EESC 9945

Geodesy with the Global Positioning System

Class 8: Relative Positioning using Carrier-Beat Phase II

Rectifying cycle slips

 Last class, we introduced the Melbourne-Wübbena wide lane

$$\Delta_{\rm mw} = \phi_1 - \phi_2 - \frac{1}{c} \frac{(f_1 - f_2)}{(f_1 + f_2)} \left[f_1 R_1 + f_2 R_2 \right]$$

- This is used to identify cycle slips
- Why does this work?

Phase observation equations

• Phase observation equations:

$$\phi_k = \frac{\rho}{\lambda_k} + N_k + f_k \delta + \frac{A}{\lambda_k} - \frac{1}{\lambda_k} \left(\frac{\Delta_{\text{ion}}}{f_k^2} \right)$$

• k = L1, L2; Phase in cycles; clock δ in units of time; atmospheric delay A and ion delay $\Delta_{\rm ion}/f_k^2$ in units of length

Phase wide-lane combinations

• Phase observation equations with frequency:

$$\phi_k = \frac{f_k \rho}{c} + N_k + f_k \delta + \frac{f_k A}{c} - \frac{\Delta_{\text{ion}}}{c f_k}$$

• Phase wide-lane combination

$$\Delta\phi_{\rm WL} = \phi_1 - \phi_2 = \frac{(f_1 - f_2)}{c} \left[\rho + c\delta + A + \frac{\Delta_{\rm ion}}{f_1 f_2}\right] + N_1 - N_2$$

• Flip in sign of ion: $\frac{1}{f_1} - \frac{1}{f_2} = \frac{f_2 - f_1}{f_1 f_2} = -\frac{f_1 - f_2}{f_1 f_2}$

Pseudorange observation equations

• Pseudorange observation equations:

$$R_k = \rho + c\delta + A + \frac{\Delta_{\text{ion}}}{f_k^2}$$

- Pseudorange in units of length
- Note change in sign of ion delay compared to phase equation

Pseudorange wide-lane combinations

• Pseudorange wide-lane combination

$$f_1 R_1 + f_2 R_2 = (f_1 + f_2) \left[\rho + c\delta + A + \frac{\Delta_{\text{ion}}}{f_1 f_2} \right]$$

$$\Delta R_{\text{WL}} = \frac{1}{c} \frac{(f_1 - f_2)}{(f_1 + f_2)} [f_1 R_1 + f_2 R_2]$$

= $\frac{(f_1 - f_2)}{c} [\rho + c\delta + A + \frac{\Delta_{\text{ion}}}{f_1 f_2}]$

6

Melbourne-Wübbena wide-lane combination

• Phase wide-lane combination

$$\Delta\phi_{\rm WL} = \frac{(f_1 - f_2)}{c} \Big[\rho + c\delta + A + \frac{\Delta_{\rm ion}}{f_1 f_2}\Big] + N_1 - N_2$$

• Pseudorange wide-lane combination

$$\Delta R_{\text{WL}} = \frac{(f_1 - f_2)}{c} \left[\rho + c\delta + A + \frac{\Delta_{\text{ion}}}{f_1 f_2} \right]$$

• Combine phase and pseudorange wide lanes:

$$\Delta_{\rm mw} = \Delta \phi_{\rm WL} - \Delta R_{\rm WL} = N_1 - N_2$$

7

Melbourne-Wübbena Wide-Lane

Plots of $\Delta_{mw}(t)$ are plots of $N_1(t) - N_2(t)$:

From Herring, Principles of the Global Positioning System

Satellite Orbits

- We developed expressions to relate the GPS broadcast ephemerides to the cartesian positions of the satellites
- For clock solutions, these broadcast ephemerides are probably OK
- But more accurate solutions are available from the International GNSS Service (IGS)
- These more accurate ephemerides come from global GPS solutions in which the orbits have been "improved," i.e., corrections to prior orbits have been estimated in a least-squares sense
- IGS "final" orbits are in "SP3" format: time series of Earthcentered, Earth-fixed cartesian coordinates, every 15 minutes
- Polynomial interpolation is used to obtain the position at any epoch

Satellite Orbits

• We looked at central force problem:

$$\vec{F} = -\frac{GMm}{r^2}\hat{r}$$

- This is force exerted on satellite by point-mass planet (and vice-versa)
- This resulted in Keplerian orbits
- For more accurate orbital modeling, we'll use

$$\vec{a}(\vec{x}) = \nabla V(\vec{x})$$

- \vec{a} : Acceleration of satellite at \vec{x}
- $V(\vec{x})$: Gravitational potential from "background model" at \vec{x}

Gravitational Potential

• Gravitational potential is solution to Laplace's equation

$$\nabla^2 V = 0$$

• Since Earth is nearly spherically symmetric, this is solved in a spherical coordinate system using spherical harmonics

$$V(r,\theta,\phi) = 4\pi G \sum_{\ell=0}^{\infty} \sum_{m=-\ell}^{\ell} (2\ell+1)^{-1} r^{-(\ell+1)} Y_{\ell m}(\theta,\phi) \int_{0}^{a} dr'(r')^{\ell+2} \rho_{\ell m}(r')$$

with

$$\rho_{\ell m}(r) = \iint_{\Omega} d\Omega \ \rho(r, \theta, \phi) Y_{\ell m}(\theta, \phi)$$

where $\rho(r, \theta, \phi)$ is Earth's density and a its radius

Gravitational Potential

- The $\ell = 0$ term is just $V_{00}(r, \theta, \phi) = GMr^{-1}$
- The $\ell=1$ terms are identically zero if the coordinate origin is the center of mass
- The $\ell = 2$ terms are dominated by Earth's equatorial bulge, which is the m = 0 term (i.e., no dependence on ϕ).
- To a good approximation, then, the Earth's gravity field can be written as

$$V = \frac{GM}{r} \left[1 - J_2 \left(\frac{a}{r}\right)^2 P_2(\cos \theta) \right]$$

• P_2 is the degree-2 Associated Legendre Polynomial and J_2 is

$$J_2 = \frac{C - A}{Ma^2} \simeq 1.08 \times 10^{-3}$$

where C and A are Earth's moments of inertia about the spin (z) axis and the equatorial axis (x)

• What about the contribution due to Earth's spin?

Impact of J_2 on GPS orbits

- Analytical expressions for the perturbation relative to $J_2 = 0$ have been determined
- J_2 causes secular drifts in:
 - Right ascension of ascending node Ω , causing a precession of the orbit
 - The mean motion n
 - The argument of perigee ϖ

Orbit perturbations for GPS

- Higher order gravity field (up to degree and order 8 or so)
- Tidal
- Third-body
- Atmospheric drag (negligible)
- Direct (important) and indirect (negligible) solar radiation pressure

Some magnitudes of gravitational acceleration for GPS (m/s^2)

- $\ell = 0$: 9.8 × (6300/26400)² $\simeq 0.6$
- $\ell = 2$: 0.6 × (6300/26400)² × (1.08 × 10⁻³) × 1.5 \simeq 5 × 10⁻⁵
- Other degrees/orders: $\sim 10^{-7}$
- Earth/ocean tides: $\sim 10^{-9} / \sim 10^{-10}$
- Other bodies: $\sim 10^{-6}$

Numerical orbit integration

• Equation of motion

$$\ddot{\vec{r}} = -\frac{GM}{r^3}\vec{r} + \vec{k}$$

• Two first-order differential equations

$$\dot{\vec{v}} = -\frac{GM}{r^3}\dot{\vec{r}} + \vec{k} \qquad \dot{\vec{r}} = \vec{v}$$

- Calculations must be performed in inertial coordinate system, i.e., not rotating with the Earth
- The accuracy of the orbit integration depends on the accuracy of the numerical approach as well as the accuracy of the perturbation model \vec{k}
- Need six initial conditions

Estimation of orbit parameters

- How would a GPS network be used to estimate improved orbits, i.e., better than the broadcast ephemerides?
- (Or how are the broadcast ephemerides themselves determined?)
- We know how, in principle, to estimate parameters from observations using least squares
- What we need (besides observations):
 - 1. A model for the observations
 - 2. Partial derivatives of the model with respect to the parameters to be estimated
 - 3. Prior estimates of the parameters

Estimation of orbit parameters: Approach

• Phase model:

$$\phi = \frac{|\vec{x}^s - \vec{x}_r|}{\lambda} + N_k + f\delta + \frac{A}{\lambda} - \frac{1}{\lambda} \left(\frac{\Delta_{\text{ion}}}{f^2}\right)$$

- We've viewed \vec{x}^s as a "given"
- But we can view the satellite position as a parameterized function, e.g., $\vec{x}^s = f(\vec{x}_o, \vec{v}_o)$
- The orbit integration approach can also be used to calculate sensitivities of orbital position with respect to parameters such as initial conditions
- Then apply chain rule, e.g.,

$$\frac{\partial \phi}{\partial \vec{x}^s} = \frac{\partial \phi}{\partial \rho} \frac{\partial \rho}{\partial \vec{x}^s}$$

18

Estimation of orbit parameters: IGS Approach

• Use global network of GPS sites with long time history, good quality control, and good documentation

IGS Tracking Network

GMD 2013 Mar 25 16:45:29

IGS Tracking Network

GMD 2013 Mar 25 16:45:34

IGS Tracking Network

GMD 2013 Mar 25 16:45:40

Estimation of orbit parameters: IGS Approach

- Use global network of GPS sites with long time history, good quality control, and good documentation
- Number of different analysis centers download raw phase and pseudorange data and perform solutions, estimating orbital (and other) parameters
- Different ACs may use different software
- Data sets are organized by UT day
- An analysis center coordinator combines orbit results
- SP3 file contains time series of cartesian coordinates

IGS Orbit Files

<pre>/* FINAL ORBIT COMBINATION FROM WEIGHTED AVERAGE OF:</pre>							
/* cod emr esa gfz jpl mit ngs sio							
/* REFERENCED TO 2	GS TIME (IGST)	AND TO WEIGHTE	D MEAN POLE:				
/* PCV:IGS05_1421	OL/AL:FES2004	NONE Y OF	RB:CMB CLK:CMB				
* 2007 7 30 0	0 0.0000000						
PG01 17933.60617	5 10456.200236	-16398.511349	142.896385	11	7	8	163
PG02 -17671.17306	3 2787.655640	-19737.224725	125.242146	10	12	12	183
PG03 18903.63049	5 1936.324295	18469.216582	93.835488	11	10	10	179
PG04 -12618.68611	-9268.588836	-21500.975032	4.406072	10	9	8	182
PG05 -11025.833402	15177.271670	-18993.727115	235.518415	12	10	9	188
PG06 3943.73693	22887.449896	-12664.637763	241.293399	8	7	9	148
PG07 6880.21118	23239.243558	-10456.876665	177.738265	7	7	9	167
PG08 -4620.646504	4 -17357.389821	19291.717095	-116.858671	8	10	9	153
PG09 -14640.227549	21214.393770	5324.665981	80.908863	8	4	9	156
PG10 -26700.90092	5 715.428896	1030.746462	105.458130	10	10	12	189
PG11 12096.31670	-22881.463167	5116.113240	21.359245	10	10	10	172
PG12 -17476.69479	5 11668.484594	-16101.421004	-50.980199	11	9	10	186
PG13 -3540.43783	0 -23143.673559	-12675.027708	194.056941	13	10	12	181
PG14 15873.89058	3 20739.994885	-5003.564925	32.638879	10	8	11	179
PG16 26120.97607	2783.894276	-4391.596445	165.997064	11	9	11	204

Using IGS Orbits

- IGS orbits are generally used instead of broadcast orbits for all geodetic positioning
- If rapid (i.e., near-real-time) solutions are required, other accurate IGS orbit products can be used (as we've seen)
- The orbits are often used assuming the IGS orbits are perfect
- What if the user has baselines $\sim R_e$, so that IGS orbit uncertainties can't be ignored?

- What if some subset of parameters in a least squares solution are known at some level?
- That is, what if for some subset of parameters we have prior estimates including a covariance matrix that describes the level of uncertainty associated with the estimates?

Combining parameter estimates

- Suppose we have two independent estimates \hat{x}_1 and \hat{x}_2 of parameter vector x
- We also have covariance matrices Λ_1 and Λ_2
- Each has multivariate normal pdf

$$P(\hat{x}_k) = \frac{1}{\sqrt{2\pi|\Lambda_k|}} \exp\left[-\frac{1}{2} \left(\hat{x}_k - x\right)^T \Lambda_k^{-1} \left(\hat{x}_k - x\right)\right]$$

• Independent means the joint pdf is

$$P(\hat{x}_{1}, \hat{x}_{2}) = \frac{1}{2\pi\sqrt{|\Lambda_{1}||\Lambda_{2}|}} \exp\left[-\frac{1}{2}(\hat{x}_{1} - x)^{T}\Lambda_{1}^{-1}(\hat{x}_{1} - x)\right]$$
$$\times \exp\left[-\frac{1}{2}(\hat{x}_{2} - x)^{T}\Lambda_{2}^{-1}(\hat{x}_{2} - x)\right]$$

Combining parameter estimates

- Given this joint pdf, what is the best (least-squares) estimate of x?
- We can use a maximum likelihood approach. The Likelihood function $L(x) = -\log P$ is

$$L(x) = C + \frac{1}{2} \left[\left[(\hat{x}_1 - x)^T \Lambda_1^{-1} (\hat{x}_1 - x) + (\hat{x}_2 - x)^T \Lambda_2^{-1} (\hat{x}_2 - x) \right] \right]$$

- Maximizing with respect to x at the combined estimate \widehat{x}_c yields

$$\frac{\partial L(x)}{\partial x}\Big|_{x=\hat{x}_c} = 0 = \Lambda_1^{-1}\left(\hat{x}_1 - \hat{x}_c\right) + \Lambda_2^{-1}\left(\hat{x}_2 - \hat{x}_c\right)$$

where we have used the matrix calculus identity

$$\frac{\partial}{\partial y} \left(y^T A y \right) = 2Ay$$

for A symmetric

Combining parameter estimates

- The solution for the combined estimate \hat{x}_c of x is $\hat{x}_c = \left(\Lambda_1^{-1} + \Lambda_2^{-1}\right)^{-1} \left(\Lambda_1^{-1}\hat{x}_1 + \Lambda_2^{-1}\hat{x}_2\right)$
- This is the weighted mean of \hat{x}_1 and \hat{x}_2 .
- (For the one-dimensional case, $\Lambda_k \rightarrow \sigma_k^2$)
- It can easily be shown that \hat{x}_c has the covariance matrix

$$\Lambda_c = \left(\Lambda_1^{-1} + \Lambda_2^{-1}\right)^{-1}$$

- Suppose we have an estimate \hat{x}_1 of x with covariance Λ_1
- Now we acquire observations. How should we handle this?
- Let's start by performing a least-squares solution using the data:

$$\Delta \hat{x}_2 = \left(A^T \Lambda_y^{-1} A \right)^{-1} A^T \Lambda_y^{-1} \Delta y = \Lambda_2 A^T \Lambda_y^{-1} \Delta y$$

with $\Delta \hat{x}_2 = \hat{x}_2 - x_{\text{prior}}$ ("adjustments")

- Now let $\Delta \hat{x}_1 = \hat{x}_1 x_{\text{prior}}$
- Then the combined estimate $\Delta \hat{x}_c$ given $\Delta \hat{x}_1$ and $\Delta \hat{x}_2$ is just $\Delta \hat{x}_c = \left(\Lambda_1^{-1} + \Lambda_2^{-1}\right)^{-1} \left(\Lambda_1^{-1} \Delta \hat{x}_1 + \Lambda_2^{-1} \Delta \hat{x}_2\right)$

• Now let
$$x_{\text{prior}} = \hat{x}_1$$
. Then $\Delta \hat{x}_1 = 0$ and

$$\Delta \hat{x}_c = \left(\Lambda_1^{-1} + \Lambda_2^{-1}\right)^{-1} \Lambda_2^{-1} \Delta \hat{x}_2$$

• Using
$$\Lambda_2 = \left(A^T \Lambda_y^{-1} A\right)^{-1}$$
 and $\Delta \hat{x}_2 = \Lambda_2 A^T \Lambda_y^{-1} \Delta y$ gives

$$\Delta \hat{x}_c = \left(A^T \Lambda_y^{-1} A + \Lambda_1^{-1} \right)^{-1} A^T \Lambda_y^{-1} \Delta y$$

and

$$\widehat{x}_c = \widehat{x}_1 + \left(A^T \wedge_y^{-1} A + \wedge_1^{-1}\right)^{-1} A^T \wedge_y^{-1} \Delta y$$

$$\widehat{x}_c = \widehat{x}_1 + \left(A^T \wedge_y^{-1} A + \wedge_1^{-1}\right)^{-1} A^T \wedge_y^{-1} \Delta y$$

- This solution is known as **constrained least squares** or **least squares with prior constraints**
- It yields the least-squares solution for x using the observations y given the prior information \hat{x}_1 and Λ_1
- Two limits of interest:
 - Prior information dominates: $\hat{x}_c \rightarrow \hat{x}_1$ if $\Lambda_1 \ll \Lambda_2$
 - New information dominates: $\hat{x}_c \rightarrow \hat{x}_2$ if $\Lambda_1 \gg \Lambda_2$

Constraining orbital parameters

- In the user's GPS solution, the IGS orbits can be considered prior information if orbital parameters are estimated
- The user can adjust the prior covariance matrix to reflect the type of solution required
- Very "tight" constraints can be used for regional solutions where the orbits can be taken nearly as a given but the user wishes uncertainty in the orbits to be reflected in the site position uncertainties
- "Looser" constraints can be used for continental-to-global scale solutions where the IGS solutions should have great weight (given their extensive global network) but where an orbit adjustment can account for systematic errors