EESC 9945 Geodesy with the Global Positioning System

Class 3: The GPS Constellation

Review-Orbits

- Keplerian orbital parameters:
 - Semimajor axis
 - Eccentricity
 - Initial anomaly
 - Longitude of ascending node
 - Inclination
 - Argument of perigee

GPS Constellation

- Six different orbital planes each with five satellites (nominal)
- Within each orbital plane, only reference anomalies differ
- Inclination of all orbits ~55°
- Nearly circular ($e \le 0.02$)
- Semimajor axis ~26400 km
- Geosynchronous

Wikipedia

GPS Satellite Tracks

 Due to the 55° inclination of all orbits, satellite tracks as seen from ground have "hole"

 Right: Ground track for 24 hours for site with latitude 43° N

GPS Signals

- GPS satellite transmit signals at two L-band carrier frequencies:
 - L1 f = 1575.42 MHz λ = 190 mm
 - L2 f =1227.60 MHz λ = 244 mm
- Both frequencies are integer multiples of GPS fundamental frequency of 10.23 MHz

GPS Signals

- Both L1 and L2 signals are encoded
- The encoding is achieved by shifting the phase of the signal by 180° (binary phase shift keying or bi-phase modulation)
- The code is thus represented as a binary pulse (0 or 1)

-1.0 -

Spread-spectrum signal

GPS Signals

- Spread-spectrum encoding for GPS enables a receiver to track multiple satellites simultaneously using the same frequency
- This scheme is also known as Code-Division Multiple Access (CDMA): Multiple signals sharing the same frequency channel with minimum interference between signals
- CDMA underlies mobile phone technology, wherein users share a frequency band but transmit and receive multiple signals

GPS Signal Codes

- Coarse acquisition code (C/A code): Chip rate 1.023 MHz
- Precise positioning code (P code): Chip rate
 10.23 MHz
- Y-code (Anti-spoofing, classified): Chip rate
 10.23 MHz
- D-code: 50 Hz navigation code

P and C/A Codes

- P-code is 37 weeks long (2.3 \times 10¹⁴ bits) and then repeats
- Each SV uses the same P-code, shifted by one week
- Pseudorandom, orthogonal
- The SVs are identified by their pseudorandom noise sequence number (PRN)
- C/A code repeats every 1023 bits (1 ms)

Accuracy and chip rate

- D-code: 50 Hz \rightarrow 5950 km
- C/A code: 1.023 MHz → 293 m
- P-code: 1.023 MHz \rightarrow 29.3 m

GPS Signals

L₁
$$S_1^p(t) = A_P P^p(t) D^p(t) \cos 2\pi f_1 t + A_C C^p(t) D^p(t) \sin 2\pi f_1 t$$

$$S_2^p(t) = B_P P^p(t) D^p(t) \cos 2\pi f_2 t$$

 $S_k^p(t)$ L_k signal for SV p

 A_P , $B_P A_C$ Signal strengths for P, C/A

 $D^p(t)$ Navigation data stream

 $P^p(t)$ P-code

 $C^p(t)$ C/A-code

GPS Modernization

- Civilian (i.e., C/A) codes on L2
- C/A code on third carrier (L5, 1176.45 MHz)
- M-code: Military anti-jamming, autonomous

Satellite Acquisition and Tracking

GPS Satellites

Block I (inactive)

Block II

Block III (future)

GPS Satellite Transmission

- L-band antenna array always points towards center of Earth
- Angular half-width of transmitting beam is 21.3° at L1, 23.4° at L2

GPS Satellite Transmission

GPS Satellite Frequency Standards

- As discussed earlier in course, "clocks" are highly accurate frequency standards
- The fundamental GPS frequency is 10.23 MHz
- Clock accuracy ("stability") is measured as $\frac{\sigma_f}{f_\circ} = \frac{\sigma_t}{T}$
- Typical stability for GPS onboard frequency standards over 24 hours:
 - Rb: 10⁻¹³ (10 nsec per day)
 - Cs: 10⁻¹⁴ (1 nsec per day)
- RINEX broadcast orbit files also provide polynomial corrections to satellite clock

Relativistic clock corrections

- Gravitational redshift:
 - Clocks in different gravitational potentials run at different rates: $\Delta f \simeq \frac{\Delta \Phi}{c^2}$
 - GPS clocks appear to run faster
 - GPS compensates by setting the 10.23 MHz clocks at the factory to 10.229 999 999 543 MHz
- Impact of eccentricity:
 - Clock rate depends on speed in satellite orbit
 - Satellite clock correction $\Delta t_r = -\frac{2\sqrt{GMa}}{c^2}e\sin E = -2\frac{\vec{v}\cdot\vec{r}}{c^2}$
 - This correction can be ~45 nsec

GPS Satellite clock corrections

- The ground segment of the Global Positioning
 System is used to calculate satellite clock errors
- These errors are modeled as second-order polynomials in time, and uploaded to the GPS satellites
- The GPS satellites broadcast the clockcorrection coefficients
- These are the first line of each RINEX data block in the broadcast orbit file

GPS Satellite clock corrections

- The satellite clock correction must include the (eccentricity) relativistic correction also
- The satellite clock correction is therefore

$$\delta^{s}(t) = a_0 + a_1(t - t_c) + a_2(t - t_c)^2 + \Delta t_r$$

• t_c is the "time of clock" (see RINEX documentation)

Summary: Pseudorange model

The pseudorange model (Class 1) was

$$\rho(t) = |\vec{x}^s(t - \tau) - \vec{x}_r(t)| + c(\delta_r - \delta^s)$$

- In Class 2, we developed the expression for the satellite position vector
- In this class, we presented the satellite clock correction
- The remaining unknown parameters are:
 - The receiver position vector (3 unknowns: x, y, z)
 - The receiver clock error (1 unknown)

Least-squares overview

- We'll review linear least squares, which we'll use to estimate the unknown parameters
- This is the class of problems in which the model can be written as:

$$y = Ax + \epsilon$$

• Here, y is an $n \times 1$ vector of observations, x is an $m \times 1$ vector of parameters, ϵ is an $n \times 1$ vector of errors, and the $n \times m$ matrix A is the design matrix or partials matrix

Linearization

 Often our problem will be of the more general and possibly nonlinear form

$$y = f(x) + \epsilon$$

- f(x) is a *vector* of functions
- In this case we linearize around the prior value x_\circ
- The design matrix is $A = \left. rac{\partial f}{\partial x}
 ight|_{x=x_\circ}$
- And the linearized observation equation

$$\Delta y = A\Delta x + \epsilon$$

• Here $\Delta y = y - f(x_\circ)$ is the vector of *prefit residuals* and the parameter adjustments are $\Delta x = x - x_\circ$

Linearization

- Recall is f(x) a vector
- Then really

$$f(x) = egin{bmatrix} f_1(x) \ f_2(x) \ dots \ f_n(x) \end{bmatrix}$$

• Then $A = \frac{\partial f}{\partial x}$ is shorthand for $A_{ij} = \frac{\partial f_i}{\partial x_j}$

Least-squares solution

- Given that the errors are unknown, there is no unique solution (value for the parameters) that satisfies the observation equation
- Instead, we look for a solution that minimizes the sum of the squared errors, $\epsilon^T\epsilon$
- This solution for the adjustments is

$$\Delta \hat{x} = \left(A^T \Lambda_{\epsilon}^{-1} A \right)^{-1} A^T \Lambda_{\epsilon}^{-1} \Delta y$$

• Λ_{ϵ} is the covariance matrix of the errors (assumed known):

$$\Lambda_{\epsilon} = \langle \epsilon \epsilon^T \rangle$$

ullet The least squares estimate of the parameters is $\hat{x}=x_{ extsf{o}}+\Delta\hat{x}$

Data and parameter uncertainties

- The covariance matrix of the errors in the parameter estimates is $\Lambda_x = \left(A^T \Lambda_\epsilon^{-1} A\right)^{-1}$
- The data error covariance matrix Λ_{ϵ} is usually taken to be diagonal with $[\Lambda_{\epsilon}]_{ij}=\sigma_i^2\delta_{ij}$
- In the absence of better information we often take $\Lambda_\epsilon = \sigma^2 I$
- In this case $\Delta \hat{x} = \left(A^TA\right)^{-1}A^T\Delta y$ and $\Lambda_x = \sigma^2\left(A^TA\right)^{-1}$

Fit Statistics

- Postfit residuals: $\hat{\epsilon} = y f(\hat{x})$
- Normalized χ^2 : $\chi^2 = \left(\frac{1}{n-m}\right) \sum_{i=1}^n \frac{\hat{\epsilon}_i^2}{\sigma_i^2}$
- Normalized root-mean-square residual:

$$NRMS = \sqrt{\chi^2}$$

Weighted root-mean-square residual:

$$WRMS = \sqrt{\left(\frac{n}{n-m}\right) \frac{\sum_{i=1}^{n} \hat{\epsilon}_{i}^{2} / \sigma_{i}^{2}}{\sum_{i=1}^{n} 1 / \sigma_{i}^{2}}}$$

Fit statistics

- Plot postfit residuals to look for systematic error(s)
- NRMS: Nominal value of 1. Significantly greater than one may indicate systematic error(s) or underestimate of sigmas
- NRMS is often used to scale sigmas
- NRMS significantly less than one may indicate overestimation of sigmas or over-parametrization
- If sigma is unknown, can assume sigma of one and scale all uncertainties by NRMS.