
EESC 9945

Geodesy with the Global Positioning
System

Class 8: Terrestrial Reference Frames in GPS

Many of the concepts and text in this lecture come from Global Terrestrial
Reference Systems and Frames: Application to the International Terrestrial
Reference System/Frame by Zuheir Altamimi, talk given at the Summer school
on Space Geodesy and the Earth System, Shanghai, August 2012



Terrestrial Reference System (TRS)

• Ideal, mathematical, theoretical reference system

system

• Tridimensional Euclidian affine space of dimension

three

• Defines theoretical origin, axes, length scale

• Really an approach to creating a terrestrial refer-

ence frame
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Terrestrial Reference Frame (TRF)

• Numerical realization of the TRS to which users have access

• Provides set of coordinates of points located on the Earth’s
surface

• The TRF is a materialization of the TRS inheriting the math-
ematical properties of the TRS

• As does the TRS, the TRF has an origin, scale, and orienta-
tion

• The TRF is constructed using space geodesy observations
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Conventional Terrestrial Reference System

• System of axes with origin at center of mass, right-handed
cartesian, with axes coincident with axes of principal ellipsoid
of inertia

• z-axis defines north pole

• The IERS monitors the motions of this system with respect
to the International Celestial Reference Frame (ICRF)

– Precession and nutation

– Polar motion

– Length of day
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The International Terrestrial Reference
System (ITRS)

• Origin: The center of mass being defined for the whole earth,
including oceans and atmosphere

• Scale: The unit of length is the meter (SI)

• Orientation: Initially given by the BIH orientation at 1984.0

• Time evolution: The time evolution of the orientation is en-
sured by using a no-net-rotation condition with regard to hor-
izontal tectonic motions over the whole earth

• Oversight: International Earth Rotation Service (IERS), for-
merly International Polar Motion Service (IPMS) and the earth-
rotation section of the Bureau International de l’Heure (BIH)
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The International Terrestrial Reference
Frame (ITRF)

• Realization of ITRF

• Multiple geodetic techniques combined to establish ITRF:

– GNSS (GPS)

– Very Long Baseline Interferometry (VLBI)

– Satellite Laser Ranging (SLR)

– Doppler Orbitography and Radiopositioning Integrated by
Satellite (DORIS)

• Update fairly frequently: ITRF92, ITRF93, ITRF94, ITRF96,
ITRF97, ITRF2000, ITRF2005, ITRF2008

• List of site coordinates and velocities
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ITRF 2008 Velocity Field (T > 3 years)

Zuheir Altamimi

9



Transformation between reference systems

• A 7-parameter similarity transformation is generally

used:

~x2 = ~T + λ ·R · ~x1

• ~T is a translation vector (3 components)

• λ is a scale factor (1 scalar value)

• R is a rotation matrix (3 angles)
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Rotation matrix for similarity transformation

R = RxRyRz

with

Rx =

1 0 0
0 cos θx sin θx
0 − sin θx cos θx

 Ry =

cos θy 0 − sin θy
0 1 0

sin θy 0 cos θy



Rz =

 cos θz sin θz 0
− sin θz cos θz 0

0 0 1


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Transformation between reference systems

• We usually use a linearized version of the transformation:

~x2 = ~x1 + ~T + s~x1 + R̃~x1

where λ = 1 + s and R = I + R̃

• Typical is s, θ . 10−5

• Terms of order 10−10 ' 0.6 mm are neglected

• Velocity transformation:

~̇x2 ' ~̇x1 + ~̇T + ṡ~x1 + ˙̃R~x1

• Neglected s~̇x1, θ~̇x1 . 10−3 mm/yr
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Reference frame for a fixed-orbit solution

• GPS observables all have

ρ = |~xs − ~xr|

• As we have discussed, one mode of processing GPS
data is to assume the orbits, taken from a particu-
lar source, are “perfect” and hence held fixed (not
estimated) in a GPS solution

• Suppose {~xs◦} are a set of satellite positions we use
in a GPS least-squares solution, which results in site
position estimates {~xr◦}
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Reference frame for a fixed-orbit solution

• Now suppose that we are given a new set of satellite

positions {~xs1} that differs from {~xs◦} by a constant

offset ∆~x

• Since the GPS observables depend only on ~xs − ~xr,
a minimum χ2 solution using {~xs1} is found for site

positions {~xr1}, where each

~xr1 = ~xr◦+ ∆~x

• Thus, a translation in the satellite frame causes a

translation of the terrestrial frame
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Reference frame for a fixed-orbit solution

• Suppose we have {~xs2} that differs from {~xs◦} by a rotation so
that ~xs2 = R~xs◦

• The site positions also rotate so that ~xr2 = R~xr◦:

ρ2 = |~xs2 − ~xr2| = |R~xs◦ −R~xr◦|
= |R (~xs◦ − ~xr◦)| = {[R (~xs◦ − ~xr◦)] · [R (~xs◦ − ~xr◦)]}1/2

• Proof: The rotation R is a second-order tensor with RTR =
RRT = I. Using the tensor identity (A~v) · ~u = ~v · (AT~u) we
have

ρ2 =
[
(~xs◦ − ~xr◦)RTR (~xs◦ − ~xr◦)

]1/2
= [(~xs◦ − ~xr◦) · (~xs◦ − ~xr◦)]1/2 = ρ

• A rotation of the satellite reference frame causes a rotation
of the terrestrial reference frame
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Reference frame when orbits are estimated

• Suppose we are estimating site positions and orbital
parameters (as discussed last time

• Can we do this using standard least squares?

• Previous slides show that ∃ a serious rank defi-
ciency in the normal equations if we attempt this

• Normal equations (parameter vector x):

Nx = B

with N = ATΛ−1
y A (A is design matrix)
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Rank deficiencies in least squares

• The rank of N is a measure of the linear indepen-
dence of the system of linear equations represented
by y = Ax

• Trivial (but relevant) example: yk = a − b, where
a and b are unknown parameters to be estimated,
and k = 1, . . . , n

• The design matrix is

A =


1 −1
1 −1
... ...
1 −1


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Rank deficiencies in least squares

• The normal equations matrix (using Λy = σ2I) is

N = ATΛ−1
y A = σ−2

(
n −n
−n n

)

• N is rank deficient since the second row is −1 times

the first row

• The determinant of N is zero, so the matrix is sin-

gular and we cannot invert this matrix to solve for

the parameters
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Overcoming rank deficiencies

• Suppose instead we had the matrix

N = ATΛ−1
y A+

1

κ2
I = nσ−2

(
1 + β2 −1
−1 1 + β2

)
with β2 = σ2/nκ2 and κ2 large such that β2 � 1

• N is not singular, but nearly so. Its determinant is

n2σ−4
[(

1 + β2
)2
− 1

]
= nκ−2σ−2

(
1 + 2β2

)

• The inverse of N is

N−1 =
κ2

1 + 2β2

(
1 + β2 1

1 1 + β2

)
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Overcoming rank deficiencies

• The variances of the parameters are

σ2
a = σ2

b = κ2 1 + β2

1 + 2β2
' κ2

(
1− β2

)

• The correlation between the errors of the parameter

estimates â and b̂ is

rab = σ2
b =

1

1 + 2β2
' 1− 2β2

• The uncertainties are large but the correlation is

nearly 1
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Overcoming rank deficiencies

• We started by adding something to the original nor-
mal equations matrix and showed that this removed
the rank deficiency

N = ATΛ−1
y A+

1

κ2
I = nσ−2

(
1 + β2 −1
−1 1 + β2

)

• What would justify us doing this?

• Compare to the least-squares solution with prior
constraints:

∆x̂ =
(
ATΛ−1

y A+ Λ−1
x

)−1
ATΛ−1

y ∆y
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Overcoming rank deficiencies

• If Λx = κ2I then our procedure to remove the rank

deficiency is equivalent to having a prior constraint

on the adjustment to the parameters a and b with

standard deviation κ

• We said κ was large (wrt to information from the

unconstrained solution) so that this is a “loose”

constraint
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Estimating orbits and site positions

• If we have fairly good estimate of the prior orbital parame-
ters and site positions that we can loosely constrain, we can
estimate orbits and site positions simultaneously

• Typical loose constraints might be κ ' 1 m for sites and
equivalent for orbits

• Such a solution will yield parameter estimates with standard
deviations just slightly under 1 m but with correlations near 1

• This is not useful, in itself
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A posteriori conditions

• Suppose we have performed a loosely constrained
least-squares solution, resulting in parameters esti-
mates x̂, Λx

• Suppose also that we wish to impose a condition
on the parameters

• For example, suppose we are looking for a solution
that minimizes the adjustments to some subset of
the parameters x1, where

x =

[
x1
x2

]
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A posteriori conditions

• By minimizing the adjustments, we are saying that
we wish ∆xs = 0, more or less

• This is not an observation equation, but we can
make it look like an observation equation if we let

∆ys = As∆x =
[
I 0

]
∆x

with the dimension of I being the same as x1

• This creates a “pseudo-observation” if the “ob-
served” value for ∆ys is zero and we assign a co-
variance matrix Λs that expresses the “more or less”
above
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A posteriori conditions

• Now we can treat the solution as a prior constraint

and the condition as a new observation

• The solution is

∆x̂c = ΛcΛ
−1
x ∆x̂

where

Λ−1
c =

(
Λ−1
s 0
0 0

)
+ Λ−1

x
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Stacking of TRF time series

1. Perform a series of loosely constrained daily solutions

2. These have large standard deviations, but the covariance ma-
trix is a mathematical expression that these coordinates can
be rotated or translated while maintaining relative positions

3. The basic combination model that is imposed is:

xis(ts) = xic(t◦) + vic × (ts − t◦) + Ts +Dsx
i
c(ts) +Rsx

i
c(ts)

Least-squares is used to estimate the station positions at t◦
and velocities

4. Other nonlinear motions must be accounted for

5. A posteriori conditions are imposed (e.g., no net rotation)
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Combining TRFs from different techniques

The ITRF solutions use data products from SLR, VLBI, DORIS,
and GPS
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Combining TRFs from different techniques

• Inherent sensitivities are different

• For example, SLR is very sensitive to the gravita-
tional field and hence to the geocenter

• VLBI establishes a connection to the celestial ref-
erence frame

• Combination has the advantage of being less sensi-
tive to particular sources of systematic error

• Scale is a particularly sensitive parameter
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Scale parameter wrt ITRF2008 (ppb)
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