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Geodesy with the Global Positioning
System

Class 8: Relative Positioning using Carrier-Beat Phase
IT



Rectifying cycle slips

e L ast class, we introduced the Melbourne-Wubbena
wide lane

Amw=<b1—¢2—1(fl_f2)

R R
(1t ) [f1R1 + foR2]

e T his is used to identify cycle slips

e \Why does this work?



Phase observation equations

e Phase observation equations:

=L N+ s+ -
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e k= L1,L2; Phase in cycles; clock ¢ in units of time;
atmospheric delay A and ion delay Aion/flg in units
of length



Phase wide-lane combinations

e Phase observation equations with frequency:
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e Phase wide-lane combination

ApwL = ¢1—¢2 = < ; fQ)[ +cd+-A+ 'On}-l-N1 N>

J1J2

e Flip in sign of ion: f_ll_ f_12 = fj%l_él = f}lf£2




Pseudorange observation equations

e Pseudorange observation equations:

Aion
7

Rp=p+co+ A+

e Pseudorange in units of length

e Note change in sign of ion delay compared to phase
equation



Pseudorange wide-lane combinations

e Pseudorange wide-lane combination
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Melbourne-Wubbena wide-lane combination

e Phase wide-lane combination
(fl — f2) [ Aion
C

J1/2

Apy = p+co+ A+ 4 Ny — Ny

e Pseudorange wide-lane combination

(f1;f2)[p+cé+A+Aion}

Altwl = f1fo

e Combine phase and pseudorange wide lanes:

Amw = Apw — ARwL = N1 — No



Melbourne-Wubbena Wide-Lane

Plots of Amw(t) are plots of N1(t) — No(t):
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Satellite Orbits

We developed expressions to relate the GPS broadcast ephemerides
to the cartesian positions of the satellites

For clock solutions, these broadcast ephemerides are probably
OK

But more accurate solutions are available from the Interna-
tional GNSS Service (IGS)

These more accurate ephemerides come from global GPS so-
lutions in which the orbits have been “improved,” i.e., cor-
rections to prior orbits have been estimated in a least-squares
sense

IGS “final” orbits are in “SP3" format: time series of Earth-
centered, Earth-fixed cartesian coordinates, every 15 minutes

Polynomial interpolation is used to obtain the position at any
epoch



Satellite Orbits

We |looked at central force problem:

GMm _
7

F=—
,’/.2

This is force exerted on satellite by point-mass planet (and
vice-versa)

This resulted in Keplerian orbits

For more accurate orbital modeling, we'll use
a(z) = VV(Z)

—

a. Acceleration of satellite at &

—

V(Z): Gravitational potential from “background model” at 7
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Gravitational Potential

e Gravitational potential is solution to Laplace’s equation

V2V =0

e Since Earth is nearly spherically symmetric, this is solved in a
spherical coordinate system using spherical harmonics

00 y4 a
V(r,0,0) = 4G Y > (204+1) 1r Dy (0, 9) / dr'(r' Y2 pgr (1)
0

/=0 m=—/
with

pom(r) = //Q dS2 p(r, 8, &) Yom (8, &)

where p(r,0,¢) is Earth’s density and a its radius
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Gravitational Potential
The £ =0 term is just Voo(r,0,¢) = GMr—1

The ¢ = 1 terms are identically zero if the coordinate origin is
the center of mass

The ¢ = 2 terms are dominated by Earth’s equatorial bulge,
which is the m = 0 term (i.e., no dependence on ¢).

To a good approximation, then, the Earth’'s gravity field can
be written as

_GM

Tr

|% [1 — Js (g)z P>(cos 9)]

P> is the degree-2 Associated Legendre Polynomial and Js is

_C-A

Jo = ~1.08 x 1073

2
a
where C' and A are Earth’s moments of inertia about the spin
(z) axis and the equatorial axis (x)
What about the contribution due to Earth’s spin?
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Impact of J> on GPS orbits

e Analytical expressions for the perturbation relative
to J> = 0 have been determined
e Jo causes secular drifts in:

— Right ascension of ascending node €2, causing a
precession of the orbit

— The mean motion n

— The argument of perigee w
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Orbit perturbations for GPS

Higher order gravity field (up to degree and order 8
or so)

Tidal

Third-body

Atmospheric drag (negligible)

Direct (important) and indirect (negligible) solar ra-
diation pressure
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Some magnitudes of gravitational
acceleration for GPS (m/s?)

¢ =0: 9.8 x (6300/26400)? ~ 0.6

¢ =2: 0.6 x (6300/26400)2 x (1.08 x 1073) x 1.5 ~

5x 107>
Other degrees/orders: ~10~"
Earth/ocean tides: ~1072/~10~10

Other bodies: ~10—°
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Numerical orbit integration

Equation of motion

Calculations must be performed in inertial coordinate system,
i.e., not rotating with the Earth

The accuracy of the orbit integration depends on the accu-
racy of the numerical approach as well as the accuracy of the
perturbation model &k

Need six initial conditions

16



Estimation of orbit parameters

How would a GPS network be used to estimate improved or-
bits, i.e., better than the broadcast ephemerides?

(Or how are the broadcast ephemerides themselves deter-
mined?)

We know how, in principle, to estimate parameters from ob-
servations using least squares

What we need (besides observations):

1. A model for the observations

2. Partial derivatives of the model with respect to the pa-
rameters to be estimated

3. Prior estimates of the parameters
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Estimation of orbit parameters: Approach

e Phase model:

e We've viewed zr* as a ‘‘given”

e But we can view the satellite position as a parameterized func-
tion, e.qg., ¥ = f(%,, Us)

e [ he orbit integration approach can also be used to calculate
sensitivities of orbital position with respect to parameters such
as initial conditions

e [ hen apply chain rule, e.g.,

¢ ¢ dp
oTs  Op OT
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Estimation of orbit parameters: IGS
Approach

e Use global network of GPS sites with long time his-
tory, good quality control, and good documentation
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IGS Tracking Network

(U] 2013 Mar 25 16:45:23
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IGS Tracking Network

[=UNE] 2013 Mar 26 16:45:54
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IGS Tracking Network

fair
cil2"eil

IR =013 Mar 25 16:45:40
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Estimation of orbit parameters: IGS
Approach

Use global network of GPS sites with long time history, good
quality control, and good documentation

Number of different analysis centers download raw phase and
pseudorange data and perform solutions, estimating orbital
(and other) parameters

Different ACs may use different software
Data sets are organized by UT day
An analysis center coordinator combines orbit results

SP3 file contains time series of cartesian coordinates
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IGS Orbit Files

/* FINAL ORBIT COMBINATION FROM WEIGHTED AVERAGE OF:

/* cod emr esa gfz jpl mit ngs sio

/* REFERENCED TO IGS TIME (IGST) AND TO WEIGHTED MEAN POLE:

/* PCV:IGS©5_1421 OL/AL:FES28604 NONE Y ORB:CMB CLK:CMB

* 2007 7 30 © © ©.00000000

PGBl 17933.606176 1©456.200236 -16398.511349 142.896385 11 7 8 163
PGB2 -17671.173068 2787.655640 -19737.224725 125.242146 10 12 12 183

PGB3 18903.630496  1936.324295 18469.216582 93.835488 11 10 1@ 179
PGe4 -12618.686115 -9268.588836 -21500.975032 4.406072 106 9 8 182
PGB5 -11825.833402 15177.271670@ -18993.717115 235.518415 12 16 9 188
PGB6  3943.736939 22887.449896 -12664.637763 241.293399 8 7 9 148
PGB7 6880.211181 23239.243558 -18456.876665 177.738265 7 7 9 167
PGB8 -4620.646504 -17357.389821 19291.717095 -116.858671 8 18 9 153
PGBS -14640.227549 21214.39377@  5324.665981 80.908863 8 4 9 156
PG10 -26700.900925 715.428896  1030.746462 185.458130 10 10 12 189
PG1l 12096.316700 -22881.463167 5116.113240 21.359245 10 10 1@ 172
PGl2 -17476.694796 11668.484594 -16101.421004 -50.980199 11 S 1@ 186
PG13 -3540.437830 -23143.673559 -12675.027708 194.856941 13 10 12 181
PGl4 15873.890583 20739.994885 -5003.564925 32.638879 186 8 11 1795

PG16 26120.976079  2783.894276 -4391.596445 165.997064 11 S 11 204
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Using IGS Orbits

IGS orbits are generally used instead of broadcast
orbits for all geodetic positioning

If rapid (i.e., near-real-time) solutions are required,
other accurate IGS orbit products can be used (as
we've seen)

The orbits are often used assuming the IGS orbits
are perfect

What if the user has baselines ~Re, so that IGS
orbit uncertainties can’'t be ignored?
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Constrained least squares

e \What if some subset of parameters in a least squares
solution are known at some level?

e [ hat is, what if for some subset of parameters we
have prior estimates including a covariance matrix
that describes the level of uncertainty associated
with the estimates?
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Combining parameter estimates

Suppose we have two independent estimates 1 and z» of
parameter vector «

We also have covariance matrices A1 and A»
Each has multivariate normal pdf

P(z,) = exp [—% (T — x)T /\];1 (T — x)]

1
V27| Ay

Independent means the joint pdf is
L 1 1 T a1,
P(z1,22) = exp —5 (Z1—x) N (Z1—x)

27/ |A\1]|\2|

1
X exp [—5 (Z2 —x)" NS (32 — :c)]
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Combining parameter estimates

e Given this joint pdf, what is the best (least-squares) estimate
of =7

e \We can use a maximum likelihood approach. The Likelihood
function L(x) = —log P is

L(z) =C+ % [[(:}51 —)'ATH (@ —2) + (B2 — ) A (B2 — a:)]

e Maximizing with respect to x at the combined estimate x.
yields

OL(x R R 1 N
( ) :O:/\Il(ajl—zcc)ﬂ—/\Ql(xQ—ZCc)
oz _—
where we have used the matrix calculus identity
8 T
— Ay) = 2A
59 (y" Ay) y

for A symmetric
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Combining parameter estimates

The solution for the combined estimate z. of z is

fe= (AT AT (AR AL TR

This is the weighted mean of z1 and x».

(For the one-dimensional case, Ay — o)

It can easily be shown that z. has the covariance

matrix

Ae= (AT + /\51)_1
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Constrained least squares
Suppose we have an estimate 1 of x with covariance A;
Now we acquire observations. How should we handle this?

Let’s start by performing a least-squares solution using the
data:

AZy = (ATA;TA) T ATA Ay = A ATA Ay

with AZs = T2 — zprior ( “adjustments’)
Now let AZ1 = Z1 — Zprior

Then the combined estimate Az. given Ax; and Az, is just

A= (AP + AN T (AL AR+ ATA)
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Constrained least squares

e Now let zprjor = 1. Then Ax; =0 and

Aze= (ATT+ AT "AS1Az,

—1
e Using Ay = (AT/\y—lA) and AZy = AATA 1Ay
gives

—1
Dze= (ATAJTA+ATY) T ATA T Ay
and

L - 11 T A
fe=a1+ (ATA LA+ AT ATA Ay
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Constrained least squares

I _ EERE B
fe=a1+ (ATA LA+ AT ATA Ay

e T his solution is known as constrained least squares or least
squares with prior constraints

e It yields the least-squares solution for z using the observations
y given the prior information xz; and A;

e Two limits of interest:
— Prior information dominates: z, — 21 if A1 < N>

— New information dominates: ., — x> if A1 > N>
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Constraining orbital parameters

In the user's GPS solution, the IGS orbits can be considered
prior information if orbital parameters are estimated

The user can adjust the prior covariance matrix to reflect the
type of solution required

Very *“tight” constraints can be used for regional solutions
where the orbits can be taken nearly as a given but the user
wishes uncertainty in the orbits to be reflected in the site
position uncertainties

“Looser” constraints can be used for continental-to-global
scale solutions where the IGS solutions should have great
weight (given their extensive global network) but where an
orbit adjustment can account for systematic errors
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