Geodesy with the Global Positioning System

Class 2: Satellite orbits

Background

The model for the pseudorange was

$$\rho(t) = |\vec{x}^s(t - \tau) - \vec{x}_r(t)| + c(\delta_r - \delta^s)$$

- Today, we'll develop how to calculate the vector position of the satellite
- The satellite and receiver position vectors have to be calculated in the same reference frame (TBD)

Central Force Problem

 Terminology for orbital geometry stems from the solution to the classical problem of the central force problem:

$$\vec{F} = -\frac{GMm}{r^2}\hat{r} \tag{1}$$

- $-\vec{F}$: force on the satellite located at \vec{r}
- CoM of combined system at $\vec{r} = 0$
- -m: mass of satellite
- $-GM = 398.600415 \times 10^{12} \text{ m}^3 \text{ s}^{-2}$
- Assumes Earth and satellite behave as point masses (spherically symmetric mass distribution)

Solution to Central Force Problem

- Solution to (1) leads to condition wherein the masses orbit each other
- Depending on initial conditions, one object could also simply make a close pass to the other and have no sustained orbit.
- In planetary motion, the mass of one body (the primary) far exceeds the mass of the other (the satellite)
- CoM of system (coordinate origin) assumed to be at center of primary
- Shape of the orbit is an ellipse with primary at one of the foci and satellite moving along the ellipse (Kepler's 1st Law)
- Satellite remains in orbital plane containing primary and orbital ellipse

Orbital plane

Coordinate Origin

View of orbital plane

Orbital plane: Geometry

If primary is Earth...

Shape of Orbital Ellipse

Satellite orbital motion

- Satellite speed is not constant within orbit
- The line from the primary to the satellite sweeps out equal areas of space in equal spans of time (Kepler's 2nd Law)
- The orbital period of the satellite (Kepler's 3rd
 Law) is:

$$T = 2\pi \sqrt{\frac{a^3}{GM}}$$

Orbital motion

- The position of the satellite within the orbital ellipse is described by an angle with respect to the perigee
- The mean motion is the mean angular velocity of the satellite:

$$n = \frac{2\pi}{T} = \sqrt{\frac{GM}{a^3}}$$

- The mean anomaly is the anomaly of a fictitious satellite with a constant motion equal to the mean motion of the satellite.
- The anomaly is measured from the point of perigee passing at epoch t_p :

$$\mu = n \cdot (t - t_p) = \mu_o + n \cdot (t - t_o)$$

True anomaly

Anomaly Relationships

- To calculate Cartesian coordinates of GPS satellite, we'll need eccentric anomaly
- To calculate eccentric anomaly at epoch t:
 - Calculate mean motion n using Kepler's 3rd Law
 - 2. Calculate mean anomaly
 - 3. Calculate eccentric anomaly (iteratively)

$$\mu = \mu_{\circ} + n(t - t_{\circ})$$

$$\mu = E - e \sin E$$

$$\tan f = \frac{\left(1 - e^2\right)^{1/2} \sin E}{\cos E - e}$$

Iterative solution for eccentric anomaly

- Given *μ*, *e*
- Eccentricity for GPS satellites is small, ~0.01 (nearly circular orbit)
- Zeroth iteration: $E^{(0)} = \mu$
- k^{th} iteration: $E^{(k)} = \mu + e \sin E^{(k-1)}$
- Converges rapidly for small eccentricity

Position of SV in orbital plane

- Orbital coordinate system (OR): origin at CoM of primary
- X-axis coincides with line of apsides
- Y-axis at $f = \pi / 2$
- Z-axis completes RH system
- Satellite position in OR system:

$$\vec{r}_{\text{OR}} = \begin{bmatrix} x_{\text{OR}} \\ y_{\text{OR}} \\ z_{\text{OR}} \end{bmatrix} = \begin{bmatrix} r\cos f \\ r\sin f \\ 0 \end{bmatrix} = \begin{bmatrix} a(\cos E - e) \\ a(1 - e^2)^{1/2}\sin E \\ 0 \end{bmatrix}$$

Position in Earth-centered system

- So far, we've used three **Keplerian orbital elements** to position the satellite in the orbital ellipse: a, e, and either t_p or μ_o
- The equation of motion was a second-order differential equation of a three-dimensional vector, and therefore we can expect six initial conditions
- The remaining three orient the orbital ellipse in three-dimensional space
- This is accomplished by three rotations

Position in Earth-centered system

- We begin by positioning the orbital ellipse in the equatorial plane of an Earth-centered celestial sphere
 - X-axis: +X aligned with first point of Ares (Υ) , celestial right-ascension (like longitude) origin
 - Z-axis: +Z aligned with Conventional International Origin (mean spin axis of Earth)
 - Y-axis: Completes RH system
- We will then rotate the orbital ellipse into position

Orbit Nodes

- In the final rotation, the orbital ellipse will be inclined with respect to the celestial equator
- The ellipse will intersect the celestial equatorial plane at two points
- These points are the nodes
- Where the satellite travels from negative z to positive z is the ascending node
- From positive to negative, descending node

Rotations to celestial frame

- 1. Rotate about the z-axis so that ascending node points in the direction of the +x-axis (Υ)
 - Angle \overline{w} argument of perigee (periapse)
- 2. Rotate about x-axis (now also the nodal line) to incline the orbital plane with respect to the celestial equator
 - Angle ι inclination
- 3. Rotate about z-axis until the ascending node has the correct longitude
 - Angle Ω right-ascension (or longitude) of the ascending node

Rotation matrices

$$R_1(\theta) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos \theta & \sin \theta \\ 0 & -\sin \theta & \cos \theta \end{pmatrix}$$

$$R_2(\theta) = \begin{pmatrix} \cos \theta & 0 & -\sin \theta \\ 0 & 1 & 0 \\ \sin \theta & 0 & \cos \theta \end{pmatrix}$$

$$R_3(\theta) = \begin{pmatrix} \cos \theta & \sin \theta & 0 \\ -\sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

Transformation to Earth-centered system

- Earth-centered system with axes parallel to celestial coordinate system but centered on Earth
- This is sometimes called apparent place system
- This system does not rotate with Earth

$$\vec{r}_{AP} = \begin{bmatrix} x_{AP} \\ y_{AP} \\ z_{AP} \end{bmatrix} = R_3(-\Omega) R_1(-i) R_3(-\varpi) \vec{r}_{OR}$$

Transformation to Earth-fixed system

- To account for the spin of the Earth, need to rotate about the z-axis by the Greenwich (apparent) sidereal time GST
- GST is an angle an not the same as UT
- The coordinates in the Earth-fixed (EF) system are

$$\vec{r}_{\rm EF} = R_3({\rm GST})R_3(-\Omega)R_1(-i)R_3(-\varpi)\vec{r}_{\rm OR}$$

GPS Broadcast Ephemeris

- Satellites broadcast ephemerides for constellation is the "navigation message" extracted from GPS signal
- Keplerian orbital elements, corrected for linear rate and harmonic variation to account for solar radiation and gravity perturbations
- The combined broadcast ephemerides for each UT day are available from the International GNSS Service (IGS) athttp://igscb.jpl.nasa.gov
- The files are ASCII text in Receiver Independent Exchange (RINEX) format – see http://igscb.jpl.nasa.gov/components/formats.html

GPS Navigation Message

Observation epoch for which we want to calculate \vec{x}_{sat}

 t_{oe} Reference time of epoch (toe)

 M_{\circ} Mean anomaly at reference time

 Δn Mean motion difference

e Eccentricity

 \sqrt{a} Square-root of semi major axis a

 Ω_{\circ} R.A. ascending node at toe

 $\dot{\Omega}$ Rate of R.A. ascending node

 i_{\circ} Inclination at toe

 ϖ Argument of perigee

idot Rate of inclination

 C_{us}/C_{uc} Sine/cosine correction to arg of latitude

 C_{rs}/C_{rc} Sine/cosine correction to orbital radius

 C_{is}/C_{ic} Sine/cosine correction to inclination

GPS Satellite Earth-fixed position calculation (I)

$$GM = 3.986005 \times 10^{14} \text{ m}^3 \text{ s}^{-2}$$

 $\Omega_e = 7.292115 \times 10^{-5} \text{ rad/s}$
 $\pi = 3.1415926535898$
 $a = (\sqrt{a})^2$
 $n_o = \sqrt{GM/a^3}$
 $t_k = t - t_{oe}$
 $n = n_o + \Delta n$
 $M_k = M_o + nt_k$
 $M_k = E_k - e \sin E_k$
 $\sin \nu_k = \sqrt{1 - e^2} \sin E_k/(1 - e \cos E_k)$
 $\cos \nu_k = (\cos E_k - e)/(1 - e \cos E_k)$

GM for Earth
Mean rotation rate of Earth
GPS value of π Semimajor axis, m
Mean motion, rad/s
Time relative to toe
Corrected mean motion
Mean anomaly
Equation for eccentric anomaly E_k Sine of true anomaly
Cosine of true anomaly

GPS Satellite Earth-fixed position calculation (II)

$$\begin{aligned} &\Phi_k = \nu_k + \varpi \\ &\delta u_k = C_{us} \sin 2\Phi_k + C_{uc} \cos 2\Phi_k \\ &\delta r_k = C_{rs} \sin 2\Phi_k + C_{rc} \cos 2\Phi_k \\ &\delta i_k = C_{is} \sin 2\Phi_k + C_{ic} \cos 2\Phi_k \end{aligned}$$

$$u_k = \Phi_k + \delta u_k$$

$$r_k = a(1 - e\cos E_k) + \delta r_k$$

$$i_k = i_0 + \delta i_k + i \det \cdot t_k$$

Argument of latitude
Argument of latitude correction
Radius correction
Inclination correction

Corrected argument of latitude Corrected radius Corrected inclination

GPS Satellite Earth-fixed position calculation (III)

$$x'_k = r_k \cos u$$
$$y'_k = r_k \sin u$$

$$\Omega_k = \Omega_\circ + (\dot{\Omega} - \dot{\Omega}_e)t_k - \dot{\Omega}_e t_{oe}$$

$$x_k = x_k' \cos \Omega_k - y_k' \cos i_k \sin \Omega_k$$

$$y_k = x_k' \sin \Omega_k + y_k' \cos i_k \cos \Omega_k$$

$$z_k = y_k' \sin i_k$$

$$x$$
 in orbital plane y in orbital plane

Corrected longitude of ascending node

Earth-fixed, Earth-centered xEarth-fixed, Earth-centered yEarth-fixed, Earth-centered z

Notes

- In the RINEX broadcast ephemeris (or "navigation") data file, the ephemerides are given at particular epochs
- We should use the ephemeris closest in time to the observation time
- The main "time tag" in the RINEX file is the "time of clock" (TOC)
- The t_{oe} is calculated from the GPS week number (w) and seconds (s) of the GPS week: t_{oe} = 604800 × (w-1) + s. (w & s are given in the file)
- To calculate t_k , you need the observation epoch in GPS time

Class Project – Sub-goal 1

- Due 15 Feb: Read broadcast ephemerides in RINEX format for 24-hour block and return Cartesian coordinates for all satellites for an epoch to be provide
- See class web site by end of week for specifics
- http://www.ldeo.columbia.edu/~jdavis/ eesc9945.htm