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Rectifying cycle slips

• Last class, we introduced the Melbourne-Wübbena

wide lane

∆mw = φ1 − φ2 −
1

c

(f1 − f2)

(f1 + f2)
[f1R1 + f2R2]

• This is used to identify cycle slips

• Why does this work?
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Phase observation equations

• Phase observation equations:

φk =
ρ

λk
+Nk + fkδ +

A

λk
−

1

λk

(
∆ion

f2
k

)

• k = L1, L2; Phase in cycles; clock δ in units of time;

atmospheric delay A and ion delay ∆ion/f
2
k in units

of length
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Phase wide-lane combinations

• Phase observation equations with frequency:

φk =
fkρ

c
+Nk + fkδ +

fkA

c
−

∆ion

cfk

• Phase wide-lane combination

∆φWL = φ1−φ2 =
(f1 − f2)

c

[
ρ+cδ+A+

∆ion

f1f2

]
+N1−N2

• Flip in sign of ion: 1
f1
− 1
f2

= f2−f1
f1f2

= −f1−f2
f1f2
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Pseudorange observation equations

• Pseudorange observation equations:

Rk = ρ+ cδ +A+
∆ion

f2
k

• Pseudorange in units of length

• Note change in sign of ion delay compared to phase

equation
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Pseudorange wide-lane combinations

• Pseudorange wide-lane combination

f1R1 + f2R2 = (f1 + f2)
[
ρ+ cδ +A+

∆ion

f1f2

]

∆RWL =
1

c

(f1 − f2)

(f1 + f2)
[f1R1 + f2R2]

=
(f1 − f2)

c

[
ρ+ cδ +A+

∆ion

f1f2

]
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Melbourne-Wübbena wide-lane combination

• Phase wide-lane combination

∆φWL =
(f1 − f2)

c

[
ρ+ cδ +A+

∆ion

f1f2

]
+N1 −N2

• Pseudorange wide-lane combination

∆RWL =
(f1 − f2)

c

[
ρ+ cδ +A+

∆ion

f1f2

]

• Combine phase and pseudorange wide lanes:

∆mw = ∆φWL −∆RWL = N1 −N2
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Melbourne-Wübbena Wide-Lane

Plots of ∆mw(t) are plots of N1(t)−N2(t):
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Satellite Orbits

• We developed expressions to relate the GPS broadcast ephemerides
to the cartesian positions of the satellites

• For clock solutions, these broadcast ephemerides are probably
OK

• But more accurate solutions are available from the Interna-
tional GNSS Service (IGS)

• These more accurate ephemerides come from global GPS so-
lutions in which the orbits have been “improved,” i.e., cor-
rections to prior orbits have been estimated in a least-squares
sense

• IGS “final” orbits are in “SP3” format: time series of Earth-
centered, Earth-fixed cartesian coordinates, every 15 minutes

• Polynomial interpolation is used to obtain the position at any
epoch
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Satellite Orbits

• We looked at central force problem:

~F = −
GMm

r2
r̂

• This is force exerted on satellite by point-mass planet (and
vice-versa)

• This resulted in Keplerian orbits

• For more accurate orbital modeling, we’ll use

~a(~x) = ∇V (~x)

• ~a: Acceleration of satellite at ~x

• V (~x): Gravitational potential from “background model” at ~x
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Gravitational Potential

• Gravitational potential is solution to Laplace’s equation

∇2V = 0

• Since Earth is nearly spherically symmetric, this is solved in a
spherical coordinate system using spherical harmonics

V (r, θ, φ) = 4πG
∞∑
`=0

∑̀
m=−`

(2`+1)−1r−(`+1)Y`m(θ, φ)

∫ a

0
dr′(r′)`+2ρ`m(r′)

with

ρ`m(r) =

∫∫
Ω
dΩ ρ(r, θ, φ)Y`m(θ, φ)

where ρ(r, θ, φ) is Earth’s density and a its radius
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Gravitational Potential

• The ` = 0 term is just V00(r, θ, φ) = GMr−1

• The ` = 1 terms are identically zero if the coordinate origin is
the center of mass

• The ` = 2 terms are dominated by Earth’s equatorial bulge,
which is the m = 0 term (i.e., no dependence on φ).

• To a good approximation, then, the Earth’s gravity field can
be written as

V =
GM

r

[
1− J2

(a
r

)2
P2(cos θ)

]
• P2 is the degree-2 Associated Legendre Polynomial and J2 is

J2 =
C −A
Ma2

' 1.08× 10−3

where C and A are Earth’s moments of inertia about the spin
(z) axis and the equatorial axis (x)

• What about the contribution due to Earth’s spin?
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Impact of J2 on GPS orbits

• Analytical expressions for the perturbation relative

to J2 = 0 have been determined

• J2 causes secular drifts in:

– Right ascension of ascending node Ω, causing a

precession of the orbit

– The mean motion n

– The argument of perigee $
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Orbit perturbations for GPS

• Higher order gravity field (up to degree and order 8
or so)

• Tidal

• Third-body

• Atmospheric drag (negligible)

• Direct (important) and indirect (negligible) solar ra-
diation pressure
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Some magnitudes of gravitational
acceleration for GPS (m/s2)

• ` = 0: 9.8× (6300/26400)2 ' 0.6

• ` = 2: 0.6× (6300/26400)2× (1.08× 10−3)× 1.5 '
5× 10−5

• Other degrees/orders: ∼10−7

• Earth/ocean tides: ∼10−9/∼10−10

• Other bodies: ∼10−6

15



Numerical orbit integration

• Equation of motion

~̈r = −
GM

r3
~r + ~k

• Two first-order differential equations

~̇v = −
GM

r3
~̇r + ~k ~̇r = ~v

• Calculations must be performed in inertial coordinate system,
i.e., not rotating with the Earth

• The accuracy of the orbit integration depends on the accu-
racy of the numerical approach as well as the accuracy of the
perturbation model ~k

• Need six initial conditions
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Estimation of orbit parameters

• How would a GPS network be used to estimate improved or-
bits, i.e., better than the broadcast ephemerides?

• (Or how are the broadcast ephemerides themselves deter-
mined?)

• We know how, in principle, to estimate parameters from ob-
servations using least squares

• What we need (besides observations):

1. A model for the observations

2. Partial derivatives of the model with respect to the pa-
rameters to be estimated

3. Prior estimates of the parameters
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Estimation of orbit parameters: Approach

• Phase model:

φ =
|~xs − ~xr|

λ
+Nk + fδ +

A

λ
−

1

λ

(
∆ion

f2

)
• We’ve viewed ~xs as a “given”

• But we can view the satellite position as a parameterized func-
tion, e.g., ~xs = f(~x◦, ~v◦)

• The orbit integration approach can also be used to calculate
sensitivities of orbital position with respect to parameters such
as initial conditions

• Then apply chain rule, e.g.,

∂φ

∂~xs
=
∂φ

∂ρ

∂ρ

∂~xs
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Estimation of orbit parameters: IGS
Approach

• Use global network of GPS sites with long time his-

tory, good quality control, and good documentation
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IGS Tracking Network
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IGS Tracking Network
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IGS Tracking Network
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Estimation of orbit parameters: IGS
Approach

• Use global network of GPS sites with long time history, good
quality control, and good documentation

• Number of different analysis centers download raw phase and
pseudorange data and perform solutions, estimating orbital
(and other) parameters

• Different ACs may use different software

• Data sets are organized by UT day

• An analysis center coordinator combines orbit results

• SP3 file contains time series of cartesian coordinates
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IGS Orbit Files
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Using IGS Orbits

• IGS orbits are generally used instead of broadcast
orbits for all geodetic positioning

• If rapid (i.e., near-real-time) solutions are required,
other accurate IGS orbit products can be used (as
we’ve seen)

• The orbits are often used assuming the IGS orbits
are perfect

• What if the user has baselines ∼Re, so that IGS
orbit uncertainties can’t be ignored?
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Constrained least squares

• What if some subset of parameters in a least squares

solution are known at some level?

• That is, what if for some subset of parameters we

have prior estimates including a covariance matrix

that describes the level of uncertainty associated

with the estimates?
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Combining parameter estimates

• Suppose we have two independent estimates x̂1 and x̂2 of
parameter vector x

• We also have covariance matrices Λ1 and Λ2

• Each has multivariate normal pdf

P (x̂k) =
1√

2π|Λk|
exp

[
−

1

2
(x̂k − x)T Λ−1

k (x̂k − x)

]
• Independent means the joint pdf is

P (x̂1, x̂2) =
1

2π
√
|Λ1||Λ2|

exp

[
−

1

2
(x̂1 − x)T Λ−1

1 (x̂1 − x)

]
× exp

[
−

1

2
(x̂2 − x)T Λ−1

2 (x̂2 − x)

]
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Combining parameter estimates

• Given this joint pdf, what is the best (least-squares) estimate
of x?

• We can use a maximum likelihood approach. The Likelihood
function L(x) = − logP is

L(x) = C +
1

2

[
[(x̂1 − x)T Λ−1

1 (x̂1 − x) + (x̂2 − x)T Λ−1
2 (x̂2 − x)

]
• Maximizing with respect to x at the combined estimate x̂c

yields

∂L(x)

∂x

∣∣∣∣
x=x̂c

= 0 = Λ−1
1 (x̂1 − x̂c) + Λ−1

2 (x̂2 − x̂c)

where we have used the matrix calculus identity

∂

∂y

(
yTAy

)
= 2Ay

for A symmetric
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Combining parameter estimates

• The solution for the combined estimate x̂c of x is

x̂c =
(
Λ−1

1 + Λ−1
2

)−1 (
Λ−1

1 x̂1 + Λ−1
2 x̂2

)

• This is the weighted mean of x̂1 and x̂2.

• (For the one-dimensional case, Λk → σ2
k)

• It can easily be shown that x̂c has the covariance
matrix

Λc =
(
Λ−1

1 + Λ−1
2

)−1
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Constrained least squares

• Suppose we have an estimate x̂1 of x with covariance Λ1

• Now we acquire observations. How should we handle this?

• Let’s start by performing a least-squares solution using the
data:

∆x̂2 =
(
ATΛ−1

y A
)−1

ATΛ−1
y ∆y = Λ2A

TΛ−1
y ∆y

with ∆x̂2 = x̂2 − xprior (“adjustments”)

• Now let ∆x̂1 = x̂1 − xprior

• Then the combined estimate ∆x̂c given ∆x̂1 and ∆x̂2 is just

∆x̂c =
(
Λ−1

1 + Λ−1
2

)−1 (
Λ−1

1 ∆x̂1 + Λ−1
2 ∆x̂2

)
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Constrained least squares

• Now let xprior = x̂1. Then ∆x̂1 = 0 and

∆x̂c =
(
Λ−1

1 + Λ−1
2

)−1
Λ−1

2 ∆x̂2

• Using Λ2 =
(
ATΛ−1

y A
)−1

and ∆x̂2 = Λ2A
TΛ−1

y ∆y

gives

∆x̂c =
(
ATΛ−1

y A+ Λ−1
1

)−1
ATΛ−1

y ∆y

and

x̂c = x̂1 +
(
ATΛ−1

y A+ Λ−1
1

)−1
ATΛ−1

y ∆y
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Constrained least squares

x̂c = x̂1 +
(
ATΛ−1

y A+ Λ−1
1

)−1
ATΛ−1

y ∆y

• This solution is known as constrained least squares or least
squares with prior constraints

• It yields the least-squares solution for x using the observations
y given the prior information x̂1 and Λ1

• Two limits of interest:

– Prior information dominates: x̂c → x̂1 if Λ1 � Λ2

– New information dominates: x̂c → x̂2 if Λ1 � Λ2
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Constraining orbital parameters

• In the user’s GPS solution, the IGS orbits can be considered
prior information if orbital parameters are estimated

• The user can adjust the prior covariance matrix to reflect the
type of solution required

• Very “tight” constraints can be used for regional solutions
where the orbits can be taken nearly as a given but the user
wishes uncertainty in the orbits to be reflected in the site
position uncertainties

• “Looser” constraints can be used for continental-to-global
scale solutions where the IGS solutions should have great
weight (given their extensive global network) but where an
orbit adjustment can account for systematic errors
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