Increased per capita herbivory in the shade: Necessity, feedback, or luxury consumption

Author(s): Norris Z. Muth, Emily C. Kluger, Jennifer H. Levy, Marten J. Edwards, and Richard A. Niesenbaum

Published By: Centre d'études nordique, Université Laval

Increased per capita herbivory in the shade: Necessity, feedback, or luxury consumption?

Norris Z. MUTH1, Emily C. KLUGER2, Jennifer H. LEVY3, Marten J. EDWARDS & Richard A. NIESENBAUM4, Biology Department, Muhlenberg College, Allentown, Pennsylvania 18104-5586, USA, e-mail: niesenba@muhlenberg.edu

Abstract: Leaf chemistry and physiology vary with light environment and are often thought to directly affect herbivory patterns. Biotic (e.g., parasitoids and predators) and abiotic (e.g., temperature, relative humidity) factors known to influence herbivory also co-vary with light environment. Irrespective of mechanism, light-based differences in herbivore damage must be the result of variable herbivore abundance, per capita effects, or both. We examined the effect of light environment on leaf defence and leaf nutritional quality in Lindera benzoin (Lauraceae) and relate this to the abundance and impact of its lepidopteran herbivore Epimecis hortaria (Lepidoptera: Geometridae). In this system we consistently observe greater natural field herbivory in shade habitats relative to high light habitats, despite similar herbivore abundances; differences in herbivory are therefore most likely attributable to different per capita impacts of herbivores across environments. Potential herbivore behaviours responsible for the observed field pattern include increased foraging per day and longer developmental periods in shade habitats. A more complete understanding of observed herbivory patterns requires incorporating variation in herbivore behaviour as influenced by abiotic or biotic factors that co-variation with the different light environments.

Keywords: Epimecis hortaria, leaf defences, leaf quality, light environment, Lindera benzoin, plant–herbivore interactions.

Introduction

The effect of light environment on herbivory has been the focus of much study (Bryant, Chapin & Klein, 1983; Coley, 1983; Louda & Rodman, 1983; Coley, Bryant & Chapin, 1985; Larsson et al., 1986; Coley, 1988; Aide & Zimmerman, 1990; Lindroth et al., 1993; Dudt & Shure, 1994; Sagers & Coley, 1995; Crone & Jones, 1999). This makes sense given that plants, particularly those in the forest understory, can occur in a wide range of light conditions and are often light-limited. Additionally, plant growth rates, which are typically strongly related to light levels, can also indirectly affect, or be affected, by allocation to defence (Bryant, Chapin & Klein, 1983; Coley, Bryant & Chapin, 1985; Herms & Mattson, 1992; Zangerl, Arntz & Berenbaum, 1997; Stamp, 2003).

Light environment can affect the nutritional quality of leaves by causing variation in the amount and chemical form of nitrogen, carbon, and other elements experienced by consumers (Scriber & Slansky, 1981; Bryant, Chapin & Klein, 1983). For instance, plants in low light environments are often carbon limited and have been observed to have fewer carbohydrates (Koricheva et al., 1998; Henriksson et al., 2003), fewer total phenolics (Dudt & Shure, 1994; Koricheva et al., 1998), greater relative and

absolute amounts of nitrogen (Aide & Zimmerman, 1990; Henriksson et al., 2003; but equivocal in Koricheva et al., 1998), as well as higher water content (Aide & Zimmerman, 1990; Henriksson et al., 2003). Variation in light environment can also influence structural defences, including decreased leaf toughness in low light environments (Aide & Zimmerman, 1990; Dudt & Shure, 1994; Henriksson et al., 2003). The specific manner in which plant nutritional quality, defensive characteristics, and their interaction account for variation in herbivory rates among sun and shade populations of plants is an open question.

Although leaves from plants in shade environments are theoretically predicted to be better food sources for herbivores (Bryant, Chapin & Klein, 1983; Herms & Mattson, 1992; but see Stamp, 2003), evidence for a general pattern of increased levels of herbivory in shade environments is equivocal (Koricheva et al., 1998; Stamp, 2003). Previous studies have observed increased herbivory in shade environments (Lincoln & Langenheim, 1979; Niesenbaum, 1992b; Shure & Wilson, 1993; Valladares, Salvo & Cagnolo, 2006), herbivore preference for shade-grown leaves (Folgarait et al., 1996; Crone & Jones, 1999), or increased herbivore performance on leaves from shade-grown plants (Lindroth et al., 1993; Henriksson et al., 2003). Other studies examining the relationship between light environment and herbivory have observed greater herbivory in high light environments (Lincoln & Mooney, 1984; Louda & Rodman, 1996; McGooch & Gaston, 2000; Chacon & Armesto, 2006), preference for leaves from sun plants (Nichols-Orians, 1991), and improved herbivore performance on sun-plant leaves (Fortin & Mauffette, 2001; Levesque, Fortin & Mauffette, 2002; Niesenbaum & Kluger, 2006).

The aim of this study was to investigate the impact of light environment on leaf defence and nutritional quality in Lindera benzoin (northern spicebush; Lauraceae) in relationship to the consistent patterns of abundance and leaf damage inflicted by its primary herbivore, Epimecis hortaria (tulip tree beauty; Lepidoptera: Geometridae). Specifically, we asked 1) how light environment influences Lindera benzoin leaf chemistry and defence and 2) how this relates to patterns of herbivore abundance and damage. We discuss our results in light of other studies from our particular system and the broader field of light-environment effects on herbivore–host plant interactions.

Methods

Study site

Research was conducted at 2 sites in eastern Pennsylvania: the Lee and Virginia Graver Arboretum in Northampton County (hereafter Graver) and the Conrad W. Raker Biological Field Station and Wildlife Sanctuary in Lehigh County (hereafter Raker). Both sites support large numbers of L. benzoin in both sun and shade environments. Typical of the mesophytic deciduous forests of this region (Braun, 1950), the overstories of our study sites are dominated by Acer rubrum (Aceraceae), Fagus grandifolia (Fagaceae), Liriodendron tulipifera (Magnoliaceae), Juglans nigra (Juglandaceae), and various Quercus (Fagaceae) and Carya (Juglandaceae) species. The understory shrub layer is a near monoculture of L. benzoin. Sun-designated habitats (forest edges and large tree-fall gaps) had an absent or quite thin overstory, while shade habitats were under relatively intact overstory. The mean (SE) incident photosynthetically active radiation (PAR) (μmol·m⁻²·s⁻¹) at mid-day was 658.30 (± 77.63) in designated sun habitats and 48.01 (± 8.61) in the shade. While we cannot account for the role of other environmental factors that likely covaried with light environment (e.g., temperature, relative humidity, edge-effects, etc.), it is difficult to minimize the potential impact of light given the generally light-limited nature of northeastern temperate forests (Botkin, Wallis & Janak, 1972).

Study species

Lindera benzoin (Lauraceae), or northern spicebush, is a common understory shrub in moist forests of eastern North America from southern Ontario to Florida. The plant is considered shade-adapted but occurs in a range of light conditions from deep shade within the forest understory to bright light on forest edge and in tree-fall gaps. Lindera benzoin flowers in early April, and leaves emerge and new vegetative growth begins in mid-May (Niesenbaum, 1992b). Herbivory by lepidopteran larvae becomes apparent on the leaves by late June and is easily distinguished and measured (Niesenbaum, 1992a).

The primary herbivore in this system is the larva of Epimecis hortaria (Lepidoptera: Geometridae). Epimecis hortaria is oligophagous and has been observed in other habitats feeding on a limited number of species, including L. benzoin, Sassafras albidum (sassafras; Lauraceae), and Liriodendron tulipifera (tulip poplar; Magnoliaceae). At our study sites E. hortaria feeding is largely restricted to L. benzoin due to the infrequency of other hosts. We observe very little damage to L. benzoin by other insects. In this system we have continuously observed patterns of greater herbivore damage to L. benzoin in shade habitats relative to high light environments, despite similar abundances of E. hortaria (Niesenbaum, 1992b; Niesenbaum & Kluger, 2006), including in the year of this study.

Herbivore damage and abundance

In August 2005 we estimated the amount of spicebush leaf herbivory by randomly sampling 20 leaves at each of 4 sun and 4 shade plots at both field sites. Leaf area consumed was measured per leaf using the Win-DIAS image analysis system (Delta-T Devices Ltd., Cambridge, UK). Data were log transformed and analyzed by ANOVA using JMP (version 5.1, SAS institute, Cary, North Carolina, USA) with field site (Raker versus Graver, fixed effect) and habitat type (sun versus shade, fixed effect) as main effects and plot (nested within site and habitat type, random effect) as a nested effect. Data were checked for deviations from normality and heteroscedasticity. No transformations were necessary.

Epimecis hortaria abundance was measured in sun and shade plots at both field sites. Approximately 1 m of stem material per shrub was systematically shaken over a beat sheet and the number of larvae was recorded. Sites were sampled twice weekly over the course of the growing season (8 times total). Abundance data were analyzed by ANOVA as
above. Data were checked for deviations from normality and heteroscedasticity. No transformations were necessary.

Spicebush Leaf Characteristics

Two to three mature leaves (defined as the leaves growing at the base of branches) were collected at both sites from 5 separate branches from each of 10 plants per habitat type. Immediately upon returning to the laboratory, fresh mass of leaves was recorded and leaf toughness was determined by the force required to puncture the leaf surface with a digital force gauge penetrometer (MG05, Mark-10, Copiague, New York, USA). Following toughness measurement, samples were dried at 60 °C to constant mass, reweighed, and ground by Wiley Mill (60 mesh). Percent leaf C and N were determined using an EA1112 Flash CHN automatic elemental analyzer (Thermo Electron Corporation, Waltham, Massachusetts, USA).

Sample extracts to determine soluble protein and non-structural carbohydrate contents were prepared after the method of Bauer, Berntson, and Bazzaz (2001). Analysis of protein content was based on the method of Bradford (1976), using Bovine Serum Albumin as the standard and absorbance determined by a microplate spectrophotometer (μQuant, Bio-Tek instruments, Winooski, Vermont, USA). Nonstructural carbohydrate content was determined colorimetrically by the anthrone–sulfuric acid method (Dreywood, 1946), reading absorbance at 600 nm by UV/Vis spectrophotometer (Perkin Elmer, Shelton, Connecticut, USA).

Spicebush branch data were pooled and the resulting plant averages were analyzed as a two-way ANOVA, with site (Graver versus Raker, fixed effect) and habitat type (sun versus shade, fixed effect) as main effects. All data were checked for deviations from normality and heteroscedasticity. No transformations were necessary.

Total phenolics and tannins were determined from mature leaves harvested from 10 individuals each from sun and shade habitats at the Graver site. Leaf samples were ground with mortar and pestle in liquid nitrogen. Extracts were prepared using 70% aqueous acetone. Total phenolics were measured as tannic acid equivalents using the Folin–Ciocalteu method (Folin & Ciocalteu, 1927; Waterman & Mole, 1994). Absorbance was measured at 760 nm by UV/Vis spectrophotometer. Following total phenolic measurement, polyvinylpyrrolidone (PVP) was added to the plant extract to bind tannins. Tannin content was determined by subtracting this latter non-tannin phenolic content from the former total phenolic content (Andersen & Sowers, 1968). Total phenolic and tannin content were analyzed using a one-way ANOVA to identify the influence of habitat (sun or shade, fixed effect). Data were checked for deviations from normality and heteroscedasticity. Accordingly, both total phenolic and tannin contents were log transformed (Sokal & Rohlf, 1995).

Results

Herbivore Damage and Abundance

Average leaf area consumed by herbivores varied significantly by habitat type \(F_{1, 12} = 8.56, P = 0.0037\). Levels of herbivory were 50% greater in shade plots compared to sun plots (Least squares mean [LSM]_sun \= 2.0 cm\^2, LSM_shade \= 3.0 cm\^2, Figure 1a).

The number of *E. hortaria* larvae feeding on *L. benzoin* did not significantly vary by habitat type \(F_{1, 36} = 1.07, P = 0.3068\). Mean abundances of *E. hortaria* per sampling period were 0.9 larvae in sun habitats and 1.3 larvae in shade areas (Figure 1b). *Epimecis hortaria* abundance far outnumbered all other herbivorous insects at our sites.

Spicebush Leaf Characteristics

There was a significant effect of habitat type and plant on percent leaf water content (Table I). Leaves from shade plants had 5% greater mass composed of water compared to leaves from sun plants (LSM_sun \= 67%, LSM_shade \= 73%). There was also a small, but statistically significant difference between sites (LSM_Graver \= 71%, LSM_Raker \= 69%). Leaves from *L. benzoin* growing in sunlit environments had significantly greater C/N ratios compared to those from plants growing in shaded areas (Table I, LSM_sun \= 22.9, LSM_shade \= 20.1, Figure 2a). There was also a significant effect of site on leaf C/N ratio (Table I, LSM_Graver \= 19.8, LSM_Raker \= 23.2). The differences in C/N ratio reflect the
Table I. ANOVAs assessing the effect of site (Graver versus Raker) and habitat type (sun versus shade) on leaf traits (% water content, C/N ratio, soluble proteins, nonstructural carbohydrates, and toughness). For each factor we report the numerator degrees of freedom (df num), denominator degrees of freedom (df den), F, and P-values. Statistically significant effects at the P < 0.05 value are highlighted in boldface.

<table>
<thead>
<tr>
<th>Source</th>
<th>df num, df den</th>
<th>% water</th>
<th>C/N ratio</th>
<th>Protein</th>
<th>Carbohydrates</th>
<th>Toughness</th>
</tr>
</thead>
<tbody>
<tr>
<td>Site (S)</td>
<td>1, 36</td>
<td>4.47</td>
<td>0.041</td>
<td>11.96</td>
<td>0.001</td>
<td>0.16</td>
</tr>
<tr>
<td>Habitat (H)</td>
<td>1, 36</td>
<td>34.14 < 0.001</td>
<td>8.09</td>
<td>0.007</td>
<td>18.34</td>
<td>0.001</td>
</tr>
<tr>
<td>S × H</td>
<td>1, 36</td>
<td>0.09</td>
<td>0.764</td>
<td>0.057</td>
<td>0.813</td>
<td>2.42</td>
</tr>
</tbody>
</table>

Combined result of both greater percent C (F1, 36 = 26.50, P > 0.0001, LSMsun = 48.1, LSMshade = 46.8) and lower percent N (F1, 36 = 5.56, P = 0.0239, LSMsun = 2.2, LSMshade = 2.4) in sun habitats. There was also a statistically significant site by habitat interaction for percent C (F1, 36 = 9.52, P = 0.0039); the nature of the difference between sun and shade plants was similar across sites, but of a greater magnitude at Raker.

Consistent with the greater C/N ratio in sunlit habitats, leaves from L. benzoin growing in this habitat had significantly less protein content compared to leaves from plants growing in shade habitats (Table I, LSMsun = 30.9 mg·g–1, LSMshade = 73.8 mg·g–1, Figure 2b). Also consistent with the C/N ratio pattern, leaves from sun plants had significantly greater nonstructural carbohydrate content compared to leaves from shade plants (Table I, LSMsun = 1.58 mg·g–1, LSMshade = 1.35 mg·g–1, Figure 2c). There was also a significant effect of site on leaf carbohydrate content (Table I, LSMGraver = 1.33 mg·g–1, LSMRaker = 1.60 mg·g–1).

Habitat type was the only main effect that significantly influenced leaf toughness in L. benzoin leaves (Table I). The average force required to puncture leaves from sun plants was approximately 31% greater than that necessary to puncture leaves from shade plants (LSMsun = 61.7 g, LSMshade = 47.3 g, Figure 3a).

There were no statistically significant effects of habitat type on either leaf total phenolics (LSM = 16.1 mg·g–1, F1, 14 = 0.0047, P = 0.9463, Figure 3b) or tannin content (LSM = 5.9 mg·g–1, F1, 14 = 0.1029, P = 0.7531, Figure 3c).

Discussion

There are multiple hypotheses that may explain why per capita herbivory varies with leaf quality. (1) Individual herbivores may be expected to inflict greater per capita damage on lower food quality leaves out of necessity (to maintain fitness). A “necessity consumption” explanation might be particularly likely if fitness varies discontinuously with larval size or developmental stage, increasing predominantly at certain thresholds. For example, there may exist a minimum mass necessary to allow successful pupation or emergence (that, in turn, could result in hard selective pressures). (2) Individual herbivores on high-quality leaves might inflict greater per capita damage because of positive feedback between leaf quality and herbivore ability. In this “feedback consumption” hypothesis, higher food quality leaves may cause larvae to grow faster, and faster growing larvae may be able to eat greater amounts of leaf tissue. (3) In favourable environments, individual herbivores may
consume leaf tissue beyond their basic needs in order to gain a fitness advantage at future life stages. This “luxury consumption” might be expected to occur when the relationship between fitness and biomass is predominantly linear, in which case each additional mass of tissue consumed may contribute to future fitness (Chapin, 1980; Nicholls, 1987; Lynn et al., 2000; Sterner & Schwalbach, 2001). For example, larger larvae may have greater successful pupation or emergence rates (that, in turn, could result in soft selection pressures). It is important to note that these hypotheses are not mutually exclusive: while individual larvae on low-quality plants may need to consume more leaf tissue to successfully pass certain developmental hurdles (e.g., successful progression to adult stage, “necessity foraging”), larvae on nearby high-quality plants may exhibit increased rates of leaf consumption due to their greater vigour (“feedback foraging”) and may continue to feed beyond current needs to increase fitness at some point in the future (e.g., greater egg production or mating bouts as adult, “luxury foraging”).

Leaf-level variability that potentially contributed to differences in the per capita effect of herbivores can broadly be grouped into leaf defence and leaf quality. With respect to defence, all else being equal, leaves that are less well defended would be expected to suffer greater rates of damage from herbivores. In partial confirmation of this prediction we found that tougher leaves from L. benzoin growing in high light environments experienced significantly less herbivory. However, we found no difference in the amount of total phenolics or tannins between leaves from sun and shade plants. It is possible that other defensive compounds not examined here (e.g., terpenes, alkaloids) may be more variable with light environment.

With respect to variation in leaf quality, we found that leaves from shade-grown plants had a significantly greater relative amount of nitrogen, significantly greater absolute amounts of soluble proteins, and fewer nonstructural carbohydrates than leaves from sun-grown L. benzoin (although differences in carbohydrates were very small compared to the former). While it is predicted that nitrogen content will be greater in high light habitats, where photosynthesis activity is greater, others have also reported the opposite pattern (Hemming & Lindroth, 1999; Osier & Lindroth, 2006). If nitrogen content is a primary determinant of herbivore growth (Scriber & Slansky, 1981; Ritchie, 2000), our findings suggest that L. benzoin leaves from shade habitats should be more nutritious for E. hortaria. However, Niesenbaum and Kluger (2006) found that efficiencies of conversion of leaf area and leaf mass to larval biomass of third instar E. hortaria were actually significantly greater when reared on leaves from sun-grown plants. There were, however, no differences in larval mass gain per leaf dry mass consumed (R. A. Niesenbaum, unpubl. data), suggesting that efficiencies of conversion of larva feeding on shade leaves may be compromised by the large amounts of water that dilute the otherwise similar food quality of these leaves.

Relatively few previous studies have linked studies of the effects of light environment on herbivore abundance and impact in the same system. In the spicebush system, as we consistently observe no difference in abundance of the primary herbivore across light environments, differences in herbivore impact are most likely the result of different per capita effects of herbivores. We rule out differences in total phenolic content as an explanation for per capita feeding differences, and previous work suggests we can exclude the direct effect of temperature on feeding rate, though not necessarily its effect on total developmental time or possible indirect effects (Niesenbaum & Kluger, 2006). It is possible

![Figure 3. Least squares means for leaf a) toughness (g), b) total phenolic content (mg·g⁻¹ leaf tissue), and c) tannin content (mg·g⁻¹ leaf tissue) in sun (open bars) and shade (filled bars) plots. Error bars represent 95% confidence intervals. Asterisks indicate statistically significant differences (P < 0.05). Means presented are back transformed or non transformed values (see Methods for details).](image-url)
that greater leaf toughness in sun habitats contributes to the observed pattern, although lab and field trials suggest that leaf toughness does not actually reduce the amount of herbivory in the short term. The possibility of feedback foraging can also be ruled out, as increased growth rates of herbivores did not result in greater damage to leaves. Instead, it seems likely that the increase in per capita herbivory in the shade is either the result of luxury consumption of N-rich shade leaves or necessity consumption of the more diluted shade leaves. In either case it remains unknown whether increased herbivory in the shade is the result of prolonged larval periods, more time spent foraging per day, or both.

While light availability is known to be a primary factor influencing phenotypic variability, species interactions, and trophic dynamics, it is also well known that variation in light environment is correlated with a host of other abiotic and biotic factors, making the detection and description of causal relationships in any given study a difficult task (Dunson & Travis, 1991; Larsson, Haggstrom & Denno, 1997; Ritchie, 2000; Ewers & Didham, 2006). In our study system, variation in light environment contributes to altered leaf chemistry (greater percent N and soluble proteins in the shade, greater percent C and nonstructural carbohydrates in the sun), leaf physiology (greater percent water in the shade), leaf defence (greater leaf toughness in the sun), and herbivore activity (greater per capita herbivory in the shade). Furthermore, the effects of particular leaf traits on rates of herbivory appear to be more important than others (e.g., N availability and water content). A more complete understanding of the observed increased per capita herbivory in shade environments would include the potential effects of light environment on other relevant abiotic (e.g., relative humidity, Dunson & Travis, 1991; Larsson, Haggstrom & Denno, 1997) and biotic variables (e.g., predator and parasitoid activity, McGeoch & Gaston, 2000; Sipura & Tahvanainen, 2000; Schmitz, 2005; Valladares, Salvo & Cagnolo, 2006) that are likely to influence herbivore activity.

Acknowledgements
We thank L. Hanks and M. Berenbaum and several anonymous reviewers for their comments on the manuscript, our laboratory members for help with fieldwork, and C. Ingersoll, J. Keane, N. Goldman, and J. Rodriguez for assistance with leaf sample analysis. This study is based on work supported by the United States National Science Foundation under grant No. 0442049 to R. Niesenbaum and by Muhlenberg College.

Literature cited

