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Geodesy with the Global Positioning
System

Class 5: Effects of Atmospheric Propagation



Signal Propagation

e Both the pseudorange and phase models have the
term 7.3(t), the time it takes the signal to propagate
from GPS satellite s (at the point of transmission)
to the receiver r

e We had been assuming that pi(t) = c7(t), where
c is the speed of light in a vacuum and p;(t) is
the geometric distance (range) from the point of
transmission to the point of reception

e In fact, the atmosphere of Earth effects the propa-
gation of the signal and must be accounted for
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Electromagnetic Wave Propagation

e Maxwell Equations for free space
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E, B are electric, magnetic fields: c is speed of light
in vacuum; € is dielectric constant; u is magnetic
susceptibility

e Combining curl equations, using zero divergences

yiel2d wave equations for E and B of form VZ2u —
0“u __
2oz =0



Electromagnetic Wave Propagation

For plane waves traveling in z direction, solutions
are B and E ~ exp(kz — wt) with w,/pe =k =27/

Constant phase means kz — wt = constant

C

4r vields phase velocity vy = G = ¢ =\ = £

For the atmosphere, n~ 1

e > 1 due mainly to induced and permanent electric
dipoles
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Electric Susceptibility x & Refractive Index n

e Y relates application of weak electrlc field E to pO-

—

larization per unit volume P: P = XE

e Related to dielectric constant for isotropic medium

e=1-+4nryx

e Phase velocity vp =% = = =

e n Mmay be <1 or >1 or complex (=1 for vacuum)

e Imaginary part means absorption (we'll ignore)
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Group Velocity

e If signal not monochromatic:

u(z,t) = /dw A(w)e[ik(w)z_im] w=27nf, k= 2%

e For wave packet near frequency wo (like spread-
spectrum GPS signal), k(w) ~ ko + g—ﬁ‘w_w (w— wo)

e [ hen

) [ko— % wo] z W [% z—t]
u(z,t) = ¢ w=wo /dw A(w)e w=wo
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phase factor < ~ 4




Group Velocity

u(z,t) ~u (O, d—f}‘w:wo z — t)

e Constant phase for %) z —t = constant
wW=Wo

e [ hus, apart from overall phase factor, wave packet
travels along undistorted in shape with group ve-

; — dw
locity vg = 71 ke /e



Group and Phase Velocities

Start with k = =¥ where n is the (phase) refractive
index

Differentiate
%_%+gd_n_ 1 | wdn _ 1

dw ~— cdw_% cdw_@

—1
_ wdn _ cC
Ug—?)p(l—l—ﬁm) —n—g
ng IS group refractive index
dn __ - —
If%—O, vg = vp and ng =n
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Propagation Delay

e Consider a radio signal propagating from point A
to point B in a medium characterized by refractive
index n(x)

e [ he path is yet to be determined, but we know the
path is a straight line for n(¥) =1
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Propagation Delay

e [ he speed of propagation is % SO the time of prop-

agation along the path S is 7 = %/Sds n(T)

e \We define the propagation delay as the difference
between the propagation time along the path S in
the medium and that for a fictitious signal propa-
gating along the straight line in a vacuum
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Propagation Delay

e Propagation delay A7 in units of time:

— 1 — 1
AT—E/SCZSH(ZC)—E/VCLS

e Or in units of distance

AT = /Sds n(¥) — /Vds
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Propagation Delay

Since n ~ 1 for the atmosphere, we often write n =
14+10"°N, where N = 10°(n—1) is the refractivity

Then
Ar = /Sds n(f)—/vds — 10_6/Sds N(a?)—l—[/sds _ /Vds]

The term in brackets is due to the increased path
length of the refracted signal

The first term is the retarding of the signal along
the signal path
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The Ionosphere

e For the purposes of radio propagation at GPS fre-
quencies (L-band), the atmosphere can be divided
into two regimes

e [ he ionosphere is the part of the atmosphere con-
sisting of ‘“free” electrons weakly bound to charged
atoms and molecules

e Typical altitudes above Earth's surface 85—600 km
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Ionospheric Refractive Index

e A classical model for the ionospheric refractive index
starts with an electron bound by a harmonic force
and acted on by an electric field E

—eE(Z,t) = m [f—l— N+ w2 E

e LHS: Force on electron with charge e acted on by

—

E

e RHS: (1) ma; (2) phenomenonological damping force;
(3) restoring force with natural frequency wp
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Ionospheric Refractive Index

o If E(Z,t) = Ee™! the solution is

—

r=-= (w,,% — w? —iwfy>_1E

e [ he dipole moment formed by a single electron is

pP=—ef = (w% —w? — zw*y) E

e If there are N¢ dipoles (electrons) per unit volume

—

(w% — w? —iwfy)_lE =X

&,

- 2
P = Nep = Nee”

m
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Ionospheric Refractive Index

Thus the electric susceptibility x is

x(w) = M (12 02 —ioy)

T he dielectric constant is

e(w)=14+4nrxy(w) =1 —I—%ﬁg (w% — w?

For radio waves it is found that w > wn,

2 w
e(w)21—47rx(w):1—47r;77\£€€ 1 :1_w_g

w2

wp IS called the plasma frequency

— iw’y) -

SO
2
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Ionospheric Refractive Index

e For a non-magnetic medium p = 1, so the refractive
index is

n=.,/pe~1— %

l\)‘@ N

e From relation between group and phase velocities
the group refractive index is

2

ng=n(L458) = (1-33) (1+2%) =143

e For GPS, we associate n with the carrier beat phase
and ng with the pseuodrange

19



Ionospheric Delay—Pseudorange

e [ he propagation delay for the pseudorange is
Ar = 10—6/ds Ny(2) + [/ds—/ds]
S S %4

e For the ionosphere, bending can be shown to be
small, i.e., S=V
e [ he group refractivity is
1w 1/
Ng =10%(ng — 1) > 10° x 55 = 10° x 5%
) _ N, 2
with f2 = =<
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Ionospheric Delay—Pseudorange

e [ he propagation delay for the pseudorange is
AT — 10—6/ds Ny(2) + [/ds—/ds]
S S 1%

e For the ionosphere, bending can be shown to be
small, i.e., S=V

e Then the ionospheric delay for the pseudorange (units
of length) is

2 2
Atign ~ / ds e = / ds Ne(s)
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Ionospheric Delay—Pseudorange

e [ he electron density N can vary by orders of mag-
nitude through the ionosphere

e However, the ionospheric delay depends on the in-
tegrated electron density, called the total electron
content (TEC)

TEC = /ds Ne(s)

e Ionospheric delay for the pseudorange (units of length)

2 4 3 <2
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Pseudorange: Dual-Frequency Ionospheric
Correction

e Pseudorange observation equation for Lj frequency
(7 =1, 2) including ionospheric delay

Rj=jp+Ation+C =5+ 5+C
J

e p is range corrected for satellite motion, C is com-
bined clock

e Only second term depends on frequency

e Time, satellite, site indices left off
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Pseudorange: Dual-Frequency Ionospheric
Correction

e Combine L1 and L2 pseudorange observations as
2 21,
B (f) R = [1- ()] G+ 0
e Define the LC (linear combination) pseudorange
211 2
e = [1- (3] [ma- ()

e [ hen the model for R ¢ has no ionosphere terms
Ric=p+C
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Carrier Beat Phase: Dual-Frequency
Ionospheric Correction

2
e T he phase refractive index was n >~ 1 — %%

i

e Compare to group refractive index was n~ 1+ 572

e Thus ionospheric phase delay (units of length) is
negative

40.3 ]r;f123 S_QTEC

ATion —_ —
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Carrier Beat Phase: Dual-Frequency
Ionospheric Correction

e With phase in cycles, observation model

;=3 (F+ed) +Nj— 5
J J j

e We combine as ¢1 — B¢o with 8= f5/f1

61— B = (1-p2) (L5 +6) + N1 — BN,

e Integer ambiguities combine to create non-integer
term
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TEC Maps from GPS

e Can combine L1 and L2 to solve for TEC
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e 1 TECU=10 m=2 5 A7P"(L1) = —0.162 m
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The Neutral Atmosphere

The chemical composition of dry air is nitrogen
(78.08%), oxygen (20.95%), argon (0.93%), and
others at < 1% fractional volume

Fractional volumes for dry air are very stable, except
COs: 314 ppmv in 1960 to ~385 ppmyv today

Water vapor is also highly variable in space and
time, with relative humidities varying from 0% to
100%

Atmospheric water vapor is located in troposphere
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Atmospheric Refractivity

Unlike the ionosphere the atmosphere is not disper-
sive below (say) 100 GHz

None of the molecular constituents of dry air has a
permanent dipole moment

The induced dipole moment per unit volume scales
with density

T he refractivity of dry air therefore is N; = Ap, with
A being experimentally determined
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Refractivity of HoO(v): Permanent Dipole

e \Water vapor has a permanent dipole moment

e However, if we think of water vapor as being a col-
lection of randomly oriented dipoles, the dipole mo-
ment per unit volume will be zero

e Because the molecules are energetic, they are con-
stantly moving and re-orienting, but except for very
small statistical fluctuations the net dipole moment
will be zero
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Refractivity of HoO(v): Permanent Dipole

e Under the influence of an applied electric field, the
dipoles will be free to orient themselves, and create

an net induced dipole moment

e But the electric field of a GPS signal is so weak,
and the molecules so energetic, that there won’t be

a complete alignment

e Using a statistical mechanical argument, the prob-

ability of a molecule having an energy W is propor-
tional to e="W/kBT where kg is Boltzmann's constant

and T is the absolute temperature
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Refractivity of HoO(v): Permanent Dipole

e Under the influence of an applied electric field, the
dipoles will be free to orient themselves, and create

an net induced dipole moment

e But the electric field of a GPS signal is so weak,
and the molecules so energetic, that there won’t be

a complete alignment

e Using a statistical mechanical argument, the prob-

ability of a molecule having an energy W is propor-
tional to e="W/kBT where kg is Boltzmann's constant

and T is the absolute temperature
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Refractivity of HoO(v): Permanent Dipole

e T he potential energy of a permanent dipole p in a
electric field E is

e Here p,jign IS the component of the dipole moment
aligned with the E, and 6 is the angle between the

—

total dipole moment and E

e The average value for pyjign from an ensemble of
dipoles using the probability density e=W/kBT g

o) — fdecosee—l—pEcos@/k:BT
(pcos0) = [d$ o FpECos0/kpT
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Refractivity of HoO(v): Permanent Dipole

e Doing the integration yields

(pcos @) =p [COth <I<%—ET) - %]

More aligned

0.8
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Larger E/lower T

0.4

(pcosB)/p

0.2
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Refractivity of HoO(v): Permanent Dipole
e For atmospheric water vapor pE/kpT < 1

e We expand cothz ~ 1 + iz to get

Wl

°E
(p Ccos 0) ~ 332?

e For number density Ny, of H>,O(v) molecules, the
polarization is P = Nyp?E/kgT = xE

e Where recall x is the susceptibility, e = 1+4+4my, and
refractive index n ~ 1 4+ 27wy
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Refractivity of Moist Air

e [ here is also an induced dipole part, so the refrac-
tivity N = 10°%(n — 1) of water vapor is

e First term is induced dipole moment, second is per-
manent

e [ he total radio refractivity of moist air is thus

N = Apq+ Bpw + C2%
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Refractivity of Moist Air

e The canonical way of writing the refractivity (using
the ideal gas law P = pRT) is

N = k15 4 koke +k3

e p, IS partial pressure of dry gases, py IS partial pres-
sure of w.v.

e [ he constants have been measured experimentally:
ki1 ~77.67 £0.01K/hPa, kb ~ 72+ 10 K/hPa, and
ks ~ (3.75+ 0.03) x 10° K2/hPa
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Atmospheric Propagation Delay

e Recall the expression for the propagation delay:

Ar = 10_6/Sds N(Z) + [/Sds _ /Vds]

e T he term in brackets represents the geometric dif-
ference between the length of the refracted and hy-
pothetical (in vaccuo) unrefracted ray paths
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Atmospheric Propagation Delay

atm
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Atmospheric Propagation Delay

e Consider spherically Earth, stratified atmosphere

e For observation from surface in zenith direction, ray
travels normal to the layers with no bending

41



Zenith Propagation Delay
oo
This is called the zenith delay A7T% = 10_6/O dz N(z)

Using the expression for the refractivity

N_le'l_kQ +k3

First two terms can be written using P = pR1' as

k1Rgpq + koRuwpw = k1p + k528
where p is total density and k5, = kp — k1 (Muw/Myg)

M's are molar masses, R's are specific gas constants
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Zenith Hydrostatic Delay

The contribution Oofo the first term to the zenith
delay is 10_6k1Rd/0 dz p(2)

For atmosphere in hydrostatic equilibrium dzp =
—dP/g(z) and the hydrostatic delay is

ATF = 107%1 RyPo/gm ~ (2.2768 mm/hPa) P

Ps is surface pressure; mean gravity g, ~ 9.784 m/s2
at sea level

For P, = 1013 hPa, A7y = 2.3064 m
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Zenith Wet Delay

The zenith delay forumla is

z — z 6 [ 1 pw [1/ k3
AT = Arf+ 1076 [ Tz [k + 5

Second term depends only on water vapor (not dry
constituents), is known as the zenith wet delay

The zenith wet delay ranges from ~0 to ~40 cm
and is highly variable in time and space because
water vapor is

It's also hard to model to required accuracy
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Zenith Wet Delay
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Zenith wet delay measured from three techniques at Onsala (Sweden) Space
Observatory
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Atmospheric Mapping Function

e \What about off-zenith directions?

e For a flat Earth with a homogeneous atmosphere,
we have secant law: A7(e) = AT?CSCe

e ¢ is elevation angle (angle above horizon)

e In analogy with cosecant law, we introduce the
mapping function m(e): A7(e) = A7*m(e)
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Atmospheric Mapping Function

For a spherically layered atmosphere, m(e) can be
approximated by a continued fraction

A

m(e) = a1

. a
Sine + give £

Sine +

Coefficients (usually 2—3) determined using ray-tracing
A (~ 1) depends on a; since m(90°) =1

One of the latest mapping functions ray-traces through
the daily ECMWEF weather models and determines
coefficients on a 2.5° x 2.0° grid
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Estimation of the Atmospheric Delay

e Phase model (cycles)

b; =35+ ) + Nj — 3 f2+ ATm(e)

e \Wet zenith delay is unknown and hard to model
e We could estimate using m(e) as partial derivative

e Like ionosphere, this “noise” is someone else’s sig-
nal
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Zenith precipitable water vapor (~ A7?/6.7) from ground-based GPS observa-
tions [UCAR]
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