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ABSTRACT

The regularized expectation maximization (RegEM) method has been used in recent studies to derive
climate field reconstructions of Northern Hemisphere temperatures during the last millennium. Original
pseudoproxy experiments that tested RegEM [with ridge regression regularization (RegEM-Ridge)] stan-
dardized the input data in a way that improved the performance of the reconstruction method, but included
data from the reconstruction interval for estimates of the mean and standard deviation of the climate
field—information that is not available in real-world reconstruction problems. When standardizations are
confined to the calibration interval only, pseudoproxy reconstructions performed with RegEM-Ridge suffer
from warm biases and variance losses. Only cursory explanations of this so-called standardization sensitivity
of RegEM-Ridge have been published, but they have suggested that the selection of the regularization
(ridge) parameter by means of minimizing the generalized cross validation (GCV) function is the source of
the effect. The origin of the standardization sensitivity is more thoroughly investigated herein and is shown
not to be associated with the selection of the ridge parameter; sets of derived reconstructions reveal that
GCV-selected ridge parameters are minimally different for reconstructions standardized either over both
the reconstruction and calibration interval or over the calibration interval only. While GCV may select ridge
parameters that are different from those that precisely minimize the error in pseudoproxy reconstructions,
RegEM reconstructions performed with truly optimized ridge parameters are not significantly different
from those that use GCV-selected ridge parameters. The true source of the standardization sensitivity is
attributable to the inclusion or exclusion of additional information provided by the reconstruction interval,
namely, the mean and standard deviation fields computed for the complete modeled dataset. These fields
are significantly different from those for the calibration period alone because of the violation of a standard
EM assumption that missing values are missing at random in typical paleoreconstruction problems; climate
data are predominantly missing in the preinstrumental period when the mean climate was significantly
colder than the mean of the instrumental period. The origin of the standardization sensitivity therefore is
not associated specifically with RegEM-Ridge, and more recent attempts to regularize the EM algorithm
using truncated total least squares could theoretically also be susceptible to the problems affecting RegEM-
Ridge. Nevertheless, the principal failure of RegEM-Ridge arises because of a poor initial estimate of the
mean field, and therefore leaves open the possibility that alternative methods may perform better.
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1. Introduction

Several recent attempts to perform climate field re-
constructions (CFRs) of surface air temperature in the
Northern Hemisphere (NH) have focused on a tech-
nique known as regularized expectation maximization
(RegEM). This technique was developed by Schneider
(2001) as a modification of a well-known family of ex-
pectation-maximization statistical techniques (e.g.,
Little and Rubin 2002) and was applied in the context
of imputing missing values in a climate field. RegEM
has subsequently been applied in various CFR applica-
tions (Mann and Rutherford 2002; Zhang et al. 2004;
Rutherford et al. 2005, hereafter R05; Mann et al. 2005,
hereafter M05, 2007a, hereafter M07a). Specifically
within the context of NH CFRs of temperature, R05
used RegEM to derive a reconstruction of the NH tem-
perature field back to A.D. 1400. This reconstruction
was shown to compare well with the Mann et al. (1998)
CFR and prompted R05 to argue that the comparison
established a mutual validation of the two reconstruc-
tions.

In efforts to systematically evaluate the ability of the
RegEM method to reconstruct past temperature fields,
several tests have been performed using pseudoproxies
(Mann and Rutherford 2002) derived from millennial
integrations with general circulation models (GCMs;
González-Rouco et al. 2003, 2006; von Storch et al.
2004; Ammann et al. 2007). M05 attempted to test the
R05 RegEM method using pseudoproxies derived from
the National Center for Atmospheric Research
(NCAR) Climate System Model (CSM) 1.4 millennial
integration. Subsequently, M07a have tested a different
implementation of RegEM and shown it to perform
favorably in pseudoproxy experiments. This latter
study was performed in part because M05 did not ac-
tually test the R05 technique, which was later shown to
fail appropriate pseudoproxy tests (Smerdon and Ka-
plan 2007). The basis of the criticism by Smerdon and
Kaplan (2007) focused on a critical difference between
the standardization procedures used in the M05 and
R05 studies (here we define the standardization of a
time series as both the subtraction of the mean and
division by the standard deviation over a specific time
interval). Their principal conclusions were as follows: 1)
the standardization scheme in M05 used information
during the reconstruction interval, a luxury that is only
possible in the pseudoclimate of a numerical model
simulation and not in actual reconstructions of the
earth’s climate; 2) when the appropriate pseudoproxy
test of the R05 method was performed (i.e., the data
matrix was standardized only during the calibration in-
terval), the derived reconstructions suffered from warm

biases and variance losses throughout the reconstruc-
tion interval; and 3) the similarity between the R05 and
Mann et al. (1998) reconstructions, in light of the dem-
onstrated problems with the R05 technique, suggests
that both reconstructions may suffer from warm biases
and variance losses.

The differences between the R05, M05, and M07a
methods hinge on the details of the regularized regres-
sion that is used within the RegEM algorithm; regular-
ization is typically necessary in CFR methods because
the covariance matrix is rank deficient. Ridge regres-
sion was the regularization scheme used in the R05 and
M05 RegEM approaches (RegEM-Ridge). Schneider
(2001) also included truncated total least squares as an
alternative regularization method within the RegEM
algorithm (RegEM-TTLS), which is the basis of the
new method applied by M07a. While comparisons be-
tween these various versions of RegEM should be an
important subject of future work, we focus only on
RegEM-Ridge within this study.

M07a attributed the problems with RegEM-Ridge to
an imperfect selection of the regularization (ridge) pa-
rameter: “. . . we have found that the estimation of op-
timal ridge parameters is poorly constrained at decadal
and longer timescales in our tests with pseudo-proxy
data, and we have learned that earlier results using
ridge regression (e.g. M05) are consequently sensitive
to, e.g. the manner in which data are standardized over
the calibration period.” Mann et al. (2007b) further
conclude that the selection of the ridge parameter using
generalized cross validation (GCV), as performed in
R05 and M05, is the source of the problem: “The prob-
lem lies in the use of a particular selection criterion
(Generalized Cross Validation or ‘GCV’) to identify an
optimal value of the ‘ridge parameter’, the parameter
that controls the degree of smoothing of the covariance
information in the data (and thus, the level of preserved
variance in the estimated values, and consequently, the
amplitude of the reconstruction).” The authors do not
elaborate any further, however, making it unclear why
such conclusions have been reached. Therefore, it is
one of the principal goals of this manuscript to explore
ridge parameter selection as the possible source of the
differences in pseudoproxy tests of the R05 and M05
methods.

Within the context of NH CFRs, it is important to
understand the source of the problems associated with
the RegEM-Ridge method for the following two re-
lated reasons: 1) if RegEM-Ridge fails only because the
method of regularization parameter selection is poor, a
different selection procedure could be adopted to im-
prove the application of the method in CFRs of the last
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millennium, but 2) if the problem is not associated with
RegEM-Ridge specifically and is instead a general fea-
ture of the RegEM method, similar pitfalls could be
present in RegEM reconstructions that use alternative
regularization schemes. In addition to the general mo-
tivation of the first reason, RegEM-Ridge was noted by
Schneider (2001) for potential advantages over other
regularization schemes, and thus may represent a spe-
cific approach worth better understanding and improv-
ing. The second reason above is also important because
M07a used RegEM-TTLS to derive promising results.
However, if, for instance, ridge regression was not the
source of the problems in the R05 method, it would
be an important and outstanding question as to why
RegEM-TTLS succeeds while RegEM-Ridge does not.
More generally, RegEM-Ridge has been applied to re-
construct other climate variables in different domains,
for example, by Zhang et al. (2004) for North American
drought reconstructions, making it important to under-
stand unambiguously the strengths and weaknesses of
the method in order to interpret reconstructions for
which follow-up studies like M07a have not been per-
formed. Ultimately, it is important to characterize the
sources of problems in the performance of RegEM-
Ridge within the context of paleoclimate CFRs to
evaluate how alternative methods may or may not rep-
resent opportunities for improved approaches to the
problem.

With the above motivations in mind, we discuss sev-
eral aspects of the RegEM formalism in section 2 of this
manuscript and then explore ridge parameter selection
in section 3 as the potential source of the differences in
the R05 and M05 methods. We also use a direct opti-
mization scheme as an alternative to GCV selection of
the ridge parameter. Our results in section 3 demon-
strate that ridge parameter selection is not the source of
the standardization sensitivity in RegEM-Ridge. In sec-
tion 4 we compare the two sets of reconstructions to
show that the main differences between them arise be-
cause of the additional information introduced by the
M05 standardization scheme (information that would
not be available in real-world reconstructions). We
summarize our results and provide conclusions in sec-
tion 5.

2. RegEM formalism

At the heart of the RegEM method is a linear re-
gression model that relates the missing variables to the
available variables:

xm � �m � �xa � �a�B � e, �1�

where xm is the vector of missing variables, �m is the
vector of means of the missing variables, xa is the vector
of available variables, �a is the vector of means of the
available variables, B is a matrix of regression coeffi-
cients, and e is the assumed residual with unknown
covariance matrix (Schneider 2001); vectors here are
rows of length Na and Nm for available and missing
variables, respectively, and B has dimensions Na � Nm.
Given the partitioned covariance matrix, the condi-
tional maximum likelihood estimate of the regression
coefficients can be written as

B̂ � �̂aa
� 1�̂am, �2�

where �̂�1
aa is the estimated covariance matrix of the

available variables and �̂am is the estimated cross co-
variance of the available and missing variables.

The regularization of the regression model in ridge
regression is achieved by modifying the inverse matrix
�̂�1

aa in Eq. (2) to be

��̂aa � h2D̂��1, �3�

where D̂ in this case is chosen to be proportional to the
covariance matrix of the observational error in xa (fol-
lowing Golub et al. 1999) and h is a positive number
called the ridge parameter [see Schneider (2001) for a
detailed derivation and discussion of these equations].
When observational errors of different components of
xa are uncorrelated, D̂ is a diagonal matrix. Addition-
ally, when error variances are proportional to the signal
variances, as is the case for the pseudoproxies con-
structed by M05 and used in the present work, the di-
agonal of �̂aa can be used for D̂. Consistent with the
M05 application of RegEM, the input data in this study
are standardized, and therefore D̂ � I, where I is the
identity matrix. The ridge term h2 D̂ in expression (3)
inflates the diagonal of �̂aa, consequently dampening
the elements of matrix B in Eq. (2), and thus deter-
mines the degree of smoothing that is applied to the
estimates of missing values. The selection of h is there-
fore crucial to the character of the derived reconstruc-
tion. As described by Schneider (2001) and applied by
R05 and M05, this selection can be performed objec-
tively by minimizing the GCV function.

In Fig. 1 we illustrate the structure of the M05
pseudoproxy data matrix in which there are a total of
1131 records (A.D. 850–1980) and 773 data points (669
instrumental grid cells and 104 pseudoproxies). Instru-
mental data points are considered available for the
1856–1980 “calibration period” and are reconstructed
from A.D. 850 to 1855 (the “reconstruction interval”).
The covariance matrix, with dimensions of 773 � 773, is
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also schematically represented in Fig. 1. Each ridge re-
gression performed in RegEM-Ridge uses three sub-
matrices from this covariance matrix. These three
submatrices—�̂aa, �̂mm, and �̂am—are selected based
on the available and missing observations in the data
matrix (see Fig. 1) and correspond to the covariance
matrices of the available observations, the missing ob-
servations, and the cross covariance of the available
and missing observations, respectively. For instance, as-
sume that a record of 10 observations is missing the
observations 1, 4, and 9. In this case, the ridge regres-
sion will be performed using the following submatrices
of the covariance matrix (a 10 � 10 matrix): �̂aa is a
7 � 7 matrix equal to ||�̂ij||, where i, j � 2, 3, 5, 6, 7, 8,
and 10; �̂mm is a 3 � 3 matrix equal to ||�̂ij||, where i, j
� 1, 4, and 9; and �̂am is a 7 � 3 matrix equal to ||�̂ij||,
where i � 2, 3, 5, 6, 7, 8, and 10 and j � 1, 4, and 9.

It is important to note that RegEM is an iterative
algorithm and that the covariance matrix is changed
upon each iteration. Additionally, the missing observa-
tions may be heterogeneously distributed within the
dataset, making �̂aa, �̂mm, and �̂am different for each
record (in the example above, the record is missing 1, 4,
and 9, but other records could be missing any subset of
1–10). The most general application of RegEM-Ridge
therefore requires an individual ridge regression per
record and per iteration. This was the case discussed by
Schneider (2001), in which RegEM-Ridge was used to
impute missing instrumental data that were heteroge-
neously distributed within the data matrix. If the miss-
ing data occur in a regular block, as in the RegEM

pseudoproxy reconstructions of M05, however, the sub-
matrices of the covariance matrix are the same for each
record with missing data. As indicated in Fig. 1, the
missing observations for such records in the pseudo-
proxy data matrix extend from indices 1 to 669. Thus,
the submatrices of the covariance matrix for all records
requiring the reconstruction of missing data will be
�̂mm � ||�̂ij||, where i, j � 1–669, �̂aa � ||�̂ij||, where
i, j � 670–773, and �̂am � ||�̂ij||, where i � 670–773 and
j � 1–669. Consequently, the value of the GCV-opti-
mized ridge parameter and the regression coefficients
are the same for each record during a given iteration,
allowing a significant computational savings compared
to the general case (Little and Rubin 2002; Schneider
2001). Furthermore, because a single ridge parameter
from the final iteration of RegEM-Ridge represents the
optimized value for all of the records, comparisons be-
tween reconstructions and their final ridge parameters
(h final) are straightforward: a single value of h final
characterizes each reconstruction.

The final iteration of the RegEM algorithm selects
the optimized ridge parameter and subsequently the
final regression coefficient matrix. Assuming P to be a
standardized Nt � Np proxy matrix, where Nt is the
number of time steps and Np is the number of proxies,
the imputed values within the RegEM algorithm can be
written as a set of linear operators acting on the proxy
data,

Trecon � m � PBS, �4�

where m is an Nt � Ns matrix of estimated field means
for the complete data matrix in which each row is equal
to one another (Ns is the number of grid locations), B is
the Np � Ns matrix of regression coefficients, and S is
a diagonal matrix of the order of Ns containing the
estimated standard deviations of the temperature field.
During the first iteration of the RegEM algorithm, the
m and S elements are obtained as the mean and stan-
dard deviation of the available values, respectively. In
subsequent iterations, the values of m and S are rees-
timated from the results of the preceding iteration; B is
determined from the ridge regression performed during
each iteration. Equation (4) collects predictions of
missing data from Eq. (1) (rows of the Nt � Ns matrix
Trecon correspond to xm vectors), with the added step of
data standardization, because of which �a � 0 and the
matrix S scales back to temperature; the rows of matrix
P correspond to the standardized vector xa. The formu-
lation of the RegEM solution in Eq. (4) has also been
checked numerically and confirmed to exactly repro-
duce the imputed output of the RegEM code.

The utility of Eq. (4) lies in its representation of the

FIG. 1. Data and covariance matrices for the pseudoproxy ex-
periments using CSM climate simulations. The reconstruction and
calibration intervals span the time periods of A.D. 850–1855 and
A.D. 1856–1980, respectively. There are a total of 104 pseudoproxy
series and 669 grid cells in the Northern Hemisphere [based on
selection criterion from Mann and Rutherford (2002)].
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RegEM reconstruction in terms of parsed linear opera-
tors. This description will be used in section 4 to char-
acterize differences between M05- and R05-derived re-
constructions in terms of these individual operators. It
also should be noted, however, that the representation
of the RegEM-Ridge reconstruction given in Eq. (4)
clearly allows a reconstruction to be performed during
the calibration interval, and therefore the calculation of
calibration interval statistics. These statistics have not
been included for previous RegEM paleoclimate recon-
structions (e.g. Zhang et al. 2004; R05; M05; Mann et al.
2007a), although they are common statistics used to
evaluate the performance of traditional paleorecon-
struction methods. Equation (4) makes it clear that a
calibration interval reconstruction is straightforward to
calculate using the final m, S, and B outputs of RegEM
in this specific case of paleoreconstructions, and there-
fore calibration statistics should be reported for such
results in the future.

3. Ridge parameter selection

In M05, the pseudoproxies and target field were stan-
dardized over the period of A.D. 850–1980, after which
the target field was truncated prior to the calibration
interval. This expanded standardization interval pro-
duced skillful pseudoproxy reconstructions and pro-
vided the basis of the conclusions in M05 that sup-
ported the use of RegEM-Ridge as a viable CFR
method. In contrast, when the proxy and target field are
standardized only during the calibration interval (A.D.
1856–1980), as in R05 and as required by any real-world
CFR, pseudoproxy experiments with RegEM-Ridge
yielded poor results (Smerdon and Kaplan 2007). The
origin of this difference has been explained by M07a
and Mann et al. (2007b) as resulting from problems in
the selection of the ridge parameter using GCV. In this
section we investigate the selection of the ridge param-
eter and its impacts on the derived reconstructions.

In all of our subsequent tests, the experimental de-
sign is very similar to that adopted by M05. We use the
millennial integration from the NCAR CSM version
1.4 (CSM 1.4) GCM (Ammann et al. 2007). We employ
the same 104 pseudoproxies used by M05, made pub-
licly available at the M05 supplemental Web site (on-
line at http://fox.rwu.edu/�rutherfo/supplements/
Pseudoproxy05/). These pseudoproxies have been
sampled from a 5° � 5° grid interpolation of the origi-
nally resolved CSM field (Smerdon et al. 2008, manu-
script submitted to J. Geophys. Res.) and reflect the
real-world distribution of the Mann et al. (1998) proxy
network. The pseudoproxies have all been degraded

with white noise and set to have signal-to-noise ratios
(SNRs), by standard deviation of infinity (no noise),
1.0, 0.5, and 0.25. Note that M05 presented so-called
hybrid reconstructions, that is, the pseudoproxy and in-
strumental fields were split into high- and low-fre-
quency domains divided at the 20-yr period; individual
RegEM reconstructions were performed in each do-
main and the resulting split-domain reconstructions
were recombined to derive the full-domain result. M05
note only small differences between the nonhybrid and
hybrid reconstructions, a feature confirmed by our own
experiments. To maintain simplicity of interpretation,
we therefore have not used the hybrid implementation
of RegEM and we perform nonhybrid RegEM recon-
structions in all cases herein.

In Fig. 2 we plot reconstructions derived using the
R05 and M05 standardization choices and the pseudo-
proxies from M05. Warm biases and variance losses
clearly increase with noise level in these nonhybrid R05
reconstructions [similar to the hybrid versions shown in
Smerdon and Kaplan (2007)], while the M05 recon-
structions compare more closely with the mean NH
time series of the model across all noise levels. For each
of these reconstructions we plot the final GCV-selected
ridge parameter in Fig. 3, a quick inspection of which
confirms that the values of h final are almost identical
for either standardization choice. These results there-
fore indicate that the differences in the selected ridge
parameters are an unlikely source of the standardiza-
tion sensitivity of RegEM-Ridge.

While there is little difference between h final in the
two different standardization cases, it is possible that
the GCV-optimized parameters are in fact far from the
truly optimal value. To estimate the latter, we have
performed RegEM-Ridge reconstructions for a range
of fixed ridge parameters. For each ridge parameter
value we have characterized the actual error of the re-
construction by calculating the RMS error and correla-
tion coefficients between the mean NH time series of
the reconstructed and the true model values. In Fig. 4,
we plot these RMS errors and correlation coefficients
as a function of the value of the ridge parameter for
reconstructions with fixed h parameters (the value of h
determined by GCV is also shown); these calculations
were performed using the R05 standardization and
pseudoproxies with SNR � 0.5. For both GCV-selected
and fixed values of h, RegEM iterations stop when the
relative difference in the Frobenius norm between im-
puted values of two sequential iterations drops below a
set stagnation tolerance, set to 0.005 in this work fol-
lowing M05. (While this choice of stopping criterion
allows consistent comparisons with the M05 results,

6714 J O U R N A L O F C L I M A T E VOLUME 21



larger values are likely permissible, causing minimal
impact on the derived results and improved conver-
gence times.) As demonstrated in Fig. 4, the GCV-
selected value of h is within the range of optimal ridge
parameters for the correlation coefficient statistic: an
optimal value lies between 0.7 and 0.8 and the GCV-
selected value was 0.72. The RMS error optimization,
however, yields a smaller estimate of h � 0.31, less than
half the GCV-selected value of 0.72. Nevertheless, this
different value of h does not have a large impact on the
derived reconstruction; in Fig. 5 we plot the recon-
structed NH means derived using the fixed ridge pa-
rameter of 0.31 and the GCV-selected value of 0.72 and
note only small differences between the two. These re-
sults indicate that in addition to the fact that the ridge
parameter is not the source of the standardization sen-
sitivity, GCV in particular selects h parameters that
yield reconstructions that are quite similar to those de-
termined with directly optimized values of h. These
findings therefore give no support to the idea that
ridge parameter selection in general, or GCV-selected
parameters specifically, are the sources of the stan-
dardization sensitivity observed in the performance of
RegEM-Ridge.

4. Characterizing the differences between R05 and
M05 RegEM-derived reconstructions

Given the results of the preceding section, the source
of the standardization sensitivity in RegEM-Ridge has
yet to be elucidated. The purpose of this section is to
investigate the differences between RegEM-Ridge re-
constructions derived with the R05 and M05 standard-
izations in order to deduce the source of the observed
standardization effect. We use the parsed description of
the RegEM reconstruction given by Eq. (4) to analyze
the role of the individual operators and derive insights
into the sources of the differences in the RegEM-Ridge
reconstructions.

a. Reconstructed mean and standard deviation
fields

In Fig. 6 we plot the difference between the temporal
means of the actual model field and RegEM-Ridge re-
constructions using R05 and M05 standardizations for
pseudoproxies with SNRs of 1.0 and 0.5 (all compari-
sons are for the reconstruction interval from A.D. 850 to
1855). Table 1 presents the range of differences in the

FIG. 2. Nonhybrid RegEM reconstructions of the CSM mean NH climate using (top) the
M05 convention, which standardized the instrumental and proxy data over the entire simu-
lation interval (A.D. 850–1980), and (bottom) the R05 standardization convention, which
standardized the instrumental and proxy data over the A.D. 1856–1980 calibration interval.
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temporal means and the spatially averaged mean dif-
ference in the field for each SNR level and each stan-
dardization choice. Table 2 presents the means of the
NH time series for the known model field and the set of
R05 and M05 reconstructions shown in Fig. 2. All time
series have been referenced to the calibration interval
mean, and thus the reconstruction interval means are
negative. Similar to the comparison of the mean NH
time series shown in Fig. 2, the M05 standardization
choice yields a mean field that is very similar to the
known mean field of the model (Fig. 6, top panel). By
contrast, the R05 standardization choice yields progres-
sively larger differences in the mean field for all recon-
structions, reaching maximum differences for a SNR of
0.25 that range from �1.22 to 0.21 �, with a mean dif-
ference of �0.28 �.

In the no-noise case, RegEM-Ridge reconstructs well
the actual model mean using either the M05 or the R05
standardization. For progressively higher noise levels,
however, the R05 reconstructions tend away from the
actual model mean and toward the mean of the calibra-
tion interval, while the M05 reconstructions stay very
close to the actual model mean during the reconstruc-
tion interval. The explanation of this effect is rooted in
the fact that for high noise levels the reconstructions
tend toward the mean used in the initial standardiza-
tion. With each iteration RegEM performs a ridge re-
gression that, at high noise levels, yields reconstructions
that are not significantly different from the sample
mean of the imputations from the prior iteration. In

such high noise cases, the mean corresponding to the
initial standardization therefore is carried through it-
erations without much change to the final RegEM so-
lution.

In the case of the R05 standardization, the initial
mean field is determined for the calibration interval
and the reconstructions therefore tend toward the rela-
tively warm mean of that period; for high noise levels
this tendency amounts to a systematic warm bias of the
reconstructed field. For the M05 standardization, how-
ever, the reconstructions are initialized with the mean
of the full model period, which is not significantly dif-
ferent from the mean of the reconstruction interval (the
mean of the area-weighted NH time series referenced
to the calibration interval is �0.30 and �0.33 � for the
complete dataset and reconstruction-only periods, re-
spectively). Tendency toward this nearly correct mean
field results in the artificially unbiased character of the
M05 reconstruction. Note that the mean values in Table
2 for the M05 reconstructions essentially converge to
the A.D. 850–1980 period mean as noise levels increase.
As such, the success of the M05 method, specifically
with regard to the lack of warm bias, is entirely due to
the additional information (i.e., nearly correct mean)
included in the extended standardization choice.

Reconstructed fields (rows of Trecon) discussed in this
work represent the estimated means of ensembles of
possible states distributed around these means with a
reconstruction error covariance C (Schneider 2006).

FIG. 3. The value of the ridge parameter determined for the
final iteration of the reconstructions shown in Fig. 2. Noise levels
are plotted as percent variance in which SNR values of infinity,
1.0, 0.5, and 0.25 correspond to percent variance values of 0%,
50%, 80%, and 94% noise by variance, respectively.

FIG. 4. The RMS error and correlation coefficients associated
with fixed ridge parameter RegEM reconstructions. Both the
RMS error and correlation coefficients are determined from the
mean NH time series of the reconstructions and the known model
series during the reconstruction interval (A.D. 850–1855). The op-
timal values of h were 0.31 and between 0.7 and 0.8 for the re-
spective RMS and correlation optimization schemes, as compared
to the value of 0.72 selected by GCV in the final iteration of
RegEM. Results were derived for the SNR � 0.5 pseudoproxies.
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The full covariance of the true state therefore can be
estimated as

P �
1

Nt � 1
SBTPTPBS � C, �5�

where the first term on the right-hand side is a sample
covariance of the reconstructed states, while the re-
sidual covariance C is due to the deviation of the true
states from their reconstructed versions. The covari-
ance matrix is produced by the RegEM algorithm
(Schneider 2001) and is the same for all records with
missing data in the reconstruction problem considered
herein – the larger the reconstructed error variance in
the diagonal of matrix C, the smaller the sample vari-
ance of the reconstructed means. Although the latter
cannot serve as a reasonable estimate of the variance of
the system, it can provide a convenient measure of the
skill of the reconstruction because reduced sample vari-

ances, relative to the full system variance [the diagonal
of the P matrix in Eq. (5)], correspond to increased
error variances.

In Fig. 7 we plot ratios between the sample standard
deviation fields (computed as the square roots of the
sample variance estimates discussed above) of four re-
constructions (the same as in Fig. 6) and those of the
known model field; summaries of the standard devia-
tions for all reconstructed fields are given in Table 1.
Both the R05 and M05 standardizations yield recon-
structions with reduced variance in the field. For an
SNR of 1.0 the M05- and R05-standardized reconstruc-
tions yield ranges of standard deviation ratios from 0.24
to 0.67 and from 0.22 to 0.62, with mean ratios of 0.44
and 0.38, respectively. These variance losses increase
with noise; for an SNR of 0.5 the respective ranges of
standard deviation ratios for the two reconstructions
are 0.18–0.48 and 0.15–0.40, with mean ratios of 0.31

FIG. 5. Comparison of the mean NH time series reconstructed using a GCV-selected and a
fixed ridge parameter of 0.31 determined from the RMS optimization. Each reconstruction
was performed using the SNR � 0.5 pseudoproxies.

FIG. 6. Mean differences between the reconstructed and known model fields for R05 and M05 standardizations and pseudoproxies
with SNRs of 1.0 and 0.5.
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and 0.24. In general, the patterns of the variance un-
derestimation are similar in the two sets of reconstruc-
tions, although the reconstructions derived from the
R05 method lose more variance over certain regions,
with the oceans being the clearest example. These
losses of variance are also seen in the NH mean time
series shown in Fig. 2 (see Table 2 for summary statis-
tics) and those discussed by Smerdon and Kaplan
(2007) for the hybrid versions of the RegEM-Ridge re-
constructions. The expression of these losses is differ-
ent in the area-weighted NH mean time series and in
the field ratios reported above because of the scaled
weighting associated with the NH time series. Never-
theless, the NH mean time series displays a similar pro-
gressive variance loss with increased noise level: the
standard deviation ratios for the M05 and R05 versions
of the reconstructions with an SNR of 1.0 are 0.76 and
0.61, respectively, and for an SNR of 0.5 are 0.61 and
0.38, respectively. Generally, the smaller standard de-
viations of the R05 reconstructions, relative to those of
the M05 versions, are expected because of larger vari-
ability of the full model dataset (used in M05 standard-

izations) compared to that of the calibration-only pe-
riod (used by the R05 standardization).

b. Regression coefficients

The crucial component of the reconstruction in Eq.
(4) is the regression coefficient matrix B. This matrix is
determined from ridge regression in the final iteration.
As we demonstrated in section 3, the final values of h in
each pair of reconstructions are very similar, and we
therefore expect the B matrices for both the M05 and
R05 standardization choices to closely compare. In Fig.
8 we plot comparisons between all 69 576 elements of
the B matrices for the R05 and M05 reconstructions
shown in Fig. 2. Within each scatterplot we note the
correlation coefficient between the two sets of matrix
elements as well as the line representing a one-to-one
correspondence. The correlations are all highly signifi-
cant, ranging from 0.89 to 0.98, but differences do exist
in the two sets of matrix elements that increase with
noise levels.

We have directly tested the impact of the differences
in the B matrices by computing the correlation coeffi-

TABLE 1. Summary of the differences between the known model field and the R05- and M05-derived reconstructions. All quantities
are determined for the reconstruction interval from A.D. 850 to 1855.

Reconstruction
Range of differences

in the temporal mean (K)
Mean difference

in the temporal means (K)
Range of temporal

std dev ratios
Average

std dev ratio

M05 (SNR � infinity) �0.026 to 0.005 �0.006 0.265–0.773 0.511
M05 (SNR � 1.0) �0.031 to 0.005 �0.008 0.241–0.673 0.443
M05 (SNR � 0.5) �0.056 to �0.001 �0.015 0.176–0.480 0.313
M05 (SNR � 0.25) �0.096 to �0.007 �0.028 0.131–0.300 0.204
R05 (SNR � infinity) �0.353 to 0.840 0.006 0.259–0.760 0.480
R05 (SNR � 1.0) �0.657 to 0.582 �0.103 0.215–0.623 0.382
R05 (SNR � 0.5) �1.010 to 0.375 �0.207 0.148–0.398 0.235
R05 (SNR � 0.25) �1.2161 to 0.2051 �0.275 0.114–0.224 0.157

TABLE 2. Summary of the comparisons between the known NH mean time series and those of the various reconstruction schemes.
All statistics are for individual time series (not for their differences) and are computed for the reconstruction interval (A.D. 850–1855).
Means are computed relative to the actual NH mean of the model in the calibration interval (A.D. 1856–1980).

Reconstruction scheme Correlation Mean (K) Std dev (K)

CSM actual 1.0 �0.333 0.208
M05 (SNR � infinity) 0.913 �0.327 0.169
M05 (SNR � 1.0) 0.861 �0.325 0.159
M05 (SNR � 0.5) 0.737 �0.319 0.126
M05 (SNR � 0.25) 0.508 �0.307 0.078
R05 (SNR � infinity) 0.907 �0.323 0.168
R05 (SNR � 1.0) 0.861 �0.225 0.127
R05 (SNR � 0.5) 0.743 �0.133 0.080
R05 (SNR � 0.25) 0.493 �0.072 0.047
M05 w/ R05 coefficient (SNR � infinity) 0.908 �0.328 0.172
M05 w/ R05 coefficient (SNR � 1.0) 0.862 �0.320 0.135
M05 w/ R05 coefficient (SNR � 0.5) 0.744 �0.309 0.087
M05 w/ R05 coefficient (SNR � 0.25) 0.494 �0.301 0.054
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FIG. 7. Same as in Fig. 6, but for standard deviation ratios.

FIG. 8. Comparison of the elements in the B matrices for the reconstructions with R05 and M05 standardizations. The total number
of elements contained in each B matrix is 69 576. Red lines shown in the plots are the one-to-one lines. The correlations between the
two sets of B elements are shown in the upper-left-hand corner of each plot.
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cient fields between the M05 and R05 reconstructions.
These fields are shown in Fig. 9 and indicate that the
spatial and temporal variability in the two sets of re-
constructions are very similar, despite any differences
between the regression coefficients. Correlation coeffi-
cients never fall below 0.96, 0.91, 0.85, and 0.71 for the
SNR reconstructions of infinity, 1.0, 0.5, and 0.25, re-
spectively (note that the scale in Fig. 9 only shows the
range of correlation values from 0.7 to 1). As one would
expect, the weakest correlations (although still highly
significant) occur for the reconstructions that used
pseudoproxies with an SNR of 0.25, in which case the
elements of B were most different.

The overwhelming conclusion from the comparisons
in Fig. 9, in conjunction with the previous comparisons

of the reconstructed means and standard deviations, is
that the two sets of reconstructions are virtually iden-
tical, except for the differences in their means and to a
lesser extent their variability. As a final exercise, how-
ever, we cast the comparison between the two sets of
R05 and M05 reconstructions in a different light by
computing reconstructions with Eq. (4) in which we use
m and S from the M05 reconstructions, but the B ma-
trices from the R05 reconstructions. If the different fea-
tures in the two sets of reconstructions were a result of
differences in the B matrices, we would expect these
features to remain in the reconstructions derived from
this mixed set of operators. In Fig. 10 we plot the NH
area-weighted time series for the reconstructions with
M05 and R05 standardizations from Fig. 2 and the new

FIG. 9. Correlation fields between the R05- and M05-standardized reconstructions. (from
top to bottom) Reconstructions with pseudoproxy SNRs of infinity, 1.0, 0.5, and 0.25, respec-
tively. All correlations are highly significant (note that the scale spans only the range of
correlations observed), although they decrease with increasing noise level.
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results from the mixed-operator reconstruction. Table 2
also includes the means and standard deviations of the
area-weighted mean time series in the NH during the
reconstruction interval, as well as the correlation coef-
ficients between the actual CSM NH mean time series
and each of the reconstructed mean time series. In all of
the cases these results demonstrate that the M05-
standardized reconstructions and the mixed-operator
reconstructions are virtually indistinguishable, although
the standard deviations of the latter are somewhat re-
duced toward the R05-standardized reconstructions.
These results are a final indication that the B matrices,
the most nontrivial elements of the reconstructions, are
identical for all practical purposes because they pro-
duce essentially the same reconstructions. The differ-
ences between the two sets of reconstructions are only
maintained if the means and standard deviations from
the M05 reconstruction are used to provide the addi-
tional information from the reconstruction period.

5. Discussion and conclusions

This study has produced a convenient description of
the RegEM method for a typical problem of CFR from
paleoproxies. We have taken advantage of the fact that
only a single regression per iteration is necessary for
datasets where the missing data precisely fall within a
rectangular block of the data matrix (Schneider 2001).
This feature allows for a straightforward comparison
between ridge parameters in different RegEM-Ridge
reconstructions, and helps to speed up the algorithm
considerably for such a dataset. We have also provided

a formulation for the final RegEM output in terms of
several linear operators acting upon the proxy matrix.
This formulation allows a transparent interpretation of
the source of the skill in RegEM CFRs, as well as pro-
vides a means of performing a reconstruction during
the calibration interval. This later advancement allows
RegEM reconstructions to be evaluated in terms of tra-
ditional in-sample regression skill diagnostics.

By taking advantage of the above-mentioned simpli-
fications, we have shown that ridge parameter selection
is not the source of the differences between the R05
and M05 CFR results. No notable differences exist in
the selected ridge parameters when the two different
methods are employed. We have also shown that GCV
specifically is an unlikely source of the problem. While
ridge parameter values selected using the GCV proce-
dure might be different from the truly optimal values,
the reconstructions derived using the differently se-
lected values are almost identical. These results lend no
credence to the statement of either M07a or Mann et al.
(2007b) that ridge parameter selection in general, or
GCV selection of the ridge parameter specifically, is
the source of the standardization sensitivity observed in
RegEM-Ridge.

We also have performed experiments that assessed
the ultimate source of the differences between R05-
and M05-derived reconstructions. These experiments
show that the principal source of the standardization
sensitivity discussed by Smerdon and Kaplan (2007) is
the inclusion of additional information in the M05 stan-
dardization choice. We have proven this by demon-
strating that the R05 and M05 reconstructions are vir-

FIG. 10. NH mean time series for reconstructions with R05 and M05 standardizations (repeated from Fig. 2) and the results of the
mixed-operator reconstructions in which m and S from the M05-standardized reconstructions were combined with B from the R05-
standardized reconstruction [see Eq. (4)].
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tually identical except for their means, and to a lesser
extent their standard deviations. Similarly, one can
achieve reconstructions that are very similar to the M05
reconstructions using the B matrices from the R05 re-
constructions. These results collectively rule out expla-
nations of the standardization sensitivity in RegEM-
Ridge that hinge on the selection of the regularization
parameter, and point directly to the additional infor-
mation (i.e., the mean and standard deviation fields of
the full model period) included in the M05 standard-
ization as the source of the differences between M05-
and R05-derived reconstructions. It should be noted
further that this information, especially in terms of the
mean, happens to be “additional” only because of a
special property of the dataset to which RegEM is ap-
plied herein: missing climate data occur during a period
with an average temperature that is significantly colder
than the calibration period. This property clearly vio-
lates an assumption that missing values are missing at
random, which is a standard assumption of EM
(Schneider 2006). If the missing data within the climate
field were truly missing at random, there presumably
would not be a significant systematic difference be-
tween the M05 and R05 standardizations, and hence
corresponding reconstructions. The violation of the
randomness assumption, however, is currently unavoid-
able for all practical problems of CFRs during the past
millennium and thus its role needs to be evaluated for
available reconstruction techniques.

Finally, when the application of RegEM-Ridge is ap-
propriately confined to the calibration interval the
method is particularly sensitive to high noise levels in
the pseudoproxy data. This sensitivity causes low cor-
relation skill of the reconstruction and thus a strong
“tendency toward the mean” of the regression results.
It therefore will likely pose some challenges to any
regularization scheme applied to this dataset when the
SNR in the proxies is high. We thus expect RegEM-
TTLS, which according to M07a does not show stan-
dardization sensitivity, to have significantly higher
noise tolerance and skill than RegEM-Ridge. The pre-
cise reasons and details of this skill increase is a matter
for future research. It remains a puzzling question,
however, as to why the R05 historical reconstruction
that was derived using RegEM-Ridge and the calibra-
tion-interval standardization (thus expected to be bi-
ased warm with dampened variability) and the M07a
historical reconstruction that used RegEM-TTLS (thus
expected not to suffer significantly from biases) are not
notably different. The absence of a demonstrated ex-
planation for the difference between the performance
of RegEM-Ridge and RegEM-TTLS, in light of the

new results presented herein, therefore places a burden
of proof on the reconstruction community to fully re-
solve the origin of these differences and explain the
present contradiction between pseudoproxy tests of
RegEM and RegEM-derived historical reconstructions
that show little sensitivity to the method of regulariza-
tion used. Such efforts should be given high priority,
and further tests of the RegEM algorithm are highly
warranted before great confidence can be placed in
RegEM-derived CFRs.
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