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Review: Kalman Filter equations
Prediction
Thik—1 = Ok Thp—1|k—1
A = S A S+ R, Q. RE
k|lk—1 kN\k—1|k—1 Pk k Gk g,

Gain

1
Kip = Ngp—14% (Ak/\k\k—lAg + Gk:)

Update
Tk = Tpjk—1 T KAy

Nije = (I — K Ag) Ngjp—1



Example: Random walk

Let us take the simple 1-D example

241 = 2k T &k

&, @ zero-mean white-noise process with variance o

z;. 1S @ random-walk process

Let us also assume an observation

Yr = 2k T €k
with €, our observation error: (e%>

Then SkZRkZAkZlelz 1
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White Noise Process
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Random walk
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Random walk

e [ he prediction is
Zhlk—1 = Zk—1|k—1

2 _ 2 2
Oklk—1 — k—1lk—1 + og

e T he Kalman gain is
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Random walk

e [ he update is

2k = Zk—1k—1T (ag




Random walk

2) [yk - 2k—1|k:—1]

Zhlk = Zk—1lk—1 T ( 5

52
Ul%\k: i 013 1lk—1
2 2 2 —1|k—
O—1jk—1 T 0 T 03

e Suppose we have an initial "guess” of Zg g = Zo

with a large uncertainty, so OSIO > 052,05

e Then after the first step (kK = 1) we have

S 2 .2
£1]1 = Y1 9111 = %



Random walk

e After n steps we have

> B 2 _ 2,2

e Limits:

1. B—>O(a§2—>0):

> , 2 1
0n|n/0y > -
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Random-Walk Example
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Random walk: Interpretation of results

In this example, the state is a random walk (zk_|_1
z + &), and we directly observe the state (y
2 + €x)

Why does result for aék depend on 3 = 052/05?

Recall that the derivation of the sequential least-
squares used the weighted mean of the predicted
state and the state derived from the observation

From the point of view of least-squares, each of
these state estimates is a random variable, equiva-
lent except for their standard deviations
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Random walk: Interpretation of results

e A small value for g is roughly equivalent to the
statement, The state is walking around, but nearly
imperceptibly compared to our ability to observe it

e [ hus, the filter acts to mostly keep the state fixed in

time, and to ascribe any variability to observational
error

e Hence, o,),, ~ n~ ' just like a constant mean value
IS being estimated
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Random walk: Interpretation of results

e A large value for g is roughly equivalent to the state-
ment, The state is walking around, and compared
to this variability we can observe it nearly perfectly

e [ hus, the filter ascribes any variability to real vari-
ability of the state itself...

e ...and zero uncertainty to error in the estimate of
the state
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Random walk: Interpretation of results

e [ he preceding interpretation shows why this is called
a filter

e The filter takes (in this example) or a random input
observations), and a stochastic model, and based
on the details of the model separates the signals
into two components:

— The estimate of the state vector z;

— The post-fit residual €, = y. — Arxp
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Kalman Filter Schematic

e(t) = y(t) - A(t) x(t[t)

X(t|t-1)

y(t) K(t x(t[t) unit | x(t-1[t-1

/ T delay
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1-D position with random-walk speed

)- )

Transponder

e Speed varies as random walk (wind? currents?)

e Temporal variability (£, zero-mean white-noise, 052):
2k = 2g—1 T V1At

v = vi—1 + &k

e Must include both position and speed in state
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1-D position with random-walk speed
Dynamic model for state:

Zk . 1 At O
il= (0 4 )mat(1)a

Observe two-way range delay (obs. sigma 05)

xk—

Y = <% 0 )xk—l-ek
T he partial derivative with respect to speed is

Can we estimate the speed?

zerol!
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1-D position with random-walk speed

e Kalman gain

~1
Ky, = Ngji—1AF, (AeMgji—1AF + Gy)

—1
o Since (ApApp_1AL +Gy) " is 1 x 1:

T
K~ Ngj—14%

2
(0} (o)
e For Ak‘“ﬁ?—l = ( z 22?) ):

Ozv Oy

2
o
K ~ z
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1-D position with random-walk speed

e T hus, there is information to estimate both param-
eters even though observation = distance

2
e Even on first epoch, If Agig = ( UOZ 002 ) then
v

A _<a§+(At)203 AN )_( 52  o2At )
110 = =

AN o2 + ag o2At o2+ 052

e And Kalman gain

2 -1 ~D
— (&) |52 ¢ 2 &
ko= () 2+ (5) ] (oFar)
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Speed (Random Walk)
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Position (Integrated Random Walk)
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Application to GPS positioning

e Stochastic parametrization is used by various soft-
ware packages for

— Clock errors

— Atmospheric (wet) zenith delay
— Zenith-delay gradient parameters
— Time-dependent positions

— Earth orientation/rotation

— Orbit parameters
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Stochastic Models in GPS

e \White noise, random walk, and integrated random
walk are most used
— They are easy to implement in a Kalman filter
— Nature of variations can be tuned to understand-

ing of physical process

e Stochastic variances have to be ‘‘guesstimated,”
and sensitivity studies done
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GPS Car Navigation Example

Westem Hwy S

Position of your vehicle and the navigation system’s route
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GPS Car Navigation Example

Route you want to take
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GPS Car Navigation Example

Westem Hwy S

Estimated position (blue/yellow) vs. true position (red/white)
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GPS Car Navigation Example
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Estimated position (blue/yellow) vs. true position (red/white)
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GPS Car Navigation Example
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Estimated position (blue/yellow) vs. true position (red/white)
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GPS Car Navigation Example

Westem Hwy S

Estimated position (blue/yellow) vs. true position (red/white)
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What's happening?
Kalman filter for position and velocity (7)
Venhicle is assumed to be on road
Identified of road enables prediction with small o’'s

As prefit residual pseudoranges (yp — AgZy—1) be-
come large, estimated position changes, but not
enough to be identified as different road

Prefit residuals at some point become large enough
that a true position update is allowed
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Combining high-accuracy GPS and
accelerometer data for strong-motion
displacements

e Recently, Yehuda Bock (UCSD) and colleagues have
experimented with combining GPS and accelerom-
eter estimates using a Kalman filter

e [ here are two ways of doing this

e One is to devise a state vector including position
and acceleration, for example (for each component):

5
CBk — ’Uk

g
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Combining GPS and accelerometer data

e [ he transition matrix would then be

1 At 3 (A)?
Skz O 1 At
0 O 1

e [ he observation vector would include both posi-
tion z (from GPS) and acceleration a (from the
accelerometer)

e [ his approach would require understanding the statis-
tics of the acceleration changes which would be
modeled as noise
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Combining GPS and accelerometer data

e [ he approach taken by Bock et al. is to use a
modified dynamic equation
T = SETr—1 + Brug + Riép

e | he state vector is
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Combining GPS and accelerometer data

T = Spri_1 + Brug + Rié

e The input u; is the accelerometer reading, so that

1 2
w1

e T his modified dynamic equation can be implemented
by modifying the prediction equation:
Thlk—1 = OkT_1k—1 T Brug
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Combining GPS and accelerometer data

e T he noise matrix @ has a rather complex form to
reflect the sampling (with error) of a continuous
quantity (acceleration)

e [ he GPS receiver and accelerometer have different
sampling rates

— GPS: 10 Hz

— Accelerometer: 100 Hz
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GPS vs. KF (El Mayor-Cucapah 4/4/2010)

¢« GPS — Kalman Filter
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Bock et al. (2011), BSSA, 101, 2904—2925
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Seismometer vs. KF (El Mayor-Cucapah)
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Position estimates of glacier GPS sites

day of year, 2007
224 225 226 227
—

position relative to mean flow (m)

ground displacement (um)
o

17:00 18:00 19:00 20:00 21:00 22:00
UTC on day 225

Nettles et al. (2008), GRL, 35, L24503
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