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1. Location map of tide 
gauges used in this study.  
The East Coast of North 
America has a great spatial 
variability in sea-level change 
(SLC); understanding its 
implications is scientifically 
and societally important.
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3. Contributions to SLC
were calculated based on 
several physical processes, 
including GIS and AIS ice-
mass change (above, based 
on Velicogna et al. [2014]), 
ocean circulation and 
density changes 
(GECCO2), IB, and GIA.  
One parameter was 
estimated for the entire 
data set, a scale factor for 
the ocean-model 
contribution.

4. SLC budgets: (b) Sea-level acceleration for 
the AIS (red) and AIS plus GIS (blue) based on 
models for AIS and GIS mass loss and solution 
of the Sea-Level Equation. (c) Sea-level 
acceleration from the GECCO2 ocean estimate. 

6 Different futures for different 
cities. The graphs are based only on the 
GIS and AIS components.  Given the 
expectation for rapidly increased melting 
[e.g., Hansen et al., 2016] these could well 
be minimal estimates for the SLC.  Long-
term changes in ocean density changes 
and circulation could increase these 
estimates further.
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Figure 3. (a) Estimated east-coast sea-level acceleration (1990–2014) at TG locations versus latitude.

(b) Sea-level acceleration for the AIS (red) and AIS plus GIS (blue) based on models for AIS and GIS mass

loss and solution of the Sea-Level Equation. (c) Sea-level acceleration from the GECCO2 ocean estimate (see

text).
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2. East coast sea-level acceleration at tide-gauge 
locations versus latitude. Tide-gauge records 
exhibit acceleration starting in roughly 
1990, consistent with global studies [e.g., Church 
and White, 2006; Hay et al., 2015] as well as 
regional studies [e.g., Boon, 2012; Kopp, 2013]. 
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Figure 4. Observed sea-level acceleration (points with error bars) and postfit model (blue line). The

weighted rms difference between the data and model is 0.07 mm yr�2, and the reduced �2 difference is 0.75,

indicating a good fit.
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5. Observed sea-level acceleration (points with 
error bars) and postfit model (blue line). The 
weighted rms difference between the data and 
model is 0.07 mm yr−2, and the reduced χ2

difference is 0.75, indicating a good fit.


