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Classes 10: Stochastic Filters I



Sequential Least Squares

e A type of constrained least-squares solution in which
the entire observation set is broken down into in-
dependent subsets (“batches”) that are analyzed
sequentially

e At each stage, results from the previous analysis
are used as the a priori solution in the subsequent
analysis

e Sequential least-squares can be used to process data
in real time, and can be extended to the case where
the parameter values chance in time



Sequential Least Squares

1. Starting parameter estimates o, No

2. For each data set y; with corresponding error co-
variance G, k=1,...,n:

(a) We use z;,_1, \;._1 as prior constraints (dropping
hats)

(b) Design matrix for batch A

(c) Prefit residuals Ay, = y — A2 (assume linear)

(d) Adjustments AZ, =T — Tp_1



Sequential Least Squares

3. Using constrained least-squares that we’ve used per-
viously, solutions are:

~ - _ 1\ 1 _ -
B = Fp_1+ (AL G T AR+ A ARGy (g — A1)

and

A = (ATG A4 + /\,;_11)_1

Note: k does not have to index time, but it commonly
does



Practical Considerations

e If new data are acquired, we don’'t have to reanalyze
the entire batch, only add new batch

e A new batch can have as few as N, = 1 observation

e With M parameters, for each batch we have to per-
form two inversions of M x M symmetric matrices,
or store Ap._q and perform one inversion



Sequential Least Squares: Alternative
Formulation

Standard formulation:

B, = Zp_1+ (AL Gy T Ay + /\;_11)_1 ApGyt (uk — ApB—1)
Ai = (AL Gt AL+ /\/;—11)_1
Matrix identities (“inside out" ):
(ATG A+ /\—1)_1 ATG™t = AAT (AnaT + G>_1
(ATG 1A+ A1) = A= AAT (ANAT @) AN
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Sequential Least Squares: Alternative
Formulation

e [ herefore, we can write the sequential least-squares
solution as

- - -1 -
B = Bp_1+ M1 AL (AN—1AL +Gr) (v — A1)

~1
Ak = Ni1 — N1 AL (A1 AL + Gr) ApMpy

e [ he standard approach has a matrix inversion of
order M (# params): ATG—1A 4+ A1

e [ he alternative approach has a matrix inversion of
order N (# obs this batch): ANAT + @G



Gain Matrix

e Define the gain matrix K as

1
Kj = N,_14}, (Ak/\k—lA% + Gk)

e [ hen the sequential least-squares solution can be
written as

T =Zp_1+ Kg (yp — ApZp_1)

N = Ng—1 — K ApgNg—1 = (I — KpAg) Ng—1



Gain Matrix
_1 . .
Ky = N1 AL (ANe—1 Ay + Gy) Tp = Th—1+ KAy
e What is meaning of K7

e Case 1: K, =0
— T = Tp_1 and N_1 = N\

— No information in new observations y;

o Case 2: K A, =1
— Implies A; ! exists and G =0
— Then z, = A, 'y, and A, =0

— No information in old observations

/\k — (I — KI{:Ak:) /\k_]_

e Note that K, does not depend on the observations



Example

Model: yp = a + bk with o =1, 04,0 = Opo = 100
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Why positive gain for intercept and negative
for slope?

New line (increased slope,

New observation .decreased intercept)
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Linear Dynamic Systems

e State vector: Set of quantities sufficient to com-
pletely describe “unforced’” motion of dynamic sys-
tem

e Transition matrix S relates the states at t1 and t»

r(to) = S(t1,t2)x(t1)

e Properties of S:
— S(t,t) =1

— S(t1,t3) = S(t1,t2)S(to,t1)
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— S(t1,t2)S(to,t1) =1



Example: 1-D velocity

If the state vector is
_ | =(t)
z(t) = [é(t) ]

Then we might have

1l to—1t1

z(tp) = ( 0 1 >5U(t1)
Note that in this model z(t) is constant
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State Estimates

e Suppose we have an estimate z(t1) of the state at
time t1 with covariance A(tq1)

e [ he estimate is a random variable, whether or not
the state is

e We relate z(t1) to the expectation (mean, (-)) and
/A to the mean-square error:

z(t1) = <$(t1)>
A= ([&(t1) — 2(t)] [2(t1) — 2(t)]”)

15



Covariance Propagation

e Given the estimate z(¢1) and covariance A(t1), what
are the estimate and covariance at to > t17

z(t2) (x(t2)) = (S(t1,t2)x(t1))
S(t1,t2) (x(t1))
S(t1,t2) z(t1)

Ntz) = ([E(t2) — 2(t2)] [3(t2) — z(t2)]")

(S(t1,t2) [#(t1) — 2(t)] [B(t1) — 2(t1)]" S(t1,2)7)
= S(t1,t2) ([B(t1) — 2(t1)] [B(t1) — 2(t)]") S(t1, 1)
= S(t1,t2)A(t1)S(t1,t2)"
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Covariance Propagation: Example

Constant rate S(t1,t0) = ( é Alt > At =t — 1

2
Assume A(tq1) = ( Oz 02 )
v

2 2 2 2
Then A(ts) = A(t{+At) = < oz + 0y (AT op it )

o2 At o2

Note correlations introduced between x and v state
parameters
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State vector with 2-D position and velocity

YA

x(t) X)) o X(t)
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Estimation of state vector parameters

In many problems, parameters of the state vector
are unknown and targets of an estimation procedure

The entire state vector must be included as param-
eters in the least-squares solution

For example, in constant velocity example, if we
wish to estimate position we also need to include
velocity in our least-squares parameter vector

How does having a dynamic system change the se-
quential least squares solution?
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Sequential least squares (No dynamics)
1. Starting parameter estimates zo, No
2. For each data set y; with corresponding error co-
variance G, k=1,...,n:
(a) We use x_1, \,_1 as prior constraints
(b) Design matrix for batch A
(c) Prefit residuals Ay, = y — A2 (assume linear)

(d) Adjustments Az, = 2j, — 31,1
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Sequential least squares (No dynamics)
1. Starting parameter estimates zo, No
2. For each data set y; with corresponding error co-
variance G, k=1,...,n:
(a) We use z_1, N\i_71 as prior constraints
(b) Design matrix for batch A
(c) Prefit residuals Ay, = y — A2, (assume linear)

(d) Adjustments Az, = 2, — 31,1
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Prediction

. Epochs tg,t1,...,tn (NOt necessarily equally spaced)
. Transition matrix S(t;_q1,t;) — Sk

. Estimate of state determined using data V¢ < ¢,

. We will write this as Ty, Ny

. Prediction is é\jk—Fl‘k = Sk fk‘k' /\k—|-1|k = Sk /\kll{i SI?
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Sequential least squares with dynamics
1. Starting parameter estimates Zg g, Ago

2. For each data set y;. & covariance G, k=1,...,n:
(a) Prediction
. ~ T
Thlk—1 = Sk Th—1|k—1 Nklk—1 = Sk Ng—1|k—1 5k
: -1
(b) Ga|n Kk — /\k|k—1A£ (Ak:/\k|k—1A£ —|— Gk)

(c) Update

Tk = Trjp—1TEKpDyg N = (I — KpAg) Ngj—1
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Sequential least squares with dynamics

%

A priori solution

Pred?ction

New Obéervation

Gain matrix

Upaate

< Zgjo, Nojo
— Tplp—10 Nk—1
— Yks Gk
— K.

— Tglp Nk
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State vector with 2-D position and velocity
with observations

YA
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Introduction

Stochastic filters estimation of a stochastic pro-
cess

A stochastic process is a collection of random vari-
ables indexed by ¢

Given the value of the process at time t1 (and past
values), it is not possible to predict with 100% cer-
tainty what its value will be at time to, > ¢4

Such processes are described by the familiar math-
ematics of probability and random variables
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GPS-related examples of stochastic processes

e T he wet delay, which is controlled over a range of
timescales by turbulent transport of water vapor

e Site and satellite clocks errors

e GPS antenna positions under certain circumstances
(vehicle tracking, glacier motion, earthquakes)
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Clock Error (nsec)

Estimated clock errors (Gonzak receiver)
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Stochastic processes and dynamic systems

e A stochastic process acts to ‘force’” the dynamic
system

T = Sk Tp—1 + Ri &k
e £, IS @ zero-mean stochastic-process vector
o (&€ =Quojn
e ;. IS @ matrix

° <R]§JQZZ> =0 for 3 > k
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Update with stochastic process

e Since (¢,) = 0 we have (using same math as before,
and taking advantage of independence)

Tpt1|k = Sk Th_1|k—1

T T
Ntk = Sk Np—1|k—1 5k T B Q Ry,

e How else would sequential least-squares change?
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Sequential least squares with dynamics

%

A priori solution

Pred?ction

New Obéervation

Gain matrix

Upaate

< Zgjo, Nojo
— Tplp—10 Nk—1
— Yks Gk
— K.

— Tglp Nk
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Kalman Filter equations
Prediction
Thik—1 = Ok Thp—1|k—1
A = S, A SE+ R, Q. RL
k|lk—1 kN\k—1|k—1 Pk k Gk g,

Gain

T T —1
K = Ngjp—14% (Ak/\k\k—lAk + Gk:)
Update
Tk = Tpjk—1 T KAy
N = (I — KpAg) Ngjp—1
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Point positioning example

Let us take the example of point positioning using
pseudorange with GPS

Each epoch t;,. we observe n; satellites from a static
(non-moving) receiver

Our simplified observation equation for the jth satel-
lite (j=1,...,n) is

RI(t) = & — &| + (ty)
where RJ is the LC pseudorange corrected for the

satellite clock error, # is the satellite position, Z"
iS receiver position, and c(t;) is the receiver clock
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Point positioning example: State vector

e \We will treat the clock error as a stochastic process

e The parameter (state) vector will be

Lr

Yr
zr

| Ck

wkz

where ¢, = c(t;)
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Point positioning example: Noise model

e \We will assume, for this example, a zero-mean Gaus-
Ssian white-noise model for the clock error

e [ his model implies that
(cj) =0

2
(cjck) = a&djp,
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Point positioning example: Dynamic model

e Putting these two equations together we can write
our dynamic model as

1000 0
o100 0
1= | g o 1 0 [T | o |+2
0 00O 1

Sk Ry,

e We also have that Qg is a scalar with Qi = o2
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Point positioning example: Prediction

e [ he prediction step gives us

=T
Th—1|k—1
=T
z _ | Yk-1]k-1
k|k—1 - ~r
“k—1|k—1
0
A _( Pr-1jg-1| O
klk—1 0 ‘0_62

where P is the position sub matrix of the covariance
matrix
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