u
I
(v) |2=

1

s√8p
exp[−(v−v

0
)2/2s2]

Q∞++=Cc− is cos 2dw∞ −is sin 2dw∞

−is* sin 2dw∞ c*+ is* cos 2dw∞D , (B8)

+
1

s√8p
exp[−(v+v

0
)2/2s2] . (B1)

with complex coefficients,

This spectrum has peaks of half-bandwidth s centred at c=exp(ivDt/2) cos[v(Dt+dt∞)/2] , (B9a)
frequencies of ±v0 , and it is normalized to have unit total
energy: ∆2−2

|u
I
(v) |2dv=1. If the pulse is narrow band in the s=exp(ivDt/2) sin[v(Dt+dt∞)/2] . (B9b)

sense that s%v0 , then the integral of its energy spectrum

against any reasonably smooth function can be approximated Eq. (B8) is exact and does not require the perturbations
by integrating a truncated Taylor expansion of the function dw∞ and dt∞ to be small. When, w0=Dt=0, for example,
about the centre frequency v0 : c=cos vdt∞/2, s=sin vdt∞/2, and (B7) reduces to Ch(dw∞, dt∞)

in the form given by (A24).

From (B3) and (B6) and the fact that Q∞++ is unitary, we
2 P2

0
f (v) |u

I
(v) |2dv

obtain C−1h (dw∞, dt∞)C=U(w
0
)Q∞†++Q++UT (w

0
). The energy

(B6) involves an integration over the (2,1) component of this

matrix. The product Q∞†++Q++ can be expressed in the general#2 P2

0
[ f (v

0
)+v ḟ (v

0
)+v2 f̈ (v

0
)] |u

I
(v) |2dv

SU(2) form (A22), where

# f (v
0
)+s2 f̈ (v

0
) . (B2)

a=c*+s*(dX* sin 2dw∞+i cos 2dw∞) ,

b=−idXc*+s*(dX cos 2dw∞+ i sin 2dw∞) .
(B10)

The terms dropped in this approximation are of order (s/v0 )4.
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Working out the appropriate matrix element in terms of the
A
21
=sin 2w

0
cos 2w

0 P2

0
(v/v

0
) sin vDt |u

I
(v) |2dv , (B13c)real and imaginary parts of these coefficients, we find

A
22
=P2

0
(1−cos vDt)2 |u

I
(v) |2dve2(dw∞, dt∞)=2 P2

0
{Re(b)2+[Im(b) cos 2w

0
+Re(a) sin 2w

0
]2}

×|u
I
(v) |2dv . (B11)

+cos2 2w
0 P2

0
sin2 vDt |u

I
(v) |2dv , (B13d)

To find the energy minimum, we differentiate (B11) with
respect to the perturbations dw∞ and dt∞ and set the results

D
1
(z)=sin 2w

0
cos 2w

0 P2

0
(v/v

0
) cos Dk(d−z) |u

I
(v) |2dv ,

equal to zero, which gives two equations for the apparent

splitting parameters. Linearizing these equations in dw̃ and dt̃,
(B14a)we obtain a 2×2 system for the Fréchet kernels:

D
2
(z)=P2

0
(1−cos vDt) sin Dk(d−z) |u

I
(v) |2dvCA

11
A
12

A
21

A
22
DCG

w
(z)

G
t
(z)D=DkCD

1
(z)

D
2
(z)D , (B12)

+cos2 2w
0 P2

0
(v/v

0
) sin Dk(d−z) cos vDt∞ |u

I
(v) |2dv .

A
11
=sin2 2w

0 P2

0
(v/v

0
) |u

I
(v) |2dv , (B13a)

(B14b)

Approximating these integrals using (B2) and solving for theA
12
=sin 2w

0
cos 2w

0 P2

0
sin vDt |u

I
(v) |2dv , (B13b)

kernels leads to the expressions (10) to (14) given in the text.
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