EESC 9945
Geodesy with the Global Positioning System

Class 3: The GPS Constellation
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GPS Constellation

Six different orbital planes
each with five satellites
(nominal)

Within each orbital plane,
only reference anomalies
differ

Inclination of all orbits ~55°
Nearly circular (e £0.02)

Semimajor axis ~26400 km

Geosynchronous

Wikipedia



GPS Satellite Tracks

e Due to the 55°
inclination of all orbits,
satellite tracks as seen
from ground have “hole” 270
e Right: Ground track for

24 hours for site with
latitude 43° N




GPS Signals

e GPS satellite transmit signals at two L-band
carrier frequencies:

e L1f=1575.42 MHz A =190 mm
e 12£=1227.60 MHz A\ =244 mm

e Both frequencies are integer multiples of
GPS fundamental frequency of 10.23 MHz



GPS Signals

e Both L1 and L2 signals are encoded

e The encoding is achieved by shifting the
phase of the signal by 180° (binary phase
shift keying or bi-phase modulation)

e The code is thus represented as a binary
pulse (0 or 1)
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GPS Signals

e Spread-spectrum encoding for GPS enables
a receiver to track multiple satellites
simultaneously using the same frequency

e This scheme is also known as Code-Division
Multiple Access (CDMA): Multiple signals
sharing the same frequency channel with
minimum interference between signals

e CDMA underlies mobile phone technology,
wherein users share a frequency band but
transmit and receive multiple signals



GPS Signal Codes

Coarse acquisition code (C/A code): Chip
rate 1.023 MHz

Precise positioning code (P code): Chip rate
10.23 MHz

Y-code (Anti-spoofing, classified): Chip rate
10.23 MHz

D-code: 50 Hz navigation code



P and C/A Codes

P-code is 37 weeks long (2.3 x 10'# bits) and then
repeats

Each SV uses the same P-code, shifted by one
week

Pseudorandom, orthogonal

The SVs are identified by their pseudorandom
noise sequence number (PRN)

C/A code repeats every 1023 bits (1 ms)



Accuracy and chip rate

e D-code: 50 Hz = 5950 km
e C/A code:1.023 MHz = 293 m
e P-code: 1.023 MHz - 29.3 m



GPS Signals

L1 SP(t) = ApPP(t)DP(t) cos 27 f1t + AcCP(t)DP(t) sin 27 f1t

L, SP(t) = BpPP(t)DP(t) cos 27 fot

Sh(t) Ly signal for SV p

Ap, Bp Ac Signal strengths for P, C/A
D¥(t) Navigation data stream
PE(t) P-code

C*(t) C/A-code



GPS Modernization

e Civilian (i.e., C/A) codes on L2
e C/A code on third carrier (L5, 1176.45 MHz)

e M-code: Military anti-jamming,
autonomous



Satellite Acquisition and
Tracking

I.I GPS Satellite

N—— =

Antenna Receiver




GPS Satellites

Block | Block I Block Il
(inactive) (future)



GPS Satellite Transmission

® |-band antenna array
always points towards
center of Earth

® Angular half-width of

transmitting beam is
21.3%at L1, 23.4c at L2




GPS Satellite Transmission

GPS L1 Half-width = 21.3°

Limb-grazing Half-width = 13.6°




GPS Satellite Frequency
Standards

As discussed earlier in course, “clocks” are highly accurate
frequency standards

The fundamental GPS frequency is 10.23 MHz

o o
Clock accuracy (“stability”) is measured as f—f = %

Typical stability for GPS onboard frequency standards over
24 hours:

e Rb: 10 (10 nsec per day)

e (Cs:101'% (1 nsec per day)

RINEX broadcast orbit files also provide polynomial
corrections to satellite clock



Relativistic clock corrections

e Gravitational redshift:

e (Clocksin diffeignt gravitational potentials run at different

rates: Af ~ —
C

e GPS clocks appear to run faster

e GPS compensates by setting the 10.23 MHz clocks at the
factory to 10.229 999 999 543 MHz

e |mpact of eccentricity:

e C(lock rate depends on speed in satellite orbit

. . 2VGM U
o Satellite clock correction At,. = — 4 5 ®esin E = —2”—;
C C

e This correction can be ~45 nsec



GPS Satellite clock corrections

e The ground segment of the Global Positioning
System is used to calculate satellite clock errors

e These errors are modeled as second-order
polynomials in time, and uploaded to the GPS
satellites

e The GPS satellites broadcast the clock-
correction coefficients

e These are the first line of each RINEX data
block in the broadcast orbit file



GPS Satellite clock corrections

e The satellite clock correction must
include the (eccentricity) relativistic
correction also

e The satellite clock correction is therefore

65(t) = ao + a1(t — te) + ao(t — to)? + At,

e t.isthe “time of clock” (see RINEX
documentation)



Summary: Pseudorange model

e The pseudorange model (Class 1) was
p(t) = |2°(t — 1) — Tr(t)| + (6, — 07)

e |n Class 2, we developed the expression for the
satellite position vector

e |n this class, we presented the satellite clock
correction

e The remaining unknown parameters are:
e The receiver position vector (3 unknowns: x, vy, z)

e The receiver clock error (1 unknown)



Least-squares overview

e We'll review linear least squares, which we’ll
use to estimate the unknown parameters

e This is the class of problems in which the model
can be written as:

y=Ax + €

e Here, yisan n X 1 vector of observations, z is
an m X 1 vector of parameters, eisan n x 1
vector of errors, and the n x m matrix A is the
design matrix or partials matrix



Linearization

Often our problem will be of the more general and possibly
nonlinear form

y=f(z)+e
f(z) is a vector of functions

In this case we linearize around the prior value z,

The design matrixis A = g—i

And the linearized observation equation

Ay = AAxz + ¢

Here Ay =y — f(z,) is the vector of prefit residuals and the
parameter adjustments are Az = z — z,



Linearization

e Recallis ) avector

e Then really

1
fa)=1",

| fn (33)_

: Ofi
e Then 4= g—i is shorthand for 4; = 3—3;



Least-squares solution

Given that the errors are unknown, there is no unique
solution (value for the parameters) that satifies the
observation equation

Instead, we look for a solution that minimizes the sum of

the squared errors, el'e

This solution for the adjustments is
\ —1 4\ ! 4T A1
Ad = (ATATA) ATA Ay
A, is the covariance matrix of the errors (assumed known):
Ae = (ee?)

The least squares estimate of the parametersis Z = T, + AZ



Data and parameter
uncertainties

The covariance matrix of the errors in the
parameter estimates is A, = (ATAZ1A) "

The data error covariance matrix A.is
usually taken to be diagonal with[A];; = 076;;

In the absence of better information we
often take A, = 2T

In this case Az = (ATA)_1 At Ay and
Ay =0 (ATA) ™



Fit Statistics

Postfit residuals: € =y — f(Z)

. - 62
Normalized y?: x ( )Zo_—"z
1=1 ¢
Normalized root-mean-square residual:
NRMS =/ x?

Weighted root-mean-square residual:

ws = | (25) ¥




Fit statistics

Plot postfit residuals to look for systematic error(s)

NRMS: Nominal value of 1. Significantly greater
than one may indicate systematic error(s) or
underestimate of sigmas

NRMS is often used to scale sigmas

NRMS significantly less than one may indicate
overestimation of sigmas or over-parametrization

If sigma is unknown, can assume sigma of one and
scale all uncertainties by NRMS.



