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Review: Kalman Filter equations

Prediction

x̂k|k−1 = Sk x̂k−1|k−1

Λk|k−1 = Sk Λk−1|k−1 S
T
k +RkQkR

T
k

Gain

Kk = Λk|k−1A
T
k

(
AkΛk|k−1A

T
k +Gk

)−1

Update

x̂k|k = x̂k|k−1 +Kk∆yk

Λk|k = (I −KkAk) Λk|k−1
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Example: Random walk

• Let us take the simple 1-D example

zk+1 = zk + ξk

ξk a zero-mean white-noise process with variance σ2
ξ

• zk is a random-walk process

• Let us also assume an observation

yk = zk + εk

with εk our observation error: 〈ε2k〉 = σ2
y

• Then Sk = Rk = Ak = I1×1 = 1
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White Noise Process
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Random Walk Process
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Random walk

• Let us take the simple 1-D example

zk+1 = zk + ξk

ξk a zero-mean white-noise process with variance σ2
ξ

• zk is a random-walk process

• Let us also assume an observation

yk = zk + εk

with εk our observation error: 〈ε2k〉 = σ2
y

• Then Sk = Rk = Ak = I1×1 = 1
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Random walk

• The prediction is

ẑk|k−1 = ẑk−1|k−1

σ2
k|k−1 = σ2

k−1|k−1 + σ2
ξ

• The Kalman gain is

Kk =
σ2
k−1|k−1 + σ2

ξ

σ2
k−1|k−1 + σ2

ξ + σ2
y
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Random walk

• The update is

ẑk|k = ẑk−1|k−1+

 σ2
k−1|k−1 + σ2

ξ

σ2
k−1|k−1 + σ2

ξ + σ2
y

 [yk − ẑk−1|k−1

]

σ2
k|k =

 σ2
y

σ2
k−1|k−1 + σ2

ξ + σ2
y

σ2
k−1|k−1
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Random walk

ẑk|k = ẑk−1|k−1 +

 σ2
k−1|k−1 + σ2

ξ

σ2
k−1|k−1 + σ2

ξ + σ2
y

 [yk − ẑk−1|k−1

]

σ2
k|k =

 σ2
y

σ2
k−1|k−1 + σ2

ξ + σ2
y

σ2
k−1|k−1

• Suppose we have an initial “guess” of ẑ0|0 = Z◦
with a large uncertainty, so σ2

0|0 � σ2
ξ , σ

2
y

• Then after the first step (k = 1) we have

ẑ1|1 ' y1 σ2
1|1 ' σ

2
y
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Random walk

• After n steps we have

σ2
n|n =

[
β

(1 + β)n − 1

]
σ2
y , β = σ2

ξ /σ
2
y

• Limits:

1. β → 0 (σ2
ξ → 0):

σ2
n|n/σ

2
y →

1

n

2. β →∞ (σ2
y → 0): σ2

n|n → σ2
y/β

n−1

σ2
n|n/σ

2
y →

1

βn−1
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Random-Walk Example
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Random walk: Interpretation of results

• In this example, the state is a random walk (zk+1 =
zk + ξk), and we directly observe the state (yk =
zk + εk)

• Why does result for σ2
k|k depend on β = σ2

ξ /σ
2
y?

• Recall that the derivation of the sequential least-
squares used the weighted mean of the predicted
state and the state derived from the observation

• From the point of view of least-squares, each of
these state estimates is a random variable, equiva-
lent except for their standard deviations
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Random walk: Interpretation of results

• A small value for β is roughly equivalent to the

statement, The state is walking around, but nearly

imperceptibly compared to our ability to observe it

• Thus, the filter acts to mostly keep the state fixed in

time, and to ascribe any variability to observational

error

• Hence, σn|n ∼ n−1 just like a constant mean value

is being estimated
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Random walk: Interpretation of results

• A large value for β is roughly equivalent to the state-

ment, The state is walking around, and compared

to this variability we can observe it nearly perfectly

• Thus, the filter ascribes any variability to real vari-

ability of the state itself. . .

• . . .and zero uncertainty to error in the estimate of

the state
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Random walk: Interpretation of results

• The preceding interpretation shows why this is called

a filter

• The filter takes (in this example) or a random input

observations), and a stochastic model, and based

on the details of the model separates the signals

into two components:

– The estimate of the state vector xk

– The post-fit residual εk = yk −Akxk
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Kalman Filter Schematic

+ - + +
K(t) unit

delay
S(t)

A(t)

y(t)

y(t|t-1)

x(t|t) x(t-1|t-1) x(t|t-1)

e(t) = y(t) - A(t) x(t|t)
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1-D position with random-walk speed

Transponder

• Speed varies as random walk (wind? currents?)

• Temporal variability (ξk zero-mean white-noise, σ2
ξ ):

zk = zk−1 + vk−1∆t

vk = vk−1 + ξk

• Must include both position and speed in state
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1-D position with random-walk speed

• Dynamic model for state:

xk =

[
zk
vk

]
=

(
1 ∆t
0 1

)
xk−1 +

(
0
1

)
ξk

• Observe two-way range delay (obs. sigma σ2
y):

yk =
(

2
c 0

)
xk + εk

• The partial derivative with respect to speed is zero!

• Can we estimate the speed?
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1-D position with random-walk speed

• Kalman gain

Kk = Λk|k−1A
T
k

(
AkΛk|k−1A

T
k +Gk

)−1

• Since
(
AkΛk|k−1A

T
k +Gk

)−1
is 1× 1:

Kk ∼ Λk|k−1A
T
k

• For Λk|k−1 =

(
σ2
z σzv

σzv σ2
v

)
:

Kk ∼
(
σ2
z

σzv

)
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1-D position with random-walk speed

• Thus, there is information to estimate both param-
eters even though observation = distance

• Even on first epoch, if Λ0|0 =

(
σ2
z 0

0 σ2
v

)
, then

Λ1|0 =

(
σ2
z + (∆t)2σ2

v σ2
v∆t

σ2
v∆t σ2

v + σ2
ξ

)
=

(
σ̃2
z σ2

v∆t

σ2
v∆t σ2

v + σ2
ξ

)

• And Kalman gain

K1 =
(
c

2

) [
σ̃2
z +

(
c2

4

)
σ2
y

]−1(
σ̃2
z

σ2
v∆t

)
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ξ (White Noise)
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Speed (Random Walk)
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Position (Integrated Random Walk)
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Application to GPS positioning

• Stochastic parametrization is used by various soft-
ware packages for

– Clock errors

– Atmospheric (wet) zenith delay

– Zenith-delay gradient parameters

– Time-dependent positions

– Earth orientation/rotation

– Orbit parameters
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Stochastic Models in GPS

• White noise, random walk, and integrated random

walk are most used

– They are easy to implement in a Kalman filter

– Nature of variations can be tuned to understand-

ing of physical process

• Stochastic variances have to be “guesstimated,”

and sensitivity studies done
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GPS Car Navigation Example

Position of your vehicle and the navigation system’s route
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GPS Car Navigation Example

Route you want to take
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GPS Car Navigation Example

Estimated position (blue/yellow) vs. true position (red/white)

28



GPS Car Navigation Example

Estimated position (blue/yellow) vs. true position (red/white)
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GPS Car Navigation Example

Estimated position (blue/yellow) vs. true position (red/white)
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GPS Car Navigation Example

Estimated position (blue/yellow) vs. true position (red/white)
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What’s happening?

• Kalman filter for position and velocity (?)

• Vehicle is assumed to be on road

• Identified of road enables prediction with small σ’s

• As prefit residual pseudoranges (yk − Akx̂k|k−1) be-
come large, estimated position changes, but not
enough to be identified as different road

• Prefit residuals at some point become large enough
that a true position update is allowed
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Combining high-accuracy GPS and
accelerometer data for strong-motion

displacements

• Recently, Yehuda Bock (UCSD) and colleagues have
experimented with combining GPS and accelerom-
eter estimates using a Kalman filter

• There are two ways of doing this

• One is to devise a state vector including position
and acceleration, for example (for each component):

xk =

 zkvk
ak
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Combining GPS and accelerometer data

• The transition matrix would then be

Sk =

 1 ∆t 1
2 (∆t)2

0 1 ∆t
0 0 1



• The observation vector would include both posi-
tion z (from GPS) and acceleration a (from the
accelerometer)

• This approach would require understanding the statis-
tics of the acceleration changes which would be
modeled as noise
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Combining GPS and accelerometer data

• The approach taken by Bock et al. is to use a
modified dynamic equation

xk = Skxk−1 +Bkuk +Rkξk

• The state vector is

xk =

[
zk
vk

]

• The transition matrix is

Sk =

(
1 ∆t
0 1

)
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Combining GPS and accelerometer data

xk = Skxk−1 +Bkuk +Rkξk

• The input uk is the accelerometer reading, so that

Bk =

[
1
2 (∆t)2

∆t

]

• This modified dynamic equation can be implemented

by modifying the prediction equation:

x̂k|k−1 = Skxk−1|k−1 +Bkuk
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Combining GPS and accelerometer data

• The noise matrix Qk has a rather complex form to

reflect the sampling (with error) of a continuous

quantity (acceleration)

• The GPS receiver and accelerometer have different

sampling rates

– GPS: 10 Hz

– Accelerometer: 100 Hz

37



GPS vs. KF (El Mayor-Cucapah 4/4/2010)

Bock et al. (2011), BSSA, 101, 2904–2925
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Seismometer vs. KF (El Mayor-Cucapah)

Bock et al. (2011), BSSA, 101, 2904–2925
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Position estimates of glacier GPS sites

Nettles et al. (2008), GRL, 35, L24503
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