{ "cells": [ { "cell_type": "code", "execution_count": 17, "id": "38903a74-36f6-4028-9bcf-5633a340ed22", "metadata": { "tags": [] }, "outputs": [], "source": [ "# this section initializes the code\n", "\n", "%reset -f\n", "\n", "import numpy as np # matrices & etc\n", "from matplotlib import pyplot as plt # general plotting \n", "from math import exp, pi, sin, cos, tan, sqrt, floor, log10, nan # math functions\n", "import scipy.linalg as la # linear algebra functions\n", "import matplotlib.cm as cm\n", "from matplotlib.colors import ListedColormap\n", "import scipy.signal as sg\n", "import scipy.stats as st\n", "import scipy.special as sp\n", "import matplotlib\n", "import matplotlib.colors as colors\n", "\n", "# function to make a numpy N-by-1 column vector\n", "# c=eda_cvec(v1, v2, ...) from a list of several\n", "# array-like entities v1, v2, including a number\n", "# a list of numbers, a tuple of numbers, an N-by-0 np array\n", "# and a N-by-1 np array. The function\n", "# also insures that, if v is an np array, that\n", "# c is a copy, as contrasted to a view, of it\n", "# It promotes integers to floats, and integers\n", "# and floats to complex, by context.\n", "# This version concatenates many argments,\n", "# whereas c=eda_cvec1(v1) takes just one argiment.\n", "# I recommend always using eda_cvec(v1, v2, ...)\n", "def gda_cvec(*argv):\n", " t = int;\n", " Nt = 0;\n", " for a in argv:\n", " v = gda_cvec1(a);\n", " N,M = np.shape(v);\n", " Nt = Nt + N;\n", " if( N==0 ):\n", " continue; # skip vector of zero length\n", " if (t==int) and isinstance(v[0,0],float):\n", " t=float;\n", " elif isinstance(v[0,0],complex):\n", " t=complex;\n", " w = np.zeros((Nt,1),dtype=t);\n", " Nt = 0;\n", " for a in argv:\n", " v = gda_cvec1(a);\n", " N,M = np.shape(v);\n", " w[Nt:Nt+N,0:1] = v; # patch 20230418 was #w[Nt:Nt+N,0] = v[0:N,0];\n", " Nt = Nt + N;\n", " return w;\n", "\n", "# function to make a numpy N-by-1 column vector\n", "# c=gda_cvec1(v) from entity v that is array-like,\n", "# including a number, a list of numbers, a tuple\n", "# of numbers, an N-by-0 np array and a N-by1 np array.\n", "# It promotes integers to floats, and integers\n", "# and floats to complex, by context. The function\n", "# also insures that, if v is an np array, that\n", "# c is a copy, as contrasted to a view, of it.\n", "# This version takes just one input argment.\n", "# whereas c=gda_cvec(v1,v2,...) concatenates\n", "# many argiments.\n", "def gda_cvec1(v):\n", " if isinstance(v, int) or isinstance(v, np.int32):\n", " w = np.zeros((1,1),dtype=int);\n", " w[0,0] = v;\n", " return w;\n", " elif isinstance(v, float):\n", " w = np.zeros((1,1),dtype=float);\n", " w[0,0] = v;\n", " return w;\n", " elif isinstance(v, complex):\n", " w = np.zeros((1,1),dtype=complex);\n", " w[0,0] = v;\n", " return w;\n", " elif isinstance(v, np.ndarray):\n", " s = np.shape(v);\n", " if len(s) == 1:\n", " return np.copy(np.reshape(v,(s[0],1)));\n", " else:\n", " [r,c]=s;\n", " if( c==1 ):\n", " return(np.copy(v));\n", " elif(r==1):\n", " return(np.copy(v.T));\n", " else:\n", " raise TypeError(\"gda_cvec: %d by %d ndarray not allowed\" % (r, c));\n", " elif isinstance(v, list):\n", " r = len(v);\n", " t = int;\n", " for vi in v:\n", " if isinstance(vi,int) or isinstance(vi, np.int32): #patch v->vi 20230418\n", " pass;\n", " elif isinstance(vi,float):\n", " t=float;\n", " elif isinstance(vi,complex):\n", " t=complex;\n", " break;\n", " else:\n", " raise TypeError(\"gda_cvec: list contains unsupported type %s\" % type(vi));\n", " w = np.zeros((r,1),dtype=t);\n", " w[:,0] = np.array(v); # patch v -> np.array(v)\n", " return w;\n", " elif isinstance(v, tuple):\n", " r = len(v);\n", " t = int;\n", " for vi in v:\n", " if isinstance(vi,int) or isinstance(vi, np.int32): #patch v->vi 20230418\n", " pass;\n", " elif isinstance(vi,float):\n", " t=float;\n", " elif isinstance(vi,complex):\n", " t=complex;\n", " break;\n", " else:\n", " raise TypeError(\"gda_cvec: tuple contains unsupported type %s\" % type(vi));\n", " w = np.zeros((r,1),dtype=t);\n", " w[:,0] = np.array(list(v)); # patch v -> np.array(list(v));\n", " return w;\n", " else:\n", " raise TypeError(\"gda_cvec: %s not supported\" % type(v));\n", "\n", " \n", "# gda_draw function makes a \"pictorial matrix equation\"\n", "# arguments are vectors, matrices and strings\n", "# which are plotted in the order that the appear\n", "# except that strings starting with 'title ' are plotted\n", "# under the subseqeunt matrix or vector\n", "# always returns a status of 1\n", "def gda_draw(*argv):\n", " DOCOLOR=True;\n", " if( DOCOLOR ):\n", " bwcmap = matplotlib.colormaps['jet'];\n", " else:\n", " bw = np.zeros((256,4));\n", " v = 0.9*(256 - np.linspace( 0, 255, 256 ))/255;\n", " bw[:,0] = v;\n", " bw[:,1] = v;\n", " bw[:,2] = v;\n", " bw[:,3] = np.ones(256);\n", " bwcmap = ListedColormap(bw);\n", " # size of plot\n", " W = 16;\n", " H = 4;\n", " fig1 = plt.figure(1);\n", " # figsize width and height in inches\n", " fig1.set_size_inches(W,H);\n", " ax1 = plt.subplot(1,1,1);\n", " plt.axis([0, W, -H/2, H/2]);\n", " plt.axis('off');\n", " LM = W/6; # matrix width and heoght\n", " LV = W/40; # vector width\n", " FS = 0.12; # character width\n", " TO = 0.4; # title vertical offset\n", " SP = 0.2; # space between objects\n", " LS = 0.2; # leading space\n", " p = LS; # starting x-position\n", " istitle=0; # flags presence of a title\n", " for a in argv:\n", " if isinstance(a,np.ndarray):\n", " sh = np.shape(a);\n", " if len(sh) == 1: # conversion to nx1 array\n", " n = sh[0];\n", " m = 1;\n", " ap = a;\n", " a = np.zeros((n,1));\n", " a[:,0] = ap;\n", " else:\n", " n = sh[0];\n", " m = sh[1];\n", " if m==1:\n", " pold=p;\n", " left=p;\n", " right=p+LV;\n", " bottom=-LM/2;\n", " top=LM/2;\n", " plt.imshow( a, cmap=bwcmap, vmin=np.min(a), vmax=np.max(a), extent=(left,right,bottom,top) );\n", " p = p+LV;\n", " pm = (p+pold)/2;\n", " if istitle:\n", " plt.text(pm,-(LM/2)-TO,titlestr,horizontalalignment='center');\n", " istitle=0;\n", " p = p+SP;\n", " else:\n", " pold=p;\n", " left=p;\n", " right=p+LM;\n", " bottom=-LM/2;\n", " top=LM/2;\n", " plt.imshow( a, cmap=bwcmap, vmin=np.min(a), vmax=np.max(a), extent=(left,right,bottom,top) );\n", " p = p+LM;\n", " pm = (p+pold)/2;\n", " if istitle:\n", " plt.text(pm,-(LM/2)-TO,titlestr,horizontalalignment='center');\n", " istitle=0;\n", " p = p+SP;\n", " elif isinstance(a,str):\n", " ns = len(a);\n", " istitle=0;\n", " if( ns>=6 ):\n", " if 'title ' in a[0:6]:\n", " istitle=1;\n", " titlestr=a[6:];\n", " if( istitle != 1):\n", " plt.text(p,0,a);\n", " p = p + ns*FS + SP;\n", " plt.show();\n", " return 1;" ] }, { "cell_type": "code", "execution_count": 18, "id": "8af12441-7ac7-4095-89ce-d42478b35029", "metadata": { "tags": [] }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlAAAAHFCAYAAAA9occoAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAABVm0lEQVR4nO3deXwNZ///8VcSkcUSIogliEStVaX2u7ekUWIprVrSomjErUVLqTWSJqgtaq21llKld+lCqVJUq6ilqkVpE7UlQmxJCJFlfn/4Or87JZojy8lJ3s/HYx6PnJlrrvOZTOW8O3Oda2wMwzAQERERkSyztXQBIiIiItZGAUpERETETApQIiIiImZSgBIRERExkwKUiIiIiJkUoERERETMpAAlIiIiYiYFKBEREREzKUCJiIiImEkBSkQKlTlz5mBjY0O9evUybRMVFYWDgwN79+7lu+++w8bGJksLwNKlS6lUqRI3b97Mq0MSEQuw0aNcRKQwadCgAUeOHAFg3759NG3a9L42L7zwAikpKXz11VckJCRw/Pjx+7Z7eXkRERGRYX2zZs1ITU2lTp06vPTSS4SFheXegYiIRRWxdAEiInnl4MGDHDlyhA4dOrBp0yaWLl16X4D6/fff+eKLL9iyZQsAJUuWpFmzZhnaODg4UKpUqfvWAxQpUoT//Oc/TJgwgVGjRuHs7Jx7ByQiFqNbeCJSaCxduhSAKVOm0KJFC9auXUtSUlKGNgsWLMDd3Z1nn332kd+nZ8+eJCQksHbt2mzVKyL5lwKUiBQKt27dYs2aNTRu3Jh69erx6quvkpiYyKeffpqh3aZNm/j3v/+Nre2j/3l0d3enVq1abNq0Kbtli0g+pQAlIoXCunXriI+PJzAwEIAePXpQvHhx01UpgEuXLnHq1CkaNmyY7fdr2LAhP/74Y7b7EZH8SQFKRAqFpUuX4uTkREBAAADFixenW7du/PDDD/z5558AxMTEAFCuXLlsv1+5cuW4dOkSqamp2e5LRPIfBSgRKfAiIyP5/vvv6dChA4ZhcP36da5fv07Xrl0BWLZsGXD3Nh+Ao6Njtt/T0dERwzC4fft2tvsSkfxHAUpECrxly5ZhGAbr1q2jdOnSpqVDhw4AfPjhh6SlpeHm5gbA1atXs/2eV69excHBgeLFi2e7LxHJfzSNgYgUaGlpaXz44Yd4eXnxwQcf3Lf9q6++YsaMGXz99de0adMGJycnoqKisv2+p06dok6dOtnuR0TyJwUoESnQvv76a2JiYpg6dSo+Pj73ba9Xrx7z5s1j6dKldOzYkebNm7Nv375svWd6ejr79+83DVgXkYJHt/BEpEBbunQpRYsWpV+/fg/c7ubmxgsvvMBXX33FxYsX6dmzJ/v37+fChQuP/J7fffcd8fHx9OzZ85H7EJH8TY9yERH5H7dv36ZKlSoMHz6cUaNGPVIfvXv35tSpU5rGQKQAU4ASEfmbBQsW8M4773Dq1CmKFStm1r5RUVHUrl2bHTt28K9//SuXKhQRS9MYKBGRvxkwYADXr1/n1KlTPP7442bte/bsWebNm6fwJFLA6QqUiIiIiJmsYhD56dOnCQwMxNPTEycnJ7y8vAgNDeXOnTumNleuXMHf35+KFSvi4OCAh4cHgwcPJiEh4aF9JycnM2TIENzc3ChWrBidOnXi/PnzuX1IIiIiYsWsIkCdOHGC9PR0Fi1axLFjx5g5cyYLFy5k7Nixpja2trZ07tyZDRs28Mcff7BixQq+/fZbBg4c+NC+hw4dyueff87atWvZvXs3N27coGPHjqSlpeX2YYmIiIiVstpbeNOnT2fBggWcOnUq0zZz5sxh+vTpnDt37oHb4+PjKVu2LKtWraJHjx7A3WdheXh4sHnzZtq2bZsrtYuIiIh1s9pB5PHx8bi6uma6PSYmhs8++4xWrVpl2ubQoUOkpKTQpk0b07qKFStSr1499uzZk2mASk5OJjk52fQ6PT2dq1evUqZMGWxsbB7haERERCSvGYZBYmIiFStWxNbWvJtyVhmgoqKimDt3LjNmzLhv20svvcSXX37JrVu3eO655x746IZ7YmNjKVq0KKVLl86wvnz58sTGxma63+TJkwkLC3v0AxAREZF849y5c1SuXNmsfSx6C++dd975xyBy4MABnnrqKdPrmJgYWrVqRatWrR4YjmJjY7l+/TonT55k7NixtGrVivnz5z+w748//ph+/fpluJoE8Oyzz+Ll5cXChQsfuN/fr0DFx8dTpUoVzp07R8mSJR96PCIiIpI/JCQk4OHhwfXr13FxcTFrX4tegRo8eDABAQEPbVOtWjXTzzExMfj6+tK8eXMWL178wPbu7u64u7tTq1YtypQpw9NPP8348eOpUKHCA9veuXOHa9euZbgKdenSJVq0aJFpTQ4ODjg4ONy3vmTJkgpQIiIiVuZRht9YNEC5ubnh5uaWpbbR0dH4+vrSqFEjli9fnqV7lfcurv39CtM9jRo1wt7enm3bttG9e3cALly4wNGjR5k2bVoWj0JEREQKG6sYAxUTE4OPjw9VqlQhIiKCuLg40zZ3d3cANm/ezMWLF2ncuDHFixfn+PHjjBw5kpYtW5quYkVHR+Pn58fKlStp0qQJLi4uBAYGMnz4cMqUKYOrqysjRozg8ccfp3Xr1pY4VBEREbECVhGgtm7dSmRkJJGRkfcN8rp3lcnJyYklS5YwbNgwkpOT8fDwoEuXLowePdrUNiUlhZMnT5KUlGRaN3PmTIoUKUL37t25desWfn5+rFixAjs7u7w5OBEREbE6VjsPVH6SkJCAi4sL8fHxGgMlIiJiJbLz+W0VM5GLiIiI5CcKUCIiIiJmUoASERERMZMClIiIiIiZFKBEREREzKQAJSIiImImBSgRERERMylAiYiIiJhJAUpERETETApQIiIiImZSgBIRERExkwKUiIiIiJkUoERERETMpAAlIiIiYiYFKBEREREzKUCJiIiImEkBSkRERMRMClAiIiIiZlKAEhERETGTApSIiIiImRSgRERERMykACUiIiJiJgUoERERETMpQImIiIiYSQFKRERExEwKUCIiIlIopaenP/K+ClAiIiJS6Ny+fZtXX331kfcvkoO1iIiIiOR7165d4/nnn+f7779/5D50BUpEREQKjbNnz/Kvf/2L77//nhIlSjxyPwpQIiIiUigcOXKEZs2acfz4cSpVqsSWLVseuS/dwhMREZEC79tvv6VLly4kJiZSt25dvv76a1xcXB65P12BEhERkQJt1apVtGvXjsTERHx8fNi9ezceHh7Z6lMBSkRERAokwzCYPHkyr7zyCqmpqQQEBLBlyxZKlSqV7b4VoERERKTASU1N5fXXX2fs2LEAvP3226xevRoHB4cc6V9joERERKRASUpKIiAggI0bN2JjY8Ps2bMZMmRIjr6HVVyBOn36NIGBgXh6euLk5ISXlxehoaHcuXPH1ObKlSv4+/tTsWJFHBwc8PDwYPDgwSQkJDy0bx8fH2xsbDIsAQEBuX1IIiIikgvi4uJ45pln2LhxI46Ojqxbty7HwxNYyRWoEydOkJ6ezqJFi/D29ubo0aMEBQVx8+ZNIiIiALC1taVz585MnDiRsmXLEhkZyaBBg7h69Soff/zxQ/sPCgoiPDzc9NrJySlXj0dERERyXlRUFP7+/kRGRuLq6sqGDRto2bJlrryXVQQof39//P39Ta+rV6/OyZMnWbBggSlAlS5dmtdee83UpmrVqrz++utMnz79H/t3dnbG3d095wsXERGRPLF//346duxIXFwc1apVY8uWLdSsWTPX3s8qbuE9SHx8PK6urpluj4mJ4bPPPqNVq1b/2Nfq1atxc3Ojbt26jBgxgsTExIe2T05OJiEhIcMiIiIilvHVV1/h4+NDXFwcDRs2ZO/evbkansBKA1RUVBRz585l4MCB92176aWXcHZ2plKlSpQsWZIPPvjgoX317NmTNWvW8N133zF+/HjWr19Ply5dHrrP5MmTcXFxMS3ZnUtCREREHs3ixYvp3Lkzt27dwt/fn127duXJXSUbwzCMXH+XTLzzzjuEhYU9tM2BAwd46qmnTK9jYmJo1aoVrVq1emA4io2N5fr165w8eZKxY8fSqlUr5s+fn+WaDh06xFNPPcWhQ4do2LDhA9skJyeTnJxsep2QkICHhwfx8fGULFkyy+8lIiIij8YwDEJCQpg4cSIA/fr1Y9GiRdjb22e5j4SEBFxcXB7p89uiAery5ctcvnz5oW2qVauGo6MjcDc8+fr60rRpU1asWIGt7cMvoO3evZunn36amJgYKlSokKWaDMPAwcGBVatW0aNHjyztk50TICIiIuZJSUkhKCiIDz/8EIDQ0FBCQ0OxsbExq5/sfH5bdBC5m5sbbm5uWWobHR2Nr68vjRo1Yvny5f8YnuBuGAIyXC36J8eOHSMlJSXLgUtERETyTmJiIi+++CLbtm3Dzs6ORYsWERgYmOd1WMW38GJiYvDx8aFKlSpEREQQFxdn2nbvPufmzZu5ePEijRs3pnjx4hw/fpyRI0fSsmVLqlWrBtwNYX5+fqxcuZImTZoQFRXF6tWrad++PW5ubhw/fpzhw4fz5JNP5trXHkVEROTRXLhwgfbt2/PLL79QrFgxPv30U9q1a2eRWqwiQG3dupXIyEgiIyOpXLlyhm33rjI5OTmxZMkShg0bRnJyMh4eHnTp0oXRo0eb2qakpHDy5EmSkpIAKFq0KNu3b2f27NncuHEDDw8POnToQGhoKHZ2dnl3gCIiIvJQv//+O+3atePMmTOUK1eOTZs2ZRgjndcsOgaqoNAYKBERkdyze/duOnXqxLVr16hRowZbtmyhevXq2e43O5/fVjmNgYiIiBQO69ato3Xr1ly7do3mzZuzZ8+eHAlP2aUAJSIiIvnSrFmz6N69O8nJyTz//PN8++23Wf7yWW5TgBIREZF8JT09neHDhzNs2DAMw+D1119n3bp1ODs7W7o0E6sYRC4iIiKFQ3JyMn369OGTTz4B7j79Y9SoUWbP8ZTbFKBEREQkX7h27RovvPACu3btwt7enmXLltGrVy9Ll/VAClAiIiJicWfPnqVdu3YcP36ckiVL8tlnn+Hn52fpsjKlACUiIiIWdeTIEdq3b09MTAyVKlVi8+bN1K9f39JlPZQGkYuIiIjFbN++3fTc2rp167J37958H55AAUpEREQs5KOPPsLf35/ExERatWrF7t278fDwsHRZWaIAJSIiInnKMAwmT55M7969SU1NJSAggG+++YZSpUpZurQsU4ASERGRPJOWlsagQYMYO3YsAG+//TarV6/GwcHBwpWZR4PIRUREJE8kJSXx0ksvsWHDBmxsbJg9ezZDhgyxdFmPRAFKREREcl1cXBzPPfccP/30Ew4ODqxevZoXX3zR0mU9MgUoERERyVVRUVH4+/sTGRmJq6srGzZsoGXLlpYuK1sUoERERCTXHDhwgA4dOhAXF0e1atX4+uuvqVWrlqXLyjYNIhcREZFcsWnTJnx8fIiLi6Nhw4bs3bu3QIQnUIASERGRXLBkyRI6depEUlISbdu25bvvvsPd3d3SZeUYBSgRERHJMYZhEBISwoABA0hPT6dfv35s3LiREiVKWLq0HKUxUCIiIpIjUlJSCAoK4sMPPwQgNDSU0NBQbGxsLFxZzlOAEhERkWxLTEyka9eubN26FTs7OxYuXEj//v0tXVauUYASERGRbLlw4QIdOnTg8OHDODs78+mnn9K+fXtLl5WrFKBERETkkf3++++0a9eOM2fOULZsWTZt2kTjxo0tXVau0yByEREReSS7d++mZcuWnDlzhho1arB3795CEZ5AAUpEREQewfr162ndujXXrl2jWbNm7NmzBy8vL0uXlWcUoERERMQsc+bMoVu3biQnJ9O5c2e2b9+Om5ubpcvKUwpQIiIikiXp6emMGDGCN998E8MweP3111m/fj3Ozs6WLi3PaRC5iIiI/KPk5GT69OnDJ598AsCUKVMYOXJkgZzjKSsUoEREROShrl27xgsvvMCuXbuwt7dn+fLl9OzZ09JlWZQClIiIiGTq7NmztGvXjuPHj1OyZEk+++wz/Pz8LF2WxSlAiYiIyAMdOXKE9u3bExMTQ6VKldi8eTP169e3dFn5ggaRi4iIyH22b9/O008/TUxMDHXr1mXv3r0KT/9DAUpEREQyWLVqFf7+/iQmJtKqVSt2796Nh4eHpcvKVxSgREREBADDMJg8eTKvvPIKqampBAQE8M0331CqVClLl5bvKECJiIgIaWlpDBo0iLFjxwIwYsQIVq9ejYODg4Ury580iFxERKSQS0pK4qWXXmLDhg3Y2Ngwc+ZM3nzzTUuXla9ZxRWo06dPExgYiKenJ05OTnh5eREaGsqdO3ce2P7KlStUrlwZGxsbrl+//tC+k5OTGTJkCG5ubhQrVoxOnTpx/vz5XDgKERGR/Ofy5cv4+fmxYcMGHBwc+PTTTxWessAqAtSJEydIT09n0aJFHDt2jJkzZ7Jw4ULTZca/CwwMzPI3BYYOHcrnn3/O2rVr2b17Nzdu3KBjx46kpaXl5CGIiIjkO1FRUbRo0YJ9+/ZRunRpvv32W1588UVLl2UVbAzDMCxdxKOYPn06CxYs4NSpUxnWL1iwgE8++YSQkBD8/Py4du1apoPf4uPjKVu2LKtWraJHjx4AxMTE4OHhwebNm2nbtm2WaklISMDFxYX4+HhKliyZreMSERHJCwcPHqRDhw5cunSJqlWrsmXLFmrVqmXpsvJUdj6/reIK1IPEx8fj6uqaYd3x48cJDw9n5cqV2Nr+86EdOnSIlJQU2rRpY1pXsWJF6tWrx549e3K8ZhERkfxg8+bNtGrVikuXLvHkk0+yd+/eQheesssqA1RUVBRz585l4MCBpnXJycm89NJLTJ8+nSpVqmSpn9jYWIoWLUrp0qUzrC9fvjyxsbGZ7pecnExCQkKGRURExBosWbKETp06kZSURJs2bdi1axcVKlSwdFlWx6IB6p133sHGxuahy8GDBzPsExMTg7+/P926daN///6m9WPGjKF27dr06tUr23UZhvHQp0tPnjwZFxcX06LJxUREJL8zDIOQkBAGDBhAWloaffv25auvvqJEiRKWLs0qWXQM1OXLl7l8+fJD21SrVg1HR0fgbnjy9fWladOmrFixIsNtugYNGvDbb7+Zgo9hGKSnp2NnZ8e4ceMICwu7r+8dO3bg5+fH1atXM1yFeuKJJ3j++ecfuA/cvQKVnJxsep2QkICHh4fGQImISL6UkpLCgAEDWLFiBQAhISGmixiFWXbGQFl0Hig3Nzfc3Nyy1DY6OhpfX18aNWrE8uXL7xvjtH79em7dumV6feDAAV599VV++OEHvLy8Hthno0aNsLe3Z9u2bXTv3h2ACxcucPToUaZNm5ZpLQ4ODppYTERErEJiYiJdu3Zl69at2NnZsWDBAoKCgixdltWziok0Y2Ji8PHxoUqVKkRERBAXF2fa5u7uDnBfSLp3Zat27dqmb+FFR0fj5+fHypUradKkCS4uLgQGBjJ8+HDKlCmDq6srI0aM4PHHH6d169Z5c3AiIiK55MKFC3To0IHDhw/j7OzMf//7Xzp06GDpsgoEqwhQW7duJTIyksjISCpXrpxhmzl3IFNSUjh58iRJSUmmdTNnzqRIkSJ0796dW7du4efnx4oVK7Czs8ux+kVERPLa77//Trt27Thz5gxly5Zl06ZNNG7c2NJlFRhWOw9UfqJ5oEREJD/ZvXs3nTp14tq1a9SoUYOvv/460+EshVmhnAdKRERE7rd+/Xpat27NtWvXaNq0KT/++KPCUy5QgBIRESkgZs+eTbdu3UhOTqZTp07s2LGDsmXLWrqsAkkBSkRExMqlp6czYsQIhg4dimEYDBw4kPXr1+Ps7Gzp0gosqxhELiIiIg+WnJxM3759Wbt2LXB3sudRo0YV+jmecpsClIiIiJW6fv06L7zwAt999x1FihRh2bJl9O7d29JlFQoKUCIiIlbo3LlztGvXjmPHjlGiRAk+++wzzWGYhxSgRERErMyvv/5Ku3btiImJoWLFimzevJknnnjC0mUVKhpELiIiYkW2b9/Ov/71L2JiYqhTpw579+5VeLIABSgREREr8dFHH9GuXTsSExNp1aoVu3fvpkqVKpYuq1BSgBIREcnnDMNgypQp9O7dm5SUFHr06ME333xD6dKlLV1aoaUAJSIiko+lpaUxaNAgxowZA8Dw4cP5+OOPcXBwsHBlhZsGkYuIiORTSUlJvPzyy3z55ZfY2Ngwa9Ys3njjDUuXJShAiYiI5EuXL1/mueeeY9++fTg4OLB69WpefPFFS5cl/0cBSkREJJ85deoU/v7+/Pnnn5QuXZoNGzbwr3/9y9Jlyf9QgBIREclHDhw4QMeOHbl06RJVq1Zly5Yt1KpVy9Jlyd9oELmIiEg+sWnTJnx8fLh06RJPPvkke/fuVXjKpxSgRERE8oEPPviAzp07k5SURNu2bdm1axcVKlSwdFmSCQUoERERCzIMg9DQUIKCgkhLS6Nv375s3LiREiVKWLo0eQiNgRIREbGQlJQUBgwYwIoVKwAYP348YWFh2NjYWLYw+UcKUCIiIhaQmJhIt27d+Oabb7C1tWXBggUMGDDA0mVJFilAiYiI5LHY2Fg6dOjAzz//jLOzM5988gkdO3a0dFliBgUoERGRPHTixAnatWvH6dOnKVu2LJs2baJx48aWLkvMpEHkIiIieSApKYlZs2bRokULTp8+jbe3N3v37lV4slK6AiUiIpKLbt68ycKFC5k+fToXL14EoGnTpmzcuJGyZctauDp5VApQIiIiueDGjRvMnz+fiIgI4uLiAKhWrRpjx46lT58+FC1a1MIVSnYoQImIiOSgxMRE5s2bx4wZM7hy5QoA1atXZ9y4cfTu3Rt7e3sLVyg5QQFKREQkB8THxzN37lxmzpzJ1atXAfD29iY4OJiePXtSpIg+cgsSnU0REZFsuH79OnPmzGHmzJlcv34dgJo1axIcHExAQICCUwGlsyoiIvIIrl69yuzZs5k9ezbx8fEA1K5dm/Hjx9O9e3fs7OwsXKHkJgUoERERM1y5coWZM2cyZ84cEhMTAahbty7jx4+na9euCk6FhAKUiIhIFly+fJkZM2Ywb948bty4AcDjjz9OSEgIXbp0wdZWUysWJgpQIiIiDxEXF0dERATvv/8+N2/eBOCJJ54gJCSE559/XsGpkFKAEhEReYCLFy8yffp0FixYQFJSEgANGzYkJCSETp06YWNjY+EKxZIUoERERP7HhQsXmDZtGgsXLuT27dsAPPXUU4SGhtKhQwcFJwEUoERERACIjo5m6tSpLF68mOTkZODuI1dCQ0Px9/dXcJIMrOLG7enTpwkMDMTT0xMnJye8vLwIDQ3lzp07D2x/5coVKleujI2NjWlOjsz4+PhgY2OTYQkICMiFoxARkfzo3LlzDBo0iOrVqzN37lySk5Np0aIF33zzDXv37qVdu3YKT3Ifq7gCdeLECdLT01m0aBHe3t4cPXqUoKAgbt68SURExH3tAwMDqV+/PtHR0VnqPygoiPDwcNNrJyenHKtdRETypzNnzjB58mSWLVtGSkoKAE8//TQhISH4+fkpNMlDWUWA8vf3x9/f3/S6evXqnDx5kgULFtwXoBYsWMD169cJCQnh66+/zlL/zs7OuLu752jNIiKSP/31119MnjyZFStWmIKTj48PISEhprsSIv/EKm7hPUh8fDyurq4Z1h0/fpzw8HBWrlxp1tdKV69ejZubG3Xr1mXEiBGmidFERKTgiIqKIjAwkMcee4wlS5aQkpLCM888w65du9i5cye+vr4KT5JlVnEF6u+ioqKYO3cuM2bMMK1LTk7mpZdeYvr06VSpUoVTp05lqa+ePXvi6emJu7s7R48eZcyYMRw5coRt27Zluk9ycrJpgCFAQkLCox+MiIjkqj///JNJkybx0UcfkZaWBkCbNm0ICQmhZcuWFq5OrJZhQaGhoQbw0OXAgQMZ9omOjja8vb2NwMDADOuHDRtm9OjRw/R6586dBmBcu3bNrJoOHjxoAMahQ4fMrjs+Pt6s9xIRkdxz4sQJo1evXoatra3p73S7du2MPXv2WLo0ySfi4+Mf+fPbxjAMI69D2z2XL1/m8uXLD21TrVo1HB0dAYiJicHX15emTZuyYsWKDLfpGjRowG+//Wa6/GoYBunp6djZ2TFu3DjCwsKyVJNhGDg4OLBq1Sp69OjxwDYPugLl4eFBfHw8JUuWzNL7iIhI7vj999+ZOHEia9euJT09HYCOHTsyfvx4mjRpYuHqJD9JSEjAxcXlkT6/LXoLz83NDTc3tyy1jY6OxtfXl0aNGrF8+fL7xjitX7+eW7dumV4fOHCAV199lR9++AEvL68s13Ts2DFSUlKoUKFCpm0cHBxwcHDIcp8iIpL7jh49ysSJE/nvf//LvWsDnTp1IiQkhEaNGlm4OilorGIMVExMDD4+PlSpUoWIiAji4uJM2+59e+7vIenela3atWtTqlQp4G4I8/PzY+XKlTRp0oSoqChWr15N+/btcXNz4/jx4wwfPpwnn3xS98VFRKzEr7/+yoQJE1i3bp1p3fPPP09ISAhPPvmkBSuTgswqAtTWrVuJjIwkMjKSypUrZ9hmzh3IlJQUTp48aXqmUdGiRdm+fTuzZ8/mxo0beHh40KFDB0JDQ7Gzs8vRYxARkZx1+PBhJkyYwOeff25a17VrV4KDg3niiScsWJkUBhYdA1VQZOceqoiImOfQoUOEh4ezYcMGAGxsbOjevTvBwcHUq1fPwtWJNbHaMVAiIiJZdeDAAcLCwti0aRMAtra2BAQEMG7cOOrUqWPh6qSwUYASEZF8bd++fYSFhbFlyxbgbnB6+eWXCQ4OpmbNmhauTgorBSgREcmXfvzxR8LCwkwTG9vZ2dGzZ0/GjRvHY489ZuHqpLBTgBIRkXzl+++/Jzw8nO3btwNQpEgRXnnlFcaOHWvWtDQiuUkBSkRE8oXvvvuOsLAwvvvuO+BucOrXrx9jxozB09PTssWJ/I0ClIiIWIxhGOzYsYPw8HC+//57AOzt7Xn11VcZM2YMVatWtXCFIg+mACUiInnOMAy2bdtGeHg4P/74I3B3br7+/fszevRoPDw8LFyhyMMpQImISJ4xDINvvvmGsLAw9u3bB9x9PNaAAQMYNWoUlSpVsnCFIlmjACUiIrnOMAw2b95MeHg4+/fvB8DR0ZGBAwfy9ttvU7FiRQtXKGIeBSgREck1hmGwceNGwsPDOXToEABOTk68/vrrjBgxwvQ8UxFrowAlIiI5Lj09nS+//JLw8HB++eUXAJydnRk0aBAjRoygXLlyli1QJJsUoEREJMekp6fz2WefMWHCBH799VcAihcvzuDBg3nrrbcoW7ashSsUyRkKUCIikm1paWmsW7eOCRMmcOzYMQBKlCjBG2+8wbBhwyhTpoyFKxTJWQpQIiLyyNLS0vjkk0+YMGECJ06cAMDFxYU333yToUOHUrp0aQtXKJI7FKBERMRsqamprF27lokTJ3Ly5EkASpUqxbBhw3jjjTcoVaqUZQsUyWW2OdXRb7/9xtChQ3OqOxERyYdSU1P58MMPqVOnDr179+bkyZO4uroyceJEzpw5Q0hIiMKTFArZugKVkJDAmjVrWLp0KQcPHqR+/fo5VZeIiOQjKSkprFq1ikmTJnHq1CkAypQpw4gRIxg0aBAlSpSwcIUieeuRAtSuXbtYunQp69ev5/bt27z99tt8/PHHeHt753R9IiJiQXfu3OHDDz/k3Xff5fTp0wCULVuWESNG8Prrr1O8eHHLFihiIVm+hXfhwgXeffddvL29CQgIwM3NjV27dmFra8srr7yi8CQiUoAkJyezcOFCatSowYABAzh9+jTly5dnxowZ/PXXX4wcOVLhSQq1LF+B8vT0pFu3brz//vs8++yz2Nrm2PApERHJJ27fvs3SpUuZMmUK58+fB8Dd3Z1Ro0YxYMAAnJ2dLVyhSP6Q5QBVtWpVdu/eTZUqVahatSq1atXKzbpERCQP3b59myVLljBlyhRiYmIAqFixIqNHj6Z///44OTlZuEKR/CXLAerkyZP8+OOPLF26lMaNG/PYY4/Rq1cvAGxsbHKtQBERyT1JSUksXryYadOmceHCBQAqV67MmDFjePXVV3F0dLRwhSL5k41hGIa5O924cYM1a9awbNkyfvrpJ1q1asXLL7/M888/Xyin6U9ISMDFxYX4+HhKlixp6XJERP7RzZs3WbhwIdOnT+fixYsAVKlShTFjxtCvXz8cHBwsXKFI7svO5/cjBaj/9fvvv7N06VJWrVrF1atXSUlJyU53VkkBSkSsxY0bN5g/fz4RERHExcUBUK1aNcaOHUufPn0oWrSohSsUyTsWDVD3pKamsmHDBrp06ZIT3VkVBSgRye8SExOZN28eM2bM4MqVKwBUr16dcePG0bt3b+zt7S1coUjey87nd449yqVIkSKFMjyJiORn8fHxzJs3j/fee4+rV68C4O3tTXBwMC+//LKCk8gj0rPwREQKoOvXrzNnzhxmzpzJ9evXAahZsybBwcEEBARQpIj+/Itkh/4FiYgUINeuXWPWrFnMnj2b+Ph4AGrXrk1wcDA9evTAzs7OwhWKFAwKUCIiBcCVK1eYOXMmc+bMITExEYC6desyfvx4unbtquAkksMUoERErFhcXBzvvfce8+bN48aNGwA8/vjjhISE0KVLFz01QiSXmPUv68CBA/Ts2RNPT0+cnJxwdnbG09OTnj17cvDgwdyqUURE/ubSpUuMHDkST09PpkyZwo0bN2jQoAGfffYZv/zyC127dlV4EslFWb4C9cUXX9C9e3f8/Px48803KV++PIZhcOnSJbZu3UrLli3573//S+fOnXOzXhGRQi02Npbp06ezYMECbt26BUCjRo0ICQnhueee05MhRPJIlueBqlevHr169WL06NEP3D516lRWrlzJsWPHcrRAa6B5oEQkt124cIFp06axcOFCbt++DUDjxo0JDQ2lffv2Ck4ijyA7n99Zvr4bGRn50Hmenn/+eaKiosx6cxERebjo6GjeeOMNPD09mTVrFrdv36Zp06Zs3ryZn376iQ4dOig8iVhAlgOUl5cXX3zxRabbv/zyS6pXr54TNYmIFHrnzp1j0KBBVK9enblz55KcnEyLFi345ptv2Lt3L+3atVNwErGgLI+BCg8PJyAggF27dtGmTRvKly+PjY0NsbGxbNu2ja1bt7J27drcrFVEpMA7c+YMU6ZMYdmyZdy5cweAp59+mtDQUJ555hmFJpF8IstXoF588UW+//57SpQowXvvvUefPn145ZVXeO+99yhevDi7du3KtUe5nD59msDAQNO3/7y8vAgNDTX9cbnHxsbmvmXhwoUP7Ts5OZkhQ4bg5uZGsWLF6NSpE+fPn8+V4xARycxff/3FgAEDqFGjBgsXLuTOnTv4+Piwc+dOvv/+e/z8/BSeRPIRs+aBat68Oc2bN8+tWjJ14sQJ0tPTWbRoEd7e3hw9epSgoCBu3rxJREREhrbLly/H39/f9NrFxeWhfQ8dOpSNGzeydu1aypQpw/Dhw+nYsSOHDh3SxHMikuuioqJ49913WblyJampqQD4+fkREhLCv//9bwtXJyKZyfK38PKbe1/jPXXqlGmdjY0Nn3/+Oc8//3yW+oiPj6ds2bKsWrWKHj16ABATE4OHhwebN2+mbdu2WepH38ITEXP9+eefTJo0iY8++oi0tDQA2rRpQ0hICC1btrRwdSKFQ558C++f/P7773k6iDw+Ph5XV9f71g8ePBg3NzcaN27MwoULSU9Pz7SPQ4cOkZKSQps2bUzrKlasSL169dizZ0+m+yUnJ5OQkJBhERHJihMnTtC7d29q1arFhx9+SFpaGu3atWPPnj188803Ck8iViLHHuVy584dzpw5k1PdPVRUVBRz585lxowZGdZPmDABPz8/nJyc2L59O8OHD+fy5csEBwc/sJ/Y2FiKFi1K6dKlM6wvX748sbGxmb7/5MmTCQsLy/6BiEihcfz4cSZOnMjatWu5d+G/Y8eOjB8/niZNmli4OhExV5YD1FtvvfXQ7XFxcWa/+TvvvPOPQeTAgQM89dRTptcxMTH4+/vTrVs3+vfvn6Ht/walBg0aAHe/PZhZgMqMYRgPHaw5ZsyYDL+PhIQEPDw8zHoPESkcjh49yoQJE/j0009NwalTp06EhITQqFEjC1cnIo8qywFq9uzZNGjQINN7hPceYmmOwYMHExAQ8NA21apVM/0cExODr68vzZs3Z/Hixf/Yf7NmzUhISODixYuUL1/+vu3u7u7cuXOHa9euZbgKdenSJVq0aJFpvw4ODjg4OPzj+4tI4fXrr78yYcIE1q1bZ1r3wgsvEBISYvofPBGxXlkOUDVq1GDYsGH06tXrgdt/+eUXs/9vys3NDTc3tyy1jY6OxtfXl0aNGrF8+fIsPSTz8OHDODo6UqpUqQdub9SoEfb29mzbto3u3bsDdx+XcPToUaZNm5bl4xARuefw4cNMmDCBzz//3LSua9eujB8/nvr161uwMhHJSVkOUI0aNeLQoUOZBigbGxty6wt9MTEx+Pj4UKVKFSIiIjLcLnR3dwdg48aNxMbG0rx5c5ycnNi5cyfjxo1jwIABpqtF0dHR+Pn5sXLlSpo0aYKLiwuBgYEMHz6cMmXK4OrqyogRI3j88cdp3bp1rhyLiBRMhw4dIjw8nA0bNgB3/yZ2796d4OBg6tWrZ+HqRCSnZTlAzZgxg+Tk5Ey3P/HEEw/9xlt2bN26lcjISCIjI6lcuXKGbfdCm729PfPnz+ett94iPT2d6tWrEx4ezqBBg0xtU1JSOHnyJElJSaZ1M2fOpEiRInTv3p1bt27h5+fHihUrNAeUiGTJ/v37CQ8PZ9OmTQDY2toSEBDAuHHjqFOnjoWrE5HcYrXzQOUnmgdKpPDZu3cv4eHhbNmyBbgbnF5++WWCg4OpWbOmhasTkazIzud3jk1jICJSGPz444+EhYWxbds2AOzs7Ojduzdjx46lRo0aFq5ORPKK2QGqdOnSD/yKv42NDY6Ojnh7e9O3b1/69euXIwWKiOQH33//PWFhYezYsQOAIkWK0KdPH8aMGYOXl5eFqxORvGZ2gAoJCWHSpEm0a9eOJk2aYBgGBw4cYMuWLQwaNIi//vqL1157jdTUVIKCgnKjZhGRPGEYBrt27SIsLIzvvvsOuDvesl+/fowePRpPT0/LFigiFmN2gNq9ezcTJ05k4MCBGdYvWrSIrVu3sn79eurXr8+cOXMUoETEKhmGwY4dOwgLC+OHH34A7ganwMBARo8eTdWqVS1coYhYmtmDyIsXL84vv/yCt7d3hvWRkZE0aNCAGzduEBUVRf369bl582aOFptfaRC5SMFgGAbbtm0jLCzM9DzMokWL0r9/f0aPHq0nDogUMHn6MGFXV1c2btx43/qNGzeaHu578+ZNSpQoYW7XIiIWYRgGX3/9NS1atKBt27bs2bMHBwcH3njjDU6dOsX777+v8CQiGZh9C2/8+PG89tpr7Ny5kyZNmmBjY8P+/fvZvHkzCxcuBGDbtm20atUqx4sVEclJhmGwadMmwsPDOXDgAACOjo4MHDiQkSNHUqFCBQtXKCL51SPNA/Xjjz8yb948Tp48iWEY1KpViyFDhjz0+XEFmW7hiVgXwzDYsGED4eHh/PzzzwA4Ozvz2muvMWLECNMTDkSkYMvO57cm0swBClAi1iE9PZ0vvviC8PBwjhw5AkCxYsUYNGgQw4cPp1y5chauUETyUp5PpJmWlsYXX3zB77//jo2NDXXq1KFTp056/ImI5Evp6emsX7+eCRMm8NtvvwF3vxAzePBghg8fnuWHmouI3GN2gIqMjKR9+/ZER0dTs2ZNDMPgjz/+wMPDg02bNmlCORHJN9LS0li3bh0TJkzg2LFjAJQoUYI33niDYcOGUaZMGQtXKCLWyuxbeO3bt8cwDFavXm361t2VK1fo1asXtra2pgdqFia6hSeSv6SlpfHJJ58wceJEfv/9dwBcXFx48803GTp0KKVLl7ZwhSKSH+TpLbxdu3axb98+U3gCKFOmDFOmTKFly5bmdicikmNSU1NZs2YNEydO5I8//gCgVKlSDBs2jDfeeINSpUpZtkARKTDMDlAODg4kJibet/7GjRsULVo0R4oSETFHamoqH330EZMmTSIyMhK4O2fd8OHDGTx4sK4Mi0iOM3sizY4dOzJgwAB++uknDMPAMAz27dvHwIED6dSpU27UKCLyQCkpKSxbtoyaNWvSr18/IiMjKVOmDJMnT+b06dOMHTtW4UlEcoXZV6DmzJlDnz59aN68Ofb29sDd//vr1KkTs2fPzvECRUT+7s6dO3z44Ye8++67nD59GoCyZcvy9ttv89prr1G8eHHLFigiBZ7ZAapUqVJ8+eWX/Pnnn5w4cQLDMKhTp859z8YTEclpycnJLF++nMmTJ3P27FkAypUrx8iRIxk4cCDFihWzcIUiUlg80jxQADVq1KBGjRo5WYuIyAPdvn2bpUuXMmXKFM6fPw+Au7s7o0aNYsCAATg7O1u4QhEpbLIUoN56660sd/jee+89cjEiIv/r1q1bLFmyhKlTpxITEwNAxYoVGT16NP3798fJycnCFYpIYZWlAHX48OEsdWZjY5OtYkREAJKSkli8eDFTp04lNjYWgMqVKzN69GgCAwNxdHS0cIUiUthlKUDt3Lkzt+sQEeHmzZssXLiQ6dOnc/HiRQCqVKnC2LFj6du3Lw4ODhauUETkrkceAyUiklNu3LjB/PnziYiIIC4uDoBq1aoxduxY+vTpoznmRCTfUYASEYtJTExk3rx5zJgxgytXrgBQvXp1xo0bR+/evU1TpYiI5DcKUCKS5+Lj45k7dy4zZ87k6tWrAHh7exMcHEzPnj0pUkR/mkQkf9NfKRHJM9evX2f27NnMmjWL69evA1CzZk2Cg4MJCAhQcBIRq6G/ViKS665evcrs2bOZPXs28fHxANSuXZvx48fTvXt37OzsLFyhiIh5FKBEJNdcuXKFmTNnMmfOHNNDyOvWrUtISAgvvviigpOIWC0FKBHJcZcvX2bGjBnMmzePGzduAPD4448TEhJCly5dsLU1+znmIiL5igKUiOSYS5cuERERwfz587l58yYADRo0ICQkhM6dOys4iUiBoQAlItkWGxvL9OnTWbBgAbdu3QKgYcOGhISE0KlTJz2lQEQKHAUoEXlkMTExTJs2jUWLFnH79m0AGjduTGhoKO3bt1dwEpECSwFKRMx2/vx5pk6dypIlS0hOTgagadOmhIaG4u/vr+AkIgWeApSIZNnZs2eZOnUqH3zwAXfu3AGgRYsWhIaG8uyzzyo4iUihoQAlIv/ozJkzTJ48mWXLlpGSkgLA008/TWhoKM8884yCk4gUOgpQIpKpv/76i3fffZcVK1aQmpoKgI+PDyEhIfj4+Cg4iUihZRXfKT59+jSBgYF4enri5OSEl5cXoaGhplsI99jY2Ny3LFy48KF93/sQ+N8lICAgNw9HJN+LiooiMDCQxx57jA8++IDU1FT8/PzYtWsXO3fuxNfXV+FJRAo1q7gCdeLECdLT01m0aBHe3t4cPXqUoKAgbt68SURERIa2y5cvx9/f3/TaxcXlH/sPCgoiPDzc9NrJySnnihexIn/88QeTJk1i9erVpKWlAdCmTRtCQkJo2bKlhasTEck/rCJA+fv7ZwhF1atX5+TJkyxYsOC+AFWqVCnc3d3N6t/Z2dnsfUQKkhMnTjBp0iQ+/vhj0tPTAWjXrh0hISE0a9bMwtWJiOQ/VnEL70Hi4+NxdXW9b/3gwYNxc3OjcePGLFy40PRh8DCrV6/Gzc2NunXrMmLECNMzuzKTnJxMQkJChkXEGh0/fpyXX36ZOnXq8NFHH5Genk7Hjh3Zv38/mzdvVngSEcmEVVyB+ruoqCjmzp3LjBkzMqyfMGECfn5+ODk5sX37doYPH87ly5cJDg7OtK+ePXvi6emJu7s7R48eZcyYMRw5coRt27Zlus/kyZMJCwvLseMRyWtHjx5lwoQJfPrppxiGAUDnzp0JCQmhYcOGFq5ORMQKGBYUGhpqAA9dDhw4kGGf6Ohow9vb2wgMDPzH/iMiIoySJUuaVdPBgwcNwDh06FCmbW7fvm3Ex8eblnPnzhmAER8fb9Z7ieS1I0eOGC+++GKGf2NdunQxDh8+bOnSRETyXHx8/CN/flv0CtTgwYP/8Rtv1apVM/0cExODr68vzZs3Z/Hixf/Yf7NmzUhISODixYuUL18+SzU1bNgQe3t7/vzzz0z/T9zBwQEHB4cs9SeSHxw+fJjw8HC++OIL4O43Vl988UXGjx9P/fr1LVuciIgVsmiAcnNzw83NLUtto6Oj8fX1pVGjRixfvjxLT3U/fPgwjo6OlCpVKss1HTt2jJSUFCpUqJDlfUTyq0OHDhEeHs6GDRuAu8GpR48eBAcHU7duXQtXJyJivaxiDFRMTAw+Pj5UqVKFiIgI4uLiTNvufXtu48aNxMbG0rx5c5ycnNi5cyfjxo1jwIABpqtF0dHR+Pn5sXLlSpo0aUJUVBSrV6+mffv2uLm5cfz4cYYPH86TTz6pr2yLVdu/fz/h4eFs2rQJAFtbWwICAggODqZ27doWrk5ExPpZRYDaunUrkZGRREZGUrly5QzbjP8bAGtvb8/8+fN56623SE9Pp3r16oSHhzNo0CBT25SUFE6ePElSUhIARYsWZfv27cyePZsbN27g4eFBhw4dCA0Nxc7OLu8OUCSH7Nu3j7CwMLZs2QLcDU49e/Zk3Lhx1KxZ08LViYgUHDbGvQQijywhIQEXFxfi4+MpWbKkpcuRQujHH38kLCzM9O1ROzs7evXqxbhx46hRo4aFqxMRyZ+y8/ltFVegROTBvv/+e8LCwtixYwcARYoUoXfv3owbNw4vLy8LVyciUnApQIlYGcMw+O677wgLC2PXrl3A3eDUr18/xowZg6enp4UrFBEp+BSgRKyEYRhs376d8PBwfvjhB+Du2L9XX32VMWPGULVqVQtXKCJSeChAieRzhmGwdetWwsPD2bNnD3D3CxBBQUGMGjUKDw8PC1coIlL4KECJ5FOGYbBlyxbCwsL46aefAHB0dGTAgAGMHDmSSpUqWbhCEZHCSwFKJJ8xDINNmzYRHh7OgQMHgLvBaeDAgYwcOVKTvIqI5AMKUCL5hGEYbNiwgfDwcH7++WcAnJ2dee211xgxYoRp0lgREbE8BSgRC0tPT+eLL74gPDycI0eOAFCsWDEGDRrE8OHDKVeunIUrFBGRv1OAErGQ9PR01q9fz4QJE/jtt98AKF68OEOGDOGtt97K8nMiRUQk7ylAieSxtLQ0Pv30UyZMmMDx48cBKFGiBG+88QbDhg2jTJkyFq5QRET+iQKUSB5JS0tj7dq1TJw4kRMnTgDg4uLCm2++yZtvvomrq6uFKxQRkaxSgBLJZampqaxZs4aJEyfyxx9/AFC6dGmGDRvGkCFDKFWqlGULFBERsylAieSSlJQUVq9ezaRJk4iMjATA1dWVt956iyFDhujB0yIiVkwBSiSHpaSksHLlSt59911OnToFgJubGyNGjOD111+nRIkSFq5QRESySwFKJIfcuXOHFStWMHnyZE6fPg1AuXLlePvttxk4cCDFixe3bIEiIpJjFKBEsik5OZnly5czefJkzp49C0D58uUZOXIk//nPfyhWrJiFKxQRkZymACXyiG7fvs3SpUuZMmUK58+fB6BChQqMGjWKAQMG4OTkZOEKRUQktyhAiZjp1q1bLFmyhKlTpxITEwNAxYoVGT16NEFBQTg6Olq4QhERyW0KUCJZlJSUxOLFi5k6dSqxsbEAVK5cmTFjxvDqq68qOImIFCIKUCL/4ObNmyxcuJDp06dz8eJFAKpUqcLYsWPp27cvDg4OFq5QRETymgKUSCZu3LjB/PnziYiIIC4uDoBq1aoxbtw4XnnlFYoWLWrhCkVExFIUoET+JjExkXnz5jFjxgyuXLkCgJeXF+PGjaNXr17Y29tbuEIREbE0BSiR/xMfH8/cuXOZOXMmV69eBcDb25vg4GB69uxJkSL65yIiInfpE0EKvevXrzN79mxmzZrF9evXAahZsybBwcEEBAQoOImIyH30ySCF1tWrV5k1axazZ88mISEBgNq1azN+/Hi6d++OnZ2dhSsUEZH8SgFKCp0rV64wc+ZM5syZQ2JiIgD16tVj/PjxdO3aFVtbWwtXKCIi+Z0ClBQacXFxvPfee8ybN48bN24AUL9+fUJCQnjhhRcUnEREJMsUoKTAu3TpEhEREcyfP5+bN28C8OSTTzJ+/Hg6d+6s4CQiImZTgJICKzY2lunTp7NgwQJu3boFQKNGjQgJCeG5557DxsbGwhWKiIi1UoCSAicmJoZp06axaNEibt++DUDjxo0JDQ2lffv2Ck4iIpJtClBSYJw/f55p06axePFikpOTAWjWrBmhoaG0bdtWwUlERHKMApRYvbNnzzJlyhSWLl3KnTt3AGjZsiWhoaG0bt1awUlERHKcApRYrTNnzjB58mSWLVtGSkoKAE8//TShoaE888wzCk4iIpJrFKDE6pw6dYrJkyezYsUKUlNTAfD19SUkJAQfHx/LFiciIoWCApRYjaioKCZNmsTKlStJS0sDwM/Pj9DQUJ5++mkLVyciIoWJVUyAc/r0aQIDA/H09MTJyQkvLy9CQ0NN413+14oVK6hfvz6Ojo64u7szePDgh/adnJzMkCFDcHNzo1ixYnTq1Inz58/n1qHII/jzzz/p27cvNWvWZPny5aSlpdGmTRt+/PFHvv32W4UnERHJc1ZxBerEiROkp6ezaNEivL29OXr0KEFBQdy8eZOIiAhTu/fee48ZM2Ywffp0mjZtyu3btzl16tRD+x46dCgbN25k7dq1lClThuHDh9OxY0cOHTqkZ6FZ2IkTJ5g0aRIff/wx6enpALRr146QkBCaNWtm4epERKQwszEMw7B0EY/i3gSJ9wLStWvXqFSpEhs3bsTPzy9LfcTHx1O2bFlWrVpFjx49gLtzCHl4eLB582batm2bpX4SEhJwcXEhPj6ekiVLPtoBicnx48eZOHEia9eu5d5/nh07dmT8+PE0adLEwtWJiEhBkZ3Pb6u4hfcg8fHxuLq6ml5v27aN9PR0oqOjqV27NpUrV6Z79+6cO3cu0z4OHTpESkoKbdq0Ma2rWLEi9erVY8+ePZnul5ycTEJCQoZFsu+3336jR48e1KtXjzVr1mAYBp07d+bgwYNs3LhR4UlERPINqwxQUVFRzJ07l4EDB5rWnTp1ivT0dN59911mzZrFunXruHr1Ks8+++wDx0rB3Ud9FC1alNKlS2dYX758eWJjYzN9/8mTJ+Pi4mJaPDw8cubACqkjR47QtWtX6tevz3//+18Mw+CFF17g8OHDfPHFFzRq1MjSJYqIiGRg0QD1zjvvYGNj89Dl4MGDGfaJiYnB39+fbt260b9/f9P69PR0UlJSmDNnDm3btqVZs2asWbOGP//8k507d5pVl2EYD51DaMyYMcTHx5uWh13lkswdPnyYF154gQYNGrB+/XpsbGzo1q0bR44c4bPPPqNBgwaWLlFEROSBLDqIfPDgwQQEBDy0TbVq1Uw/x8TE4OvrS/PmzVm8eHGGdhUqVACgTp06pnVly5bFzc2Ns2fPPrBvd3d37ty5w7Vr1zJchbp06RItWrTItCYHBwccHBweWrdk7uDBg4SHh7Nx40YAbGxs6NGjB8HBwdStW9fC1YmIiPwziwYoNzc33NzcstQ2OjoaX19fGjVqxPLly7G1zXjxrGXLlgCcPHmSypUrA3D16lUuX75M1apVH9hno0aNsLe3Z9u2bXTv3h2ACxcucPToUaZNm/aohyWZ2L9/P+Hh4WzatAkAW1tbAgICCA4Opnbt2hauTkREJOus4lt4MTExtGrViipVqrBy5coM0wu4u7ubfn7++eeJjIxk8eLFlCxZkjFjxnDq1Cl++eUX7O3tiY6Oxs/Pj5UrV5oGJL/22mt89dVXrFixAldXV0aMGMGVK1fMmsZA38J7uL179xIeHs6WLVuAu8GpZ8+ejBs3jpo1a1q4OhERKayy8/ltFfNAbd26lcjISCIjI01Xl+753/y3cuVKhg0bRocOHbC1taVVq1Zs2bIFe3t7AFJSUjh58iRJSUmmfWbOnEmRIkXo3r07t27dws/PjxUrVmgOqBzw448/EhYWxrZt2wCws7OjV69ejBs3jho1ali4OhERkUdnFVeg8jtdgcro+++/JywsjB07dgBQpEgR+vTpw5gxY/Dy8rJwdSIiIncV+CtQkv8ZhsF3331HWFgYu3btAsDe3p5+/foxevRoPD09LVyhiIhIzlGAkmwxDIMdO3YQFhbGDz/8ANwNToGBgYwePTrTAfwiIiLWTAFKHolhGGzdupXw8HDTrO1FixYlKCiIUaNGaXJREREp0BSgxCyGYfD1118THh7OTz/9BICjo6MpOFWqVMnCFYqIiOQ+BSjJEsMw+OqrrwgPDzfNDu/k5MTAgQN5++23TROZioiIFAYKUPJQhmGwYcMGwsPD+fnnnwFwdnbmtddeY8SIERnm4RIRESksFKDkgdLT0/nyyy8JDw/nl19+AaBYsWIMGjSI4cOHU65cOcsWKCIiYkEKUJJBeno669evZ8KECfz2228AFC9enCFDhvDWW29l+dE7IiIiBZkClACQlpbGp59+yoQJEzh+/DgAJUuWZMiQIQwbNowyZcpYuEIREZH8QwGqkEtLS2Pt2rVMnDiREydOAODi4sLQoUN58803KV26tIUrFBERyX8UoAqp1NRU1qxZw8SJE/njjz8AKFWqFMOGDeONN96gVKlSli1QREQkH1OAKmRSUlJYvXo1kyZNIjIyEgBXV1eGDx/O4MGD9Sw/ERGRLFCAKiRSUlJYuXIl7777LqdOnQLAzc2NESNG8Prrr1OiRAkLVygiImI9FKAKuDt37rBixQreffddzpw5A0C5cuV4++23GThwIMWLF7dwhSIiItZHAaqASk5OZtmyZUyePJlz584B4O7uzsiRI/nPf/6Ds7OzhSsUERGxXgpQBczt27f54IMPmDJlCtHR0QBUqFCBUaNGMWDAAJycnCxcoYiIiPVTgCogbt26xZIlS5g6dSoxMTEAVKpUidGjR9O/f38cHR0tXKGIiEjBoQBl5ZKSkli0aBHTpk0jNjYWAA8PD8aMGcOrr76Kg4ODhSsUEREpeBSgrNTNmzdZsGAB06dP59KlSwBUqVKFsWPH0rdvXwUnERGRXKQAZWVu3LjB+++/T0REBJcvXwagWrVqjBs3jldeeYWiRYtauEIREZGCTwHKSiQkJPD+++8zY8YMrly5AkD16tUZN24cvXv3xt7e3sIVioiIFB4KUPlcfHw8c+fOZebMmVy9ehUAb29vgoOD6dmzJ0WK6BSKiIjkNX365lPXr19n9uzZzJo1i+vXrwNQs2ZNgoODCQgIUHASERGxIH0K5zNXr15l1qxZzJ49m4SEBABq167N+PHj6d69O3Z2dhauUERERBSg8okrV64wc+ZM5syZQ2JiIgB169YlJCSErl27Ymtra+EKRURE5B4FKAuLi4vjvffeY968edy4cQOA+vXrM378eLp06aLgJCIikg8pQFnIxYsXmTFjBvPnz+fmzZsANGjQgJCQEDp37qzgJCIiko8pQOWx2NhYpk2bxsKFC7l16xYADRs2JDQ0lOeeew4bGxsLVygiIiL/RAEqj8TExDBt2jQWLVrE7du3AWjcuDGhoaG0b99ewUlERMSKKEDlsvPnzzN16lSWLFlCcnIyAM2aNSM0NJS2bdsqOImIiFghBahccvbsWaZMmcLSpUu5c+cOAC1btiQ0NJTWrVsrOImIiFgxBagcdvr0aSZPnszy5ctJSUkB4N///jehoaH4+voqOImIiBQAClA5aMiQIXz88cekpqYC4OPjQ2hoKD4+PpYtTERERHKUjWEYhqWLsHYJCQm4uLiYXvv5+RESEsK///1vC1YlIiIiD3Pv8zs+Pp6SJUuata+uQOWgZ555hvDwcFq2bGnpUkRERCQXWcVsjadPnyYwMBBPT0+cnJzw8vIiNDTUNDj7f61YsYL69evj6OiIu7s7gwcPfmjfPj4+2NjYZFgCAgIeqc7PP/9c4UlERKQQsIorUCdOnCA9PZ1Fixbh7e3N0aNHCQoK4ubNm0RERJjavffee8yYMYPp06fTtGlTbt++zalTp/6x/6CgIMLDw02vnZyccuU4REREpGCw2jFQ06dPZ8GCBaaAdO3aNSpVqsTGjRvx8/PLcj8+Pj40aNCAWbNmPXIt2bmHKiIiIpaRnc9vq7iF9yDx8fG4urqaXm/bto309HSio6OpXbs2lStXpnv37pw7d+4f+1q9ejVubm7UrVuXESNGkJiYmJuli4iIiJWzilt4fxcVFcXcuXOZMWOGad2pU6dIT0/n3XffZfbs2bi4uBAcHMyzzz7Lr7/+StGiRR/YV8+ePfH09MTd3Z2jR48yZswYjhw5wrZt2zJ9/+TkZNOs4nA3wYqIiEjhYdErUO+88859A7j/vhw8eDDDPjExMfj7+9OtWzf69+9vWp+enk5KSgpz5syhbdu2NGvWjDVr1vDnn3+yc+fOTGsICgqidevW1KtXj4CAANatW8e3337Lzz//nOk+kydPxsXFxbR4eHhk/5chIiIiVsOiV6AGDx78j994q1atmunnmJgYfH19ad68OYsXL87QrkKFCgDUqVPHtK5s2bK4ublx9uzZLNfUsGFD7O3t+fPPP2nYsOED24wZM4a33nrL9DohIUEhSkREpBCxaIByc3PDzc0tS22jo6Px9fWlUaNGLF++HFvbjBfP7k0fcPLkSSpXrgzA1atXuXz5MlWrVs1yTceOHSMlJcUUyB7EwcEBBweHLPcpIiIiBYtVDCKPiYnBx8cHDw8PIiIiiIuLIzY2ltjYWFObxx57jM6dO/Pmm2+yZ88ejh49Sp8+fahVqxa+vr7A3RBWq1Yt9u/fD9wdSxUeHs7Bgwc5ffo0mzdvplu3bjz55JOaz0lEREQyZRWDyLdu3UpkZCSRkZGmq0v3/O8sDCtXrmTYsGF06NABW1tbWrVqxZYtW7C3twcgJSWFkydPkpSUBEDRokXZvn07s2fP5saNG3h4eNChQwdCQ0Oxs7PLuwMUERERq2K180DlJ5oHSkRExPoUynmgRERERCxFAUpERETETApQIiIiImZSgBIRERExkwKUiIiIiJkUoERERETMpAAlIiIiYiYFKBEREREzKUCJiIiImEkBSkRERMRMClAiIiIiZlKAEhERETGTApSIiIiImRSgRERERMykACUiIiJiJgUoERERETMpQImIiIiYSQFKRERExEwKUCIiIiJmUoASERERMZMClIiIiIiZFKBEREREzKQAJSIiImImBSgRERERMylAiYiIiJhJAUpERETETApQIiIiImZSgBIRERExkwKUiIiIiJkUoERERETMpAAlIiIiYiYFKBEREREzKUCJiIiImEkBSkRERMRMClAiIiIiZrKKAHX69GkCAwPx9PTEyckJLy8vQkNDuXPnjqnNihUrsLGxeeBy6dKlTPtOTk5myJAhuLm5UaxYMTp16sT58+fz4rBERETEShWxdAFZceLECdLT01m0aBHe3t4cPXqUoKAgbt68SUREBAA9evTA398/w359+/bl9u3blCtXLtO+hw4dysaNG1m7di1lypRh+PDhdOzYkUOHDmFnZ5erxyUiIiLWycYwDMPSRTyK6dOns2DBAk6dOvXA7XFxcVSqVImlS5fSu3fvB7aJj4+nbNmyrFq1ih49egAQExODh4cHmzdvpm3btlmqJSEhARcXF+Lj4ylZsuSjHZCIiIjkqex8flvFLbwHiY+Px9XVNdPtK1euxNnZma5du2ba5tChQ6SkpNCmTRvTuooVK1KvXj327NmTo/WKiIhIwWEVt/D+Lioqirlz5zJjxoxM2yxbtoyXX34ZJyenTNvExsZStGhRSpcunWF9+fLliY2NzXS/5ORkkpOTTa/j4+OBu0lWRERErMO9z+1HuhlnWFBoaKgBPHQ5cOBAhn2io6MNb29vIzAwMNN+9+zZYwDGwYMHH/r+q1evNooWLXrf+tatWxv/+c9/slW3Fi1atGjRosU6lqioqH9ILPez6Bioy5cvc/ny5Ye2qVatGo6OjsDd8Um+vr40bdqUFStWYGv74DuQgYGB/Pzzzxw+fPihfe/YsQM/Pz+uXr2a4SrUE088wfPPP09YWNgD9/v7Fajr169TtWpVzp49i4uLy0PfU3JXQkICHh4enDt3TuPRLEznIn/R+cg/dC7yj/j4eKpUqcK1a9coVaqUWfta9Baem5sbbm5uWWobHR2Nr68vjRo1Yvny5ZmGpxs3bvDf//6XyZMn/2OfjRo1wt7enm3bttG9e3cALly4wNGjR5k2bVqm+zk4OODg4HDfehcXF/1jyCdKliypc5FP6FzkLzof+YfORf6RWaZ46D65UEeOi4mJwcfHBw8PDyIiIoiLiyM2NvaB45Q++eQTUlNT6dmz533boqOjqVWrFvv37wfuBp7AwECGDx/O9u3bOXz4ML169eLxxx+ndevWuX5cIiIiYp2sYhD51q1biYyMJDIyksqVK2fY9vc7kEuXLqVLly73DQwHSElJ4eTJkyQlJZnWzZw5kyJFitC9e3du3bqFn58fK1as0BxQIiIikimrCFB9+/alb9++WWr7sOkHqlWrdl/gcnR0ZO7cucydO/eR63NwcCA0NPSBt/Ukb+lc5B86F/mLzkf+oXORf2TnXFjtRJoiIiIilmIVY6BERERE8hMFKBEREREzKUCJiIiImEkBSkRERMRMClDZVK1aNWxsbDIso0ePztDm7NmzPPfccxQrVgw3NzfeeOMN7ty5Y6GKC77k5GQaNGiAjY0Nv/zyS4ZtOhd5o1OnTlSpUgVHR0cqVKhA7969iYmJydBG5yL3nT59msDAQDw9PXFycsLLy4vQ0ND7fs86F3ln0qRJtGjRAmdn50xnvtb5yBvz58/H09MTR0dHGjVqxA8//GDW/lYxjUF+Fx4eTlBQkOl18eLFTT+npaXRoUMHypYty+7du7ly5Qp9+vTBMIxsTZ0gmRs5ciQVK1bkyJEjGdbrXOQdX19fxo4dS4UKFYiOjmbEiBF07drVNM2IzkXeOHHiBOnp6SxatAhvb2+OHj1KUFAQN2/eJCIiAtC5yGt37tyhW7duNG/enKVLl963Xecjb3zyyScMHTqU+fPn07JlSxYtWkS7du04fvw4VapUyVonZj89TzKoWrWqMXPmzEy3b9682bC1tTWio6NN69asWWM4ODgY8fHxeVBh4bJ582ajVq1axrFjxwzAOHz4cIZtOheW8eWXXxo2NjbGnTt3DMPQubCkadOmGZ6enqbXOheWsXz5csPFxeW+9TofeaNJkybGwIEDM6yrVauWMXr06Cz3oVt4OWDq1KmUKVOGBg0aMGnSpAyXWvfu3Uu9evWoWLGiaV3btm1JTk7m0KFDlii3wLp48SJBQUGsWrUKZ2fn+7brXFjG1atXWb16NS1atMDe3h7QubCk+Ph4XF1dTa91LvIXnY/cd+fOHQ4dOkSbNm0yrG/Tps1DJ+P+OwWobHrzzTdZu3YtO3fuZPDgwcyaNYvXX3/dtD02Npby5ctn2Kd06dIULVr0gc/yk0djGAZ9+/Zl4MCBPPXUUw9so3ORt0aNGkWxYsUoU6YMZ8+e5csvvzRt07mwjKioKObOncvAgQNN63Qu8hedj9x3+fJl0tLS7vs9ly9f3qzfsQLUA7zzzjv3DQz/+3Lw4EEAhg0bRqtWrahfvz79+/dn4cKFLF26lCtXrpj6s7Gxue89DMN44HrJKKvnYu7cuSQkJDBmzJiH9qdz8ejM+XcB8Pbbb3P48GG2bt2KnZ0dr7zySoZHKelcPDpzzwXcfSi7v78/3bp1o3///hm26Vxkz6Ocj4fR+cgbf/99mvs71iDyBxg8eDABAQEPbVOtWrUHrm/WrBkAkZGRlClTBnd3d3766acMba5du0ZKSsp96Vful9VzMXHiRPbt23ff84yeeuopevbsyYcffqhzkU3m/rtwc3PDzc2Nxx57jNq1a+Ph4cG+ffto3ry5zkU2mXsuYmJi8PX1pXnz5ixevDhDO52L7MvOZ8bf6XzkPjc3N+zs7O672nTp0iXzfsc5NSBL7tq4caMBGGfOnDEM4/8PCIyJiTG1Wbt2rQYE5rAzZ84Yv/32m2n55ptvDMBYt26dce7cOcMwdC4s6ezZswZg7Ny50zAMnYu8dP78eaNGjRpGQECAkZqaet92nQvL+KdB5DofuatJkybGa6+9lmFd7dq1zRpErgCVDXv27DHee+894/Dhw8apU6eMTz75xKhYsaLRqVMnU5vU1FSjXr16hp+fn/Hzzz8b3377rVG5cmVj8ODBFqy84Pvrr7/u+xaezkXe+Omnn4y5c+cahw8fNk6fPm3s2LHD+Ne//mV4eXkZt2/fNgxD5yKvREdHG97e3sYzzzxjnD9/3rhw4YJpuUfnIm+dOXPGOHz4sBEWFmYUL17cOHz4sHH48GEjMTHRMAydj7yydu1aw97e3li6dKlx/PhxY+jQoUaxYsWM06dPZ7kPBahsOHTokNG0aVPDxcXFcHR0NGrWrGmEhoYaN2/ezNDuzJkzRocOHQwnJyfD1dXVGDx4sOmDRHLHgwKUYehc5IVff/3V8PX1NVxdXQ0HBwejWrVqxsCBA43z589naKdzkfuWL19uAA9c/pfORd7p06fPA8/HvauzhqHzkVfef/99o2rVqkbRokWNhg0bGrt27TJrfxvD+J9RnSIiIiLyj/QtPBEREREzKUCJiIiImEkBSkRERMRMClAiIiIiZlKAEhERETGTApSIiIiImRSgRERERMykACUiIiJiJgUoEZG/sbGxeejSt29fS5coIhZWxNIFiIjkNxcuXDD9/MknnxASEsLJkydN65ycnCxRlojkIwpQIiJ/4+7ubvrZxcUFGxubDOtERHQLT0RERMRMClAiIiIiZlKAEhERETGTApSIiIiImRSgRERERMykACUiIiJiJgUoERERETPZGIZhWLoIEREREWuiK1AiIiIiZlKAEhERETGTApSIiIiImRSgRERERMykACUiIiJiJgUoERERETMpQImIiIiYSQFKRERExEwKUCIiIiJmUoASERERMZMClIiIiIiZFKBEREREzPT/AMAJq2w1o0FUAAAAAElFTkSuQmCC", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "Caption: The glacial flow parameter A(T) as a function of temperatire T\n", "Note this version uses line segments and is only approximate\n", "Note also this code does not adjust for presure\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkQAAAHFCAYAAAAT5Oa6AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAAAuXElEQVR4nO3de3TU9Z3/8dcQwuRCMuGimWQNENlUUaQiICVaCVqiwuJ6sF6KbXFXPSBijTcUYZfLrkmhK9IlikuPq6Ai9HjtniMrWAFxAUUMLZctUoSAQDankkwChASSz+8PzsyPaQJMkpn5Xub5OCfnkO98J7z5HirPfubznfEYY4wAAAASWBerBwAAALAaQQQAABIeQQQAABIeQQQAABIeQQQAABIeQQQAABIeQQQAABIeQQQAABIeQQQAABIeQQTA9jweT0Rf69atCz1nw4YN8nq9qqysjPj3OXXqlPr376+FCxdG/w8BwNY8fHQHALvbvHlz2Pf/8i//orVr1+qTTz4JO37FFVcoMzNTxhgNHTpUI0aMUHl5ebt+r6VLl+qxxx7Tnj171KtXr07PDsAZCCIAjnPffffp7bff1rFjx9p8fNWqVRozZoz+9Kc/6bLLLmvXz25qalJOTo6eeOIJPfvss9EYF4AD8JIZANdZvHixhg0bFhZDr7322jlfaisqKgqd161bN919991asmSJ+P+LQOIgiAC4SlNTkz7++GONGjUq7PjYsWO1adOmsK8FCxZIkq688sqwc4uKilRZWakdO3bEbW4A1upq9QAAEE3btm1TQ0ODrrnmmrDjF110kS666KLQ97t379Zzzz2nUaNG6YUXXgg7N/jc//mf/9FVV10V+6EBWI4VIgCucvjwYUnSxRdffM5zqqqqdMsttygnJ0fvvfeeunXrFvZ48LmHDh2K3aAAbIUgAuAqDQ0NkqSUlJQ2H6+vr9eYMWN06tQprVq1Sj6fr9U5wecGfxYA9+MlMwCu0rt3b0nS0aNHWz126tQp3XHHHdq7d682bNigSy65pM2fEXxu8GcBcD+CCICrDBgwQJK0d+/eVo/df//9WrdunVatWqVBgwad82d88803ks68rxGAxMBLZgBc5ZJLLtGll17a6s0cf/WrX+n111/X5MmTlZ6ers2bN4e+du3aFXbu5s2blZSUpBtuuCGeowOwECtEAFzn3nvvVXl5uRobG+X1eiVJO3fulCQtWrRIixYtCjt/5MiRYR/78f7772vMmDHKysqK18gALMY7VQNwncOHDys/P1/Lli3T3Xff3a7n7t27VwUFBfroo480evToGE0IwG4IIgCu9PTTT2vVqlXatm2bunSJfHfAP/zDP+jbb7/VmjVrYjgdALvhJTMArjRz5kylpaXp0KFDysvLi+g5p0+fVv/+/TV9+vQYTwfAblghAgAACc81d5m99NJLys/PV0pKioYMGaINGzZYPRIAAHAIVwTRypUrVVJSohkzZqiiokI//OEPdeutt+rAgQNWjwYAABzAFS+ZDR8+XNdcc40WL14cOjZgwADdfvvtKisrs3AyAADgBI7fVN3U1KStW7fqmWeeCTteXFysjRs3tvmcxsZGNTY2hr5vaWnR0aNH1atXL3k8npjOCwAAosMYo/r6euXm5rbrbtK2OD6I/vKXv6i5uVnZ2dlhx7Ozs1VVVdXmc8rKyjRnzpx4jAcAAGLs4MGD5/xswkg5PoiC/nplxxhzztWe6dOn6/HHHw99HwgE1KdPHx08eFCZmZkxnRMAnGjZsmV65JFHNHr0aL399ttWjwNIkurq6pSXl6eMjIxO/yzHB1Hv3r2VlJTUajWourq61apRkNfrDb2d/9kyMzMJIgBoQ25uriTp2LFj/HcSthON7S6Ov8usW7duGjJkSKt3lV2zZo0KCwstmgoA3KVHjx6SpJqaGosnAWLD8StEkvT444/rZz/7mYYOHaoRI0ZoyZIlOnDggCZPnmz1aADgCj179pREEMG9XBFEd999t7777jvNnTtXR44c0cCBA/Xhhx+qb9++Vo8GAK5w9grR+fZoAk7livch6qy6ujr5fD4FAgFeGweANtTX14f++3j8+HGlpaVZPBEQ3X+/Hb+HCAAQe927d1fXrmdeVDh69KjF0wDRRxABAC7I4/EoKytLEvuI4E4EEQAgImyshpsRRACAiHDrPdyMIAIARCQYROwhghsRRACAiLBCBDcjiAAAEWEPEdyMIAIARIQVIrgZQQQAiAhBBDcjiAAAESGI4GYEEQAgIgQR3IwgAgBEhNvu4WYEEQAgItxlBjcjiAAAETn7JTNjjMXTANFFEAEAIhIMotOnT+v48eMWTwNEF0EEAIhIWlqakpOTJbGPCO5DEAEAIuLxeNhHBNciiAAAEePWe7gVQQQAiBhBBLciiAAAESOI4FYEEQAgYgQR3IogAgBEjCCCWxFEAICI8fEdcCuCCAAQMVaI4FYEEQAgYgQR3IogAgBEjDdmhFsRRACAiLFCBLciiAAAESOI4FYEEQAgYme/ZGaMsXgaIHoIIgBAxIIrRM3Nzaqvr7d4GiB6CCIAQMRSU1Pl9Xol8bIZ3IUgAgC0C/uI4EYEEQCgXQgiuBFBBABoFz6+A25EEAEA2oUVIrgRQQQAaBferRpuRBABANqFFSK4EUEEAGgX9hDBjQgiAEC7sEIENyKIAADtQhDBjQgiAEC7EERwI4IIANAu3GUGNyKIAADtwgoR3IggAgC0SzCIamtr1dLSYvE0QHQQRACAdgkGUUtLi+rq6iyeBogOgggA0C4pKSlKTU2VxMtmcA+CCADQbuwjgtsQRACAdiOI4DYEEQCg3QgiuA1BBABoN4IIbkMQAQDajQ94hdsQRACAduPdquE2BBEAoN14yQxuQxABANqNIILbEEQAgHYjiOA2BBEAoN3YVA23IYgAAO3GChHchiACALQbQQS3IYgAAO0WDKJAIKCWlhaLpwE6jyACALRbMIiMMaqtrbV2GCAKCCIAQLt5vV6lpaVJ4mUzuANBBADoEPYRwU0IIgBAhxBEcBNbB1FZWZmGDRumjIwMXXzxxbr99tu1e/fusHOMMZo9e7Zyc3OVmpqqoqIi7dy506KJASBx8HlmcBNbB9H69ev18MMPa/PmzVqzZo1Onz6t4uJiHT9+PHTO/PnztWDBApWXl2vLli3y+/0aPXq06uvrLZwcANyPFSK4SVerBzif//7v/w77/tVXX9XFF1+srVu36oYbbpAxRgsXLtSMGTM0fvx4SdLSpUuVnZ2t5cuXa9KkSVaMDQAJgSCCm9h6heivBQIBSf9/mXbfvn2qqqpScXFx6Byv16uRI0dq48aN5/w5jY2NqqurC/sCALRP8L/FfHwH3MAxQWSM0eOPP67rr79eAwcOlCRVVVVJkrKzs8POzc7ODj3WlrKyMvl8vtBXXl5e7AYHAJdihQhu4pggmjp1qv74xz/qrbfeavWYx+MJ+94Y0+rY2aZPn65AIBD6OnjwYNTnBQC3I4jgJrbeQxT0yCOP6He/+50+/fRTXXLJJaHjfr9f0pmVopycnNDx6urqVqtGZ/N6vfJ6vbEbGAASAEEEN7H1CpExRlOnTtW7776rTz75RPn5+WGP5+fny+/3a82aNaFjTU1NWr9+vQoLC+M9LgAkFIIIbmLrFaKHH35Yy5cv1wcffKCMjIzQviCfz6fU1FR5PB6VlJSotLRUBQUFKigoUGlpqdLS0jRhwgSLpwcAdyOI4Ca2DqLFixdLkoqKisKOv/rqq7rvvvskSdOmTVNDQ4OmTJmimpoaDR8+XKtXr1ZGRkacpwWAxBIMIu4ygxt4jDHG6iGsVldXJ5/Pp0AgoMzMTKvHAQBHOHu/5unTp5WUlGTxREg00fz329Z7iAAA9hVcIZKk2tpa6wYBooAgAgB0SHJystLT0yWxjwjORxABADqMD3iFWxBEAIAO404zuAVBBADoMO40g1sQRACADmOFCG5BEAEAOowgglsQRACADiOI4BYEEQCgw7jLDG5BEAEAOowVIrgFQQQA6DCCCG5BEAEAOozb7uEWBBEAoMNYIYJbEEQAgA5jUzXcgiACAHRYcIWovr5ep0+ftngaoOMIIgBAh2VlZYV+XVtba9kcQGcRRACADuvatasyMjIk8bIZnI0gAgB0CneawQ0IIgBAp7CxGm5AEAEAOoVb7+EGBBEAoFN4yQxuQBABADqFFSK4AUEEAOgUgghuQBABADqFIIIbEEQAgE7hLjO4AUEEAOgUVojgBgQRAKBTCCK4AUEEAOgUgghuQBABADqF9yGCGxBEAIBOCQbR8ePH1dTUZPE0QMcQRACATsnKygr9ura21rI5gM4giAAAnZKUlCSfzyeJfURwLoIIANBpbKyG0xFEAIBOY2M1nI4gAgB0GitEcDqCCADQaXx8B5yOIAIAdBorRHA6gggA0GkEEZyOIAIAdBpBBKcjiAAAncZdZnA6gggA0GlsqobTEUQAgE7jJTM4HUEEAOg0gghORxABADqNIILTEUQAgE4LBtGJEyfU2Nho8TRA+xFEAIBO8/l88ng8kqTa2lprhwE6gCACAHRaly5dlJWVJYlb7+FMBBEAICrYRwQnI4gAAFFBEMHJCCIAQFQQRHAygggAEBV8fAecjCACAEQFK0RwMoIIABAVfJ4ZnIwgAgBEBStEcDKCCAAQFQQRnIwgAgBEBZuq4WQEEQAgKlghgpMRRACAqGBTNZyMIAIARAUrRHAygggAEBXBIDp58qROnjxp8TRA+xBEAICoyMjIUJcuZ/5ZYZUITkMQAQCiokuXLsrKypJEEMF5CCIAQNQEN1Zz6z2cxlFBVFZWJo/Ho5KSktAxY4xmz56t3NxcpaamqqioSDt37rRuSABIYGyshlM5Joi2bNmiJUuWaNCgQWHH58+frwULFqi8vFxbtmyR3+/X6NGjVV9fb9GkAJC4CCI4lSOC6NixY7r33nv1m9/8JvQ/NunM6tDChQs1Y8YMjR8/XgMHDtTSpUt14sQJLV++3MKJASAxEURwKkcE0cMPP6yxY8fqRz/6Udjxffv2qaqqSsXFxaFjXq9XI0eO1MaNG8/58xobG1VXVxf2BQDoPIIITtXV6gEuZMWKFfrqq6+0ZcuWVo9VVVVJkrKzs8OOZ2dnq7Ky8pw/s6ysTHPmzInuoAAAggiOZesVooMHD+rRRx/VG2+8oZSUlHOe5/F4wr43xrQ6drbp06crEAiEvg4ePBi1mQEgkXGXGZzK1itEW7duVXV1tYYMGRI61tzcrE8//VTl5eXavXu3pDMrRTk5OaFzqqurW60anc3r9crr9cZucABIUKwQwalsvUJ00003afv27dq2bVvoa+jQobr33nu1bds2XXrppfL7/VqzZk3oOU1NTVq/fr0KCwstnBwAEhNBBKey9QpRRkaGBg4cGHYsPT1dvXr1Ch0vKSlRaWmpCgoKVFBQoNLSUqWlpWnChAlWjAwACY0gglPZOogiMW3aNDU0NGjKlCmqqanR8OHDtXr1amVkZFg9GgAknGAQsYcITuMxxhirh7BaXV2dfD6fAoGAMjMzrR4HAByrsrJS/fr1U7du3XTy5Mnz3uACdFY0//229R4iAICzBFeImpqa1NDQYPE0QOQIIgBA1GRkZCgpKUkS+4jgLAQRACBqPB4PG6vhSAQRACCq2FgNJyKIAABRxQoRnIggAgBEVfDjOwgiOAlBBACIKlaI4EQEEQAgqggiOBFBBACIKoIITkQQAQCiiiCCExFEAICoCm6q5rZ7OAlBBACIKlaI4EQEEQAgqggiOBFBBACIKoIITtS1vU/YvXu33nrrLW3YsEH79+/XiRMndNFFF2nw4MG6+eabdccdd8jr9cZiVgCAA5wdRMYYeTweiycCLsxjjDGRnFhRUaFp06Zpw4YNKiws1LXXXqu/+Zu/UWpqqo4ePaodO3Zow4YNqqur07Rp01RSUuKYMKqrq5PP51MgEFBmZqbV4wCAox07dkwZGRmSpPr6enXv3t3iieBW0fz3O+IVottvv11PPfWUVq5cGbqDoC2bNm3SCy+8oOeff17PPvtsp4YDADhPenq6kpOTderUKdXU1BBEcISIg2jPnj3q1q3bBc8bMWKERowYoaampk4NBgBwJo/Hox49eqi6ulo1NTXKy8uzeiTggiLeVB1JDHXmfACAe7CxGk7T7k3VQV988YXWrVun6upqtbS0hD22YMGCTg8GAHAugghO06EgKi0t1cyZM3XZZZcpOzs77A4C7iYAAASDiHerhlN0KIh+/etf6z//8z913333RXkcAIAbsEIEp+nQGzN26dJF1113XbRnAQC4BEEEp+lQED322GN68cUXoz0LAMAlgm/PQhDBKTr0ktmTTz6psWPHqn///rriiiuUnJwc9vi7774bleEAAM7EChGcpkNB9Mgjj2jt2rUaNWqUevXqxUZqAEAYNlXDaToURMuWLdM777yjsWPHRnseAIALsEIEp+nQHqKePXuqf//+0Z4FAOASBBGcpkNBNHv2bM2aNUsnTpyI9jwAABdgUzWcpkMvmf37v/+79u7dq+zsbPXr16/VpuqvvvoqKsMBAJzp7BUiYwx7TWF7HQqi22+/PcpjAADcJBhEzc3NOnbsmDIyMiyeCDi/DgXRrFmzoj0HAMBFUlNT1a1bNzU1NammpoYggu11aA9RJIwxsfrRAACb83g8oX1E3HoPJ4g4iAYMGKDly5erqanpvOft2bNHDz30kObNm9fp4QAAzsWdZnCSiF8ye/HFF/X000/r4YcfVnFxsYYOHarc3FylpKSopqZGu3bt0meffaZdu3Zp6tSpmjJlSiznBgDYHEEEJ4k4iG688UZt2bJFGzdu1MqVK7V8+XLt379fDQ0N6t27twYPHqyf//zn+ulPf6qsrKwYjgwAcAKCCE7S7k3VhYWFKiwsjMUsAAAXIYjgJDHbVA0ASGx8nhmchCACAMQE71YNJyGIAAAxwUtmcBKCCAAQEwQRnIQgAgDEBEEEJ+lQEN14442aM2dOq+M1NTW68cYbOz0UAMD52FQNJ+nQZ5mtW7dO27dvV0VFhd58802lp6dLkpqamrR+/fqoDggAcCZWiOAkHX7J7OOPP1ZVVZV+8IMfaP/+/VEcCQDgBsEgqq2tVUtLi8XTAOfX4SDKycnR+vXrNWjQIA0bNkzr1q2L4lgAAKcLBlFLS4vq6+stngY4vw4FkcfjkSR5vV69+eabevTRR3XLLbfopZdeiupwAADnSk1NVUpKiiReNoP9dWgPkTEm7PuZM2dqwIABmjhxYlSGAgC4Q48ePXTkyBHV1NSoX79+Vo8DnFOHgmjfvn266KKLwo7dcccduvzyy/Xll19GZTAAgPMFg4g7zWB3HQqivn37tnn8yiuv1JVXXtmpgQAA7sHHd8ApeGNGAEDMcOs9nIIgAgDEDEEEpyCIAAAxQxDBKQgiAEDMEERwCoIIABAzwU3V3GUGuyOIAAAxwwoRnIIgAgDEDEEEpyCIAAAxQxDBKQgiAEDMEERwCoIIABAzwSCqra1VS0uLxdMA50YQAQBiJhhExhgFAgGLpwHOjSACAMSM1+tVWlqaJF42g70RRACAmGIfEZzA9kF06NAh/fSnP1WvXr2Ulpamq6++Wlu3bg09bozR7NmzlZubq9TUVBUVFWnnzp0WTgwAOFswiHhzRtiZrYOopqZG1113nZKTk7Vq1Srt2rVLzz//vLKyskLnzJ8/XwsWLFB5ebm2bNkiv9+v0aNHq76+3rrBAQAhrBDBCbpaPcD5zJs3T3l5eXr11VdDx/r16xf6tTFGCxcu1IwZMzR+/HhJ0tKlS5Wdna3ly5dr0qRJ8R4ZAPBXCCI4ga1XiH73u99p6NChuvPOO3XxxRdr8ODB+s1vfhN6fN++faqqqlJxcXHomNfr1ciRI7Vx48Zz/tzGxkbV1dWFfQEAYoMgghPYOoi++eYbLV68WAUFBfroo480efJk/eIXv9CyZcskSVVVVZKk7OzssOdlZ2eHHmtLWVmZfD5f6CsvLy92fwgASHDBD3gliGBntg6ilpYWXXPNNSotLdXgwYM1adIkPfjgg1q8eHHYeR6PJ+x7Y0yrY2ebPn26AoFA6OvgwYMxmR8AwAoRnMHWQZSTk6Mrrrgi7NiAAQN04MABSZLf75ekVqtB1dXVrVaNzub1epWZmRn2BQCIDYIITmDrILruuuu0e/fusGNff/21+vbtK0nKz8+X3+/XmjVrQo83NTVp/fr1KiwsjOusAIC2cds9nMDWd5k99thjKiwsVGlpqe666y598cUXWrJkiZYsWSLpzEtlJSUlKi0tVUFBgQoKClRaWqq0tDRNmDDB4ukBABJ7iOAMtg6iYcOG6b333tP06dM1d+5c5efna+HChbr33ntD50ybNk0NDQ2aMmWKampqNHz4cK1evVoZGRkWTg4ACOIlMziBxxhjrB7CanV1dfL5fAoEAuwnAoAo2717ty6//HL5fD7V1tZaPQ5cJJr/ftt6DxEAwPmCK0SBQEDNzc0WTwO0jSACAMRUMIikM1EE2BFBBACIqeTkZKWnp0viTjPYF0EEAIg5NlbD7ggiAEDMEUSwO4IIABBzBBHsjiACAMQcb84IuyOIAAAxxwoR7I4gAgDEHEEEuyOIAAAxxwe8wu4IIgBAzLFCBLsjiAAAMccKEeyOIAIAxBx3mcHuCCIAQMzxkhnsjiACAMQcQQS7I4gAADEXDKL6+nqdPn3a4mmA1ggiAEDMZWVlhX5dW1tr2RzAuRBEAICYS05OVvfu3SXxshnsiSACAMRF8E4zbr2HHRFEAIC4YGM17IwgAgDEBUEEOyOIAABxwZszws4IIgBAXLBCBDsjiAAAcUEQwc4IIgBAXPABr7AzgggAEBesEMHOCCIAQFwQRLAzgggAEBcEEeyMIAIAxAW33cPOCCIAQFywQgQ7I4gAAHERDKJjx47p1KlTFk8DhCOIAABxkZWVFfp1bW2tZXMAbSGIAABxkZSUpMzMTEm8bAb7IYgAAHHDmzPCrggiAEDccKcZ7IogAgDEDXeawa4IIgBA3BBEsCuCCAAQN+whgl0RRACAuGGFCHZFEAEA4oYggl0RRACAuOEuM9gVQQQAiBtWiGBXBBEAIG4IItgVQQQAiBvuMoNdEUQAgLhhDxHsiiACAMRNcIXoxIkTampqsnga4P8jiAAAcePz+eTxeCSxSgR7IYgAAHHTpUsX+Xw+SQQR7IUgAgDEFXeawY4IIgBAXBFEsCOCCAAQV8E7zbj1HnZCEAEA4ooVItgRQQQAiCuCCHZEEAEA4ooggh0RRACAuCKIYEcEEQAgrvg8M9gRQQQAiCs+zwx2RBABAOKKl8xgRwQRACCuCCLYEUEEAIgr9hDBjggiAEBcBYPo5MmTOnnypMXTAGcQRACAuMrMzJTH45HEy2awD4IIABBXXbp0YR8RbMfWQXT69GnNnDlT+fn5Sk1N1aWXXqq5c+eqpaUldI4xRrNnz1Zubq5SU1NVVFSknTt3Wjg1AOBCCCLYja2DaN68eXr55ZdVXl6u//3f/9X8+fP1q1/9SosWLQqdM3/+fC1YsEDl5eXasmWL/H6/Ro8erfr6egsnBwCcD0EEu7F1EG3atEl///d/r7Fjx6pfv3768Y9/rOLiYn355ZeSzqwOLVy4UDNmzND48eM1cOBALV26VCdOnNDy5cstnh4AcC4EEezG1kF0/fXX6/e//72+/vprSdIf/vAHffbZZxozZowkad++faqqqlJxcXHoOV6vVyNHjtTGjRvP+XMbGxtVV1cX9gUAiJ/gu1Vz6z3soqvVA5zP008/rUAgoMsvv1xJSUlqbm7Wc889p5/85CeSpKqqKklSdnZ22POys7NVWVl5zp9bVlamOXPmxG5wAMB5sUIEu7H1CtHKlSv1xhtvaPny5frqq6+0dOlS/du//ZuWLl0adl7w9s0gY0yrY2ebPn26AoFA6OvgwYMxmR8A0DaCCHZj6xWip556Ss8884zuueceSdJVV12lyspKlZWVaeLEifL7/ZLOrBTl5OSEnlddXd1q1ehsXq9XXq83tsMDAM6JIILd2HqF6MSJE+rSJXzEpKSk0G33+fn58vv9WrNmTejxpqYmrV+/XoWFhXGdFQAQOYIIdmPrFaJx48bpueeeU58+fXTllVeqoqJCCxYs0D/+4z9KOvNSWUlJiUpLS1VQUKCCggKVlpYqLS1NEyZMsHh6AMC5EESwG1sH0aJFi/RP//RPmjJliqqrq5Wbm6tJkybpn//5n0PnTJs2TQ0NDZoyZYpqamo0fPhwrV69WhkZGRZODgA4H+4yg914jDHG6iGsVldXJ5/Pp0AgoMzMTKvHAQDX27ZtmwYPHiy/368jR45YPQ4cKpr/ftt6DxEAwJ14yQx2QxABAOIuGESNjY1qaGiweBqAIAIAWCAjI0NJSUmSWCWCPRBEAIC483g8ysrKksTGatgDQQQAsAT7iGAnBBEAwBLBW+8JItgBQQQAsAQrRLATgggAYIlgELGHCHZAEAEALMEKEeyEIAIAWIIggp0QRAAAS7CpGnZCEAEALMEKEeyEIAIAWIIggp0QRAAASxBEsBOCCABgieAeIm67hx0QRAAAS5y9QmSMsXgaJDqCCABgiWAQnTp1SidOnLB4GiQ6gggAYIn09HR17dpVEvuIYD2CCABgCY/Hw8Zq2AZBBACwDEEEuyCIAACW4U4z2AVBBACwDCtEsAuCCABgGYIIdkEQAQAsQxDBLggiAIBlCCLYBUEEALBMMIjYVA2rEUQAAMuwQgS7IIgAAJYJ3nZPEMFqBBEAwDKsEMEuCCIAgGXYQwS7IIgAAJY5e4XIGGPxNEhkBBEAwDLBIGpubtaxY8csngaJjCACAFgmLS1N3bp1k8Q+IliLIAIAWMbj8bCxGrZAEAEALEUQwQ4IIgCApQgi2AFBBACwVPDNGbn1HlYiiAAAlmKFCHZAEAEALEUQwQ4IIgCApQgi2AFBBACwFEEEOyCIAACWIohgBwQRAMBSfMAr7IAgAgBYKnjbPStEsBJBBACwFC+ZwQ4IIgCApYJBVFtbK2OMxdMgURFEAABLBYOoublZ9fX1Fk+DREUQAQAslZqaKq/XK4mN1bAOQQQAsBz7iGA1gggAYDnuNIPVCCIAgOVYIYLVCCIAgOV4c0ZYjSACAFiOFSJYjSACAFiOIILVCCIAgOXYVA2rEUQAAMuxQgSrEUQAAMsRRLAaQQQAsBxBBKsRRAAAywX3EHHbPaxCEAEALMcKEaxGEAEALBcMotraWrW0tFg8DRIRQQQAsFwwiIwxqqurs3gaJCJLg+jTTz/VuHHjlJubK4/Ho/fffz/scWOMZs+erdzcXKWmpqqoqEg7d+4MO6exsVGPPPKIevfurfT0dN1222369ttv4/inAAB0ltfrVWpqqiReNoM1LA2i48eP6/vf/77Ky8vbfHz+/PlasGCBysvLtWXLFvn9fo0ePVr19fWhc0pKSvTee+9pxYoV+uyzz3Ts2DH93d/9nZqbm+P1xwAARAH7iGClrlb+5rfeeqtuvfXWNh8zxmjhwoWaMWOGxo8fL0launSpsrOztXz5ck2aNEmBQECvvPKKXn/9df3oRz+SJL3xxhvKy8vTxx9/rJtvvjlufxYAQOf06NFDhw8f5k4zWMK2e4j27dunqqoqFRcXh455vV6NHDlSGzdulCRt3bpVp06dCjsnNzdXAwcODJ0DAHAGVohgJUtXiM6nqqpKkpSdnR12PDs7W5WVlaFzunXrFvof0dnnBJ/flsbGRjU2Noa+DwQCksRGPgCwUEZGhiTp8OHD/PcYEQn+PTHGdPpn2TaIgjweT9j3xphWx/7ahc4pKyvTnDlzWh3Py8vr2JAAgKgpKSlRSUmJ1WPAQb777jv5fL5O/QzbBpHf75d0ZhUoJycndLy6ujq0auT3+9XU1KSampqwVaLq6moVFhae82dPnz5djz/+eOj72tpa9e3bVwcOHOj0BU10dXV1ysvL08GDB5WZmWn1OI7FdYwermX0cC2jg+sYPYFAQH369Am903ln2DaI8vPz5ff7tWbNGg0ePFiS1NTUpPXr12vevHmSpCFDhig5OVlr1qzRXXfdJUk6cuSIduzYofnz55/zZ3u9Xnm93lbHfT4ffzmjJDMzk2sZBVzH6OFaRg/XMjq4jtHTpUvnt0RbGkTHjh3Tn//859D3+/bt07Zt29SzZ0/16dNHJSUlKi0tVUFBgQoKClRaWqq0tDRNmDBB0pmAuf/++/XEE0+oV69e6tmzp5588kldddVVobvOAAAALsTSIPryyy81atSo0PfBl7EmTpyo1157TdOmTVNDQ4OmTJmimpoaDR8+XKtXrw5tvJOkF154QV27dtVdd92lhoYG3XTTTXrttdeUlJQU9z8PAABwJkuDqKio6Lw7wz0ej2bPnq3Zs2ef85yUlBQtWrRIixYt6vAcXq9Xs2bNavNlNLQP1zI6uI7Rw7WMHq5ldHAdoyea19JjonGvGgAAgIPZ9o0ZAQAA4oUgAgAACY8gAgAACY8gAgAACS/hg6hfv37yeDxhX88880zYOQcOHNC4ceOUnp6u3r176xe/+IWamposmtjeGhsbdfXVV8vj8Wjbtm1hj3EdI3PbbbepT58+SklJUU5Ojn72s5/p8OHDYedwLS9s//79uv/++5Wfn6/U1FT1799fs2bNanWduJYX9txzz6mwsFBpaWnKyspq8xyuY+Reeukl5efnKyUlRUOGDNGGDRusHsn2Pv30U40bN065ubnyeDx6//33wx43xmj27NnKzc1VamqqioqKtHPnznb9HgkfRJI0d+5cHTlyJPQ1c+bM0GPNzc0aO3asjh8/rs8++0wrVqzQO++8oyeeeMLCie1r2rRpys3NbXWc6xi5UaNG6be//a12796td955R3v37tWPf/zj0ONcy8j86U9/UktLi/7jP/5DO3fu1AsvvKCXX35Zzz77bOgcrmVkmpqadOedd+qhhx5q83GuY+RWrlypkpISzZgxQxUVFfrhD3+oW2+9VQcOHLB6NFs7fvy4vv/976u8vLzNx+fPn68FCxaovLxcW7Zskd/v1+jRo1VfXx/5b2ISXN++fc0LL7xwzsc//PBD06VLF3Po0KHQsbfeest4vV4TCATiMKFzfPjhh+byyy83O3fuNJJMRUVF2GNcx4754IMPjMfjMU1NTcYYrmVnzJ8/3+Tn54e+51q2z6uvvmp8Pl+r41zHyF177bVm8uTJYccuv/xy88wzz1g0kfNIMu+9917o+5aWFuP3+80vf/nL0LGTJ08an89nXn755Yh/LitEkubNm6devXrp6quv1nPPPRe2zLtp0yYNHDgwbNXj5ptvVmNjo7Zu3WrFuLb0f//3f3rwwQf1+uuvKy0trdXjXMeOOXr0qN58800VFhYqOTlZEteyMwKBQNiHQHIto4PrGJmmpiZt3bpVxcXFYceLi4u1ceNGi6Zyvn379qmqqirsunq9Xo0cObJd1zXhg+jRRx/VihUrtHbtWk2dOlULFy7UlClTQo9XVVUpOzs77Dk9evRQt27dVFVVFe9xbckYo/vuu0+TJ0/W0KFD2zyH69g+Tz/9tNLT09WrVy8dOHBAH3zwQegxrmXH7N27V4sWLdLkyZNDx7iW0cF1jMxf/vIXNTc3t7pW2dnZXKdOCF67zl5XVwbR7NmzW22U/uuvL7/8UpL02GOPaeTIkRo0aJAeeOABvfzyy3rllVf03XffhX6ex+Np9XsYY9o87iaRXsdFixaprq5O06dPP+/PS9TrKLXv76QkPfXUU6qoqNDq1auVlJSkn//852Efc8O1jPxaStLhw4d1yy236M4779QDDzwQ9liiXsuOXMfzSdTr2BF/fU24TtHR2etq6WeZxcrUqVN1zz33nPecfv36tXn8Bz/4gSTpz3/+s3r16iW/36/PP/887JyamhqdOnWqVY26TaTX8V//9V+1efPmVp8lM3ToUN17771aunRpQl9Hqf1/J3v37q3evXvre9/7ngYMGKC8vDxt3rxZI0aM4Fq281oePnxYo0aN0ogRI7RkyZKw8xL5Wnbmv5N/LZGvY3v07t1bSUlJrVYtqquruU6d4Pf7JZ1ZKcrJyQkdb/d1jcL+Jlf5r//6LyPJVFZWGmP+/2bBw4cPh85ZsWIFmwXPUllZabZv3x76+uijj4wk8/bbb5uDBw8aY7iOnXHgwAEjyaxdu9YYw7Vsj2+//dYUFBSYe+65x5w+fbrV41zL9rnQpmqu44Vde+215qGHHgo7NmDAADZVt4POsal63rx5oWONjY3t3lSd0EG0ceNGs2DBAlNRUWG++eYbs3LlSpObm2tuu+220DmnT582AwcONDfddJP56quvzMcff2wuueQSM3XqVAsnt7d9+/a1usuM6xiZzz//3CxatMhUVFSY/fv3m08++cRcf/31pn///ubkyZPGGK5lpA4dOmT+9m//1tx4443m22+/NUeOHAl9BXEtI1NZWWkqKirMnDlzTPfu3U1FRYWpqKgw9fX1xhiuY3usWLHCJCcnm1deecXs2rXLlJSUmPT0dLN//36rR7O1+vr60N87SaF/u4OLF7/85S+Nz+cz7777rtm+fbv5yU9+YnJyckxdXV3Ev0dCB9HWrVvN8OHDjc/nMykpKeayyy4zs2bNMsePHw87r7Ky0owdO9akpqaanj17mqlTp4b+cUJrbQWRMVzHSPzxj380o0aNMj179jRer9f069fPTJ482Xz77bdh53EtL+zVV181ktr8OhvX8sImTpzY5nUMrloaw3VsjxdffNH07dvXdOvWzVxzzTVm/fr1Vo9ke2vXrm3z7+DEiRONMWdWiWbNmmX8fr/xer3mhhtuMNu3b2/X7+Ex5qydmgAAAAnIlXeZAQAAtAdBBAAAEh5BBAAAEh5BBAAAEh5BBAAAEh5BBAAAEh5BBAAAEh5BBAAAEh5BBMC1vvvuO1188cXav39/u55XXl6u2267LTZDAbAlggiArXk8nvN+3Xfffed8bllZmcaNG9fqU9vfeecdFRUVyefzqXv37ho0aJDmzp2ro0ePSpIefPBBbdmyRZ999lkM/2QA7IQgAmBrR44cCX0tXLhQmZmZYcd+/etft/m8hoYGvfLKK3rggQfCjs+YMUN33323hg0bplWrVmnHjh16/vnn9Yc//EGvv/66JMnr9WrChAlatGhRzP98AOyhq9UDAMD5+P3+0K99Pp88Hk/YsXNZtWqVunbtqhEjRoSOffHFFyotLdXChQv16KOPho7369dPo0ePVm1tbejYbbfdpuLiYjU0NCg1NTU6fxgAtsUKEQBX+vTTTzV06NCwY2+++aa6d++uKVOmtPmcrKys0K+HDh2qU6dO6YsvvojlmABsgiAC4Er79+9Xbm5u2LE9e/bo0ksvVXJy8gWfn56erqysrHZvyAbgTAQRAFdqaGhQSkpK2DFjjDweT8Q/IzU1VSdOnIj2aABsiCAC4Eq9e/dWTU1N2LHvfe972rt3r06dOhXRzzh69KguuuiiWIwHwGYIIgCuNHjwYO3atSvs2IQJE3Ts2DG99NJLbT7n7E3Ve/fu1cmTJzV48OBYjgnAJggiAK508803a+fOnWGrRMOHD9e0adP0xBNPaNq0adq0aZMqKyv1+9//XnfeeaeWLl0aOnfDhg269NJL1b9/fyvGBxBnBBEAV7rqqqs0dOhQ/fa3vw07Pm/ePC1fvlyff/65br75Zl155ZV6/PHHNWjQIE2cODF03ltvvaUHH3ww3mMDsIjHGGOsHgIAYuHDDz/Uk08+qR07dqhLl8j//9+OHTt000036euvv5bP54vhhADsgjdmBOBaY8aM0Z49e3To0CHl5eVF/LzDhw9r2bJlxBCQQFghAgAACY89RAAAIOERRAAAIOERRAAAIOERRAAAIOERRAAAIOERRAAAIOERRAAAIOERRAAAIOERRAAAIOH9P1JaLA2Ddr/iAAAAAElFTkSuQmCC", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "Caption: The temperature T as a function of depth z\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlEAAAHFCAYAAADSY6wWAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAAAzSklEQVR4nO3deXBUVd7/8U8HQicBkpiEJGRYdSKyiCJQCOqwKChuMIwrMiOlj4ODqLgMDqI/Fsuk4FHEB0YtEARUFOsRZ6xSRuMGOkENoDMIioABwpZgEpIAIYHk/P7g6R5iFpJOd+7S71dV15Dbt29/D8eBD+ece67HGGMEAACAJomwugAAAAAnIkQBAAAEgBAFAAAQAEIUAABAAAhRAAAAASBEAQAABIAQBQAAEABCFAAAQAAIUQAAAAEgRAFoEcuXL5fH49Hu3bstreOSSy6Rx+PRM8880+B5c+bMUa9evVRdXd3oa//4449q06aNNm/e3NwyATgAIQpA2Pj222/1zTffSJKWLl1a73kHDhzQvHnzNGfOHEVENP6PyfPPP1933HGHHnrooWbXCsD+CFEAwsbLL78sSbruuuv0ww8/KDs7u87znn/+ecXHx2vcuHFN/o4pU6Zo/fr19V4bgHsQogBYatmyZbrooosUFRWlhIQE/fa3v9X3339f67wlS5bo/PPPl9frVa9evbRq1SpNnDhR3bp1a9T3nDhxQqtWrVL//v313HPP+b/7lyorK7V06VKNHz++xijUxIkT5fF46nzNmjXLf17//v3Vs2dPvfTSS037jQDgOIQoAJbJzMzU3Xffrd69e2vNmjV6/vnn9e9//1uDBw/Wjh07/OctXrxYf/zjH9W3b1+tWbNGTzzxhGbPnq3PPvus0d+1Zs0aFRcX66677lJ6erouv/xyrV69WkePHq1x3ldffaXCwkINHz68xvEnn3xSGzZsqPGaMGGCJKlXr141zh02bJjWrl0rY0wTf0cAOIoBgBbwyiuvGEkmNzfXGGNMcXGxiY6ONtdee22N8/bu3Wu8Xq8ZP368McaYqqoqk5qaagYNGlTjvD179pjIyEjTtWvXRn3/iBEjTFRUlCkuLq5Rz9KlS2ucN3fuXCPJHDp0qMHrvfXWW8bj8ZjHH3+81ntLliwxksz333/fqNoAOBMjUQAssWHDBpWXl2vixIk1jnfu3FkjRozQxx9/LEnavn27Dh06pFtuuaXGeV26dNFll13WqO/Kzc3Vp59+qnHjxik+Pl6SdPPNN6t9+/a1pvQOHDggj8ejpKSkeq+3bt06/f73v9eECRP09NNP13o/OTlZkrR///5G1QfAmQhRACxRWFgoSerYsWOt99LS0vzv+/43JSWl1nl1HavLsmXLZIzRTTfdpCNHjujIkSM6efKkbrzxRv3zn//UDz/84D+3vLxckZGRatWqVZ3X2rp1q8aOHasrrrii3jv8oqKi/NcC4F6trS4AQHhKTEyUJB08eLDWewcOHPCPBPnOy8/Pr3XeoUOHzvo91dXVWr58uSTVe7fdsmXLNG/ePElSUlKSKisrdezYMbVt27bGefv27dM111yjLl266O2331ZkZGSd1ysqKvJfC4B7MRIFwBKDBw9WdHS0XnvttRrH9+3bp08++URXXnmlJKlHjx5KTU3VW2+9VeO8vXv3NmobgQ8++ED79u3Tfffdp08//bTWq3fv3lq5cqVOnTolSbrgggskSbt27apxnZKSEo0ePVoej0fvv/++YmNj6/3On376SREREerRo8fZfyMAOBYjUQAsER8fryeffFKPP/64/vCHP+j2229XYWGhZs+eraioKM2cOVOSFBERodmzZ2vSpEm66aabdNddd+nIkSOaPXu2OnbseNbNMJcuXarWrVvr8ccfV1paWq33J02apAceeEDvvfeexowZo2HDhkmSvvzyS/Xt29d/3vjx47Vt2zYtXrxYeXl5ysvL87/XqVMnderUyf/zl19+qYsvvljnnHNOc36LANid1SvbAYSHX96d5/Pyyy+bvn37mjZt2pi4uDgzZswYs3Xr1lqfX7x4sfn1r39t2rRpY84//3yzbNkyM2bMGNOvX796v/Pw4cOmTZs2ZuzYsfWe47tL8IYbbvAfu+KKK2rdNdi1a1cjqc7XzJkz/eeVlZWZmJgY8+yzz57ldwSA03mMYSMTAM5z5MgRnX/++Ro7dqwWL14c1Gu//fbbuvXWW7Vnzx796le/atJnly5dqgcffFB5eXmMRAEuR4gCYHuHDh3S008/reHDhysxMVF79uzRc889px9++EEbN25U7969g/p9xhgNGTJE/fv316JFixr9uVOnTqlXr1668847NWPGjKDWBMB+WBMFwPa8Xq92796tyZMnq6ioSDExMbr00kv10ksvBT1ASZLH49GSJUv07rvvqrq6utEPIc7Ly9OECRP0yCOPBL0mAPbDSBQAAEAAXLPFwQsvvKDu3bsrKipK/fv31+eff251SQAAwMVcEaJWr16tqVOnasaMGfrmm290xRVXaPTo0dq7d6/VpQEAAJdyxXTeoEGDdMkll+jFF1/0H+vZs6fGjh2rzMxMCysDAABu5fiF5ZWVldq0aZP+8pe/1Dg+atSoenczrqioUEVFhf/n6upqFRUVKTExUR6PJ6T1AgCA4DDGqKysTGlpaY2+ASSYHB+ifv75Z1VVVdV6EGlKSkq9z9XKzMzU7NmzW6I8AAAQYnl5eTWeGtBSHB+ifH45gmSMqXdUafr06Xr44Yf9P5eUlKhLly7Ky8tr8HlYABDuRo8erezsbC1dulQ33XST1eUgzJWWlqpz585q3769Jd/v+BCVlJSkVq1a1Rp1KigoqDU65eP1euX1emsdj42NJUQBQAM6d+4s6fRfXvx5CbuwaimO4+/Oa9Omjfr376+srKwax7OysjRkyBCLqgIAd0pNTZUkHTx40OJKAOs5fiRKkh5++GH9/ve/14ABAzR48GAtXrxYe/fu1b333mt1aQDgKh07dpSketecAuHEFSHq1ltvVWFhoebMmaODBw+qT58+ev/999W1a1erSwMAV/GNRBGiAJeEKEmaPHmyJk+ebHUZAOBqvpEopvMAF6yJAgC0HNZEAf9BiAIANJovRP388886efKkxdUA1iJEAQAazbetjHR6KxkgnBGiAACNFhER4d+Djyk9hDtCFACgSVhcDpxGiAIANAl7RQGnEaIAAE3CHXrAaYQoAECTMJ0HnEaIAgA0CbuWA6cRogAATcKaKOA0QhQAoEkYiQJOI0QBAJrkzIXlxhiLqwGsQ4gCADSJL0RVVFSopKTE4moA6xCiAABNEh0drbi4OEncoYfwRogCADQZi8sBQhQAIABsuAkQogAAAWAkCiBEAQACwEgUQIgCAASAEAUQogAAAWA6DyBEAQACwK7lACEKABAA30gU03kIZ4QoAECT+UJUUVGRKioqLK4GsAYhCgDQZAkJCYqMjJQkFRQUWFwNYA1CFACgyTweD3foIewRogAAAWFxOcIdIQoAEBBGohDuCFEAgICwVxTCHSEKABAQpvMQ7ghRAICAsFcUwh0hCgAQEEaiEO4IUQCAgDAShXBHiAIABOTMkShjjMXVAC2PEAUACIgvRFVWVqq4uNjiaoCWR4gCAATE6/XqnHPOkcS6KIQnQhQAIGCsi0I4I0QBAALGruUIZ4QoAEDAGIlCOCNEAQAC5huJys/Pt7gSoOURogAAAWMkCuGMEAUACBhrohDOCFEAgID5RqLY4gDhiBAFAAgYz89DOCNEAQAC5huJKi4u1okTJyyuBmhZhCgAQMDi4+Pl9XolMRqF8EOIAgAEzOPxMKWHsEWIAgA0CyEK4YoQBQBoFvaKQrgiRAEAmoW9ohCuCFEAgGZhOg/hihAFAGgWNtxEuCJEAQCahTVRCFeEKABAs7AmCuGKEAUAaBbfSFR+fr6qq6strgZoOYQoAECzJCcnS5JOnTqloqIii6sBWg4hCgDQLG3atFFiYqIkpvQQXghRAIBm4w49hCNCFACg2dgrCuGIEAUAaDZGohCOCFEAgGZjmwOEI0IUAKDZCFEIR4QoAECzMZ2HcESIAgA0G49+QTiydYjKzMzUwIED1b59eyUnJ2vs2LHavn17jXOMMZo1a5bS0tIUHR2tYcOGaevWrRZVDADhiek8hCNbh6h169bpvvvu05dffqmsrCydOnVKo0aN0rFjx/znzJs3T/Pnz9eiRYuUk5Oj1NRUjRw5UmVlZRZWDgDhxTcSVVpaqvLycourAVqGxxhjrC6isQ4fPqzk5GStW7dOv/nNb2SMUVpamqZOnarHHntMklRRUaGUlBTNnTtXkyZNatR1S0tLFRcXp5KSEsXGxoayCQDgSsYYxcTE6MSJE/rpp5/UvXt3q0tCGLD6729bj0T9UklJiSQpISFBkpSbm6tDhw5p1KhR/nO8Xq+GDh2q7Ozseq9TUVGh0tLSGi8AQOA8Hg9Tegg7jglRxhg9/PDDuvzyy9WnTx9J/7kLJCUlpca5KSkpDd4hkpmZqbi4OP+rc+fOoSscAMIEd+gh3DgmRE2ZMkX//ve/9cYbb9R6z+Px1PjZGFPr2JmmT5+ukpIS/ysvLy/o9QJAuGEkCuGmtdUFNMb999+vd999V+vXr1enTp38x898VpPvX0CSVFBQUGt06kxer1derzd0BQNAGGIkCuHG1iNRxhhNmTJFa9as0SeffFJroWL37t2VmpqqrKws/7HKykqtW7dOQ4YMaelyASCsMRKFcGPrkaj77rtPq1at0t///ne1b9/e/6+buLg4RUdHy+PxaOrUqcrIyFB6errS09OVkZGhmJgYjR8/3uLqASC8MBKFcGPrEPXiiy9KkoYNG1bj+CuvvKKJEydKkqZNm6by8nJNnjxZxcXFGjRokD788EO1b9++hasFgPDGSBTCjaP2iQoVq/eZAAA32LRpkwYMGKC0tDTt37/f6nIQBqz++9vWa6IAAM7hG4nKz89XVVWVxdUAoUeIAgAERXJysjwej6qqqlRYWGh1OUDIEaIAAEERGRmppKQkSayLQnggRAEAgsZ3hx4hCuGAEAUACJoz10UBbkeIAgAEDSNRCCeEKABA0Jz5OC7A7QhRAICgYSQK4YQQBQAIGkaiEE4IUQCAoGEkCuGEEAUACBqen4dwQogCAASNbyTq6NGjOnr0qMXVAKFFiAIABE27du0UExMjib2i4H6EKABA0Hg8HtZFIWwQogAAQcUdeggXhCgAQFCxuBzhghAFAAgq33QeI1FwO0IUACCoGIlCuCBEAQCCioXlCBeEKABAUPlGotjiAG5HiAIABBUjUQgXhCgAQFD5RqIKCgpUVVVlcTVA6BCiAABBlZycrIiICFVXV+vw4cNWlwOEDCEKABBUrVq1UocOHSSxzQHcjRAFAAg69opCOCBEAQCCjr2iEA4IUQCAoCNEIRwQogAAQcd0HsIBIQoAEHSMRCEcEKIAAEHHhpsIB4QoAEDQMZ2HcECIAgAEnW86jxAFNyNEAQCCzheijh07prKyMourAUKDEAUACLp27dqpXbt2klgXBfciRAEAQoIpPbgdIQoAEBIsLofbEaIAACHBSBTcjhAFAAgJNtyE2xGiAAAhwYabcDtCFAAgJFgTBbcjRAEAQoLpPLgdIQoAEBKMRMHtCFEAgJDwjUQdPnxYp06dsrgaIPgIUQCAkEhKSlJERISMMSooKLC6HCDoCFEAgJBo1aqVUlJSJLEuCu5EiAIAhAwbbsLNCFEAgJBhcTncjBAFAAgZRqLgZoQoAEDIsGs53IwQBQAIGabz4GaEKABAyLBrOdyMEAUACBlCFNyMEAUACJkzp/OMMRZXAwQXIQoAEDK+kajy8nKVlZVZXA0QXIQoAEDIxMTEKDY2VhJTenAfQhQAIKRYFwW3IkQBAEKKbQ7gVoQoAEBIsWs53IoQBQAIKXYth1sRogAAIcWaKLgVIQoAEFJM58GtCFEAgJBiYTncihAFAAgpRqLgVo4KUZmZmfJ4PJo6dar/mDFGs2bNUlpamqKjozVs2DBt3brVuiIBADX4RqIOHz6skydPWlwNEDyOCVE5OTlavHix+vbtW+P4vHnzNH/+fC1atEg5OTlKTU3VyJEjebwAANhEYmKiWrduLUnKz8+3uBogeBwRoo4ePao77rhDS5Ys0TnnnOM/bozRggULNGPGDI0bN059+vTRihUrdPz4ca1atcrCigEAPhEREUpJSZHElB7cxREh6r777tN1112nq666qsbx3NxcHTp0SKNGjfIf83q9Gjp0qLKzs+u9XkVFhUpLS2u8AAChwzYHcKPWVhdwNm+++aY2b96snJycWu/5/kXj+xeOT0pKivbs2VPvNTMzMzV79uzgFgoAqBd36MGNbD0SlZeXpwcffFCvvfaaoqKi6j3P4/HU+NkYU+vYmaZPn66SkhL/Ky8vL2g1AwBqYyQKbmTrkahNmzapoKBA/fv39x+rqqrS+vXrtWjRIm3fvl3S6X/Z+P6VI0kFBQW1RqfO5PV65fV6Q1c4AKAGRqLgRrYeibryyiu1ZcsWffvtt/7XgAEDdMcdd+jbb7/Vueeeq9TUVGVlZfk/U1lZqXXr1mnIkCEWVg4AOBPPz4Mb2Xokqn379urTp0+NY23btlViYqL/+NSpU5WRkaH09HSlp6crIyNDMTExGj9+vBUlAwDqwIabcCNbh6jGmDZtmsrLyzV58mQVFxdr0KBB+vDDD9W+fXurSwMA/B9GouBGHmOMsboIq5WWliouLk4lJSWKjY21uhwAcJ3du3ere/fu8nq9Ki8vb/DmH6CxrP7729ZrogAA7uCbzquoqNCRI0esLQYIEkIUACDkoqKiFB8fL4l1UXAPQhQAoEWwuBxuQ4gCALQIFpfDbQhRAIAWwUgU3IYQBQBoETz6BW5DiAIAtAim8+A2hCgAQIsgRMFtCFEAgBbhm87Lz8+3uBIgOAhRAIAWwUgU3IYQBQBoEb6RqKKiIlVUVFhcDdB8hCgAQItISEhQZGSkJKb04A6EKABAi/B4POwVBVchRAEAWgwhCm7Suqkf2L59u9544w19/vnn2r17t44fP64OHTqoX79+uvrqq/W73/1OXq83FLUCAByOxeVwk0aPRH3zzTcaOXKkLrroIq1fv14DBw7U1KlT9dRTT2nChAkyxmjGjBlKS0vT3LlzWTQIAKjFF6IYiYIbNHokauzYsfrzn/+s1atXKyEhod7zNmzYoOeee07PPvusHn/88aAUCQBwBx79AjdpdIjasWOH2rRpc9bzBg8erMGDB6uysrJZhQEA3IcQBTdp9HReYwJUc84HALgfa6LgJk1eWO7z9ddf67PPPlNBQYGqq6trvDd//vxmFwYAcB8e/QI3CShEZWRk6IknnlCPHj2UkpIij8fjf+/MXwMAcKYzF5YbY/g7A44WUIh6/vnntWzZMk2cODHI5QAA3CwlJUWSVFlZqeLi4gZvVALsLqDNNiMiInTZZZcFuxYAgMt5vV5/cGJdFJwuoBD10EMP6a9//WuwawEAhAF2LYdbBDSd9+ijj+q6667Teeedp169evkfKOmzZs2aoBQHAHCfjh07atu2bYxEwfECClH333+/Pv30Uw0fPlyJiYksDAQANBojUXCLgELUypUr9fbbb+u6664Ldj0AAJdjryi4RUBrohISEnTeeecFuxYAQBhgJApuEVCImjVrlmbOnKnjx48Hux4AgMsxEgW3CGg673/+53+0a9cupaSkqFu3brUWlm/evDkoxQEA3Ifn58EtAgpRY8eODXIZAIBwceau5YCTeYwxxuoirFZaWqq4uDiVlJQoNjbW6nIAwNXO3Km8vLxcUVFRFlcEp7L67++A1kQ1BtkMAFCX+Ph4eb1eSYxGwdkaHaJ69uypVatWqbKyssHzduzYoT/96U+aO3dus4sDALiPx+NhXRRcodFrov7617/qscce03333adRo0ZpwIABSktLU1RUlIqLi7Vt2zZ98cUX2rZtm6ZMmaLJkyeHsm4AgIOlpqZqz549jETB0RodokaMGKGcnBxlZ2dr9erVWrVqlXbv3q3y8nIlJSWpX79++sMf/qAJEyYoPj4+hCUDAJyOxeVwgybfnTdkyBANGTIkFLUAAMIEIQpuELKF5QAA1Ic1UXADQhQAoMWxazncgBAFAGhxPD8PbkCIAgC0OKbz4AaEKABAi/NN5+Xn56u6utriaoDABBSiRowYodmzZ9c6XlxcrBEjRjS7KACAuyUnJ0uSTp06paKiIourAQITUIj67LPPtGjRIo0dO1bHjh3zH6+srNS6deuCVhwAwJ3atGmjxMRESUzpwbkCns776KOPdOjQIV166aXavXt3EEsCAIQD7tCD0wUcojp27Kh169apb9++GjhwoD777LMglgUAcDvu0IPTBRSiPB6PJMnr9er111/Xgw8+qGuuuUYvvPBCUIsDALgXu5bD6Zr82BdJMsbU+PmJJ55Qz549deeddwalKACA+zESBacLKETl5uaqQ4cONY797ne/0wUXXKCNGzcGpTAAgLuxJgpOF1CI6tq1a53He/furd69ezerIABAeCBEwenYbBMAYAmm8+B0hCgAgCUYiYLTEaIAAJbwjUSVlpbq+PHjFlcDNB0hCgBgidjYWEVHR0tiSg/ORIgCAFjC4/GwLgqORogCAFjGF6JYFwUnIkQBACzDruVwMkIUAMAyjETByQhRAADLMBIFJyNEAQAsw0gUnIwQBQCwDHfnwckIUQAAyzCdBycjRAEALOMLUfn5+aqqqrK4GqBpbB+i9u/frwkTJigxMVExMTG6+OKLtWnTJv/7xhjNmjVLaWlpio6O1rBhw7R161YLKwYANFZycrI8Ho+qqqpUWFhodTlAk9g6RBUXF+uyyy5TZGSk1q5dq23btunZZ59VfHy8/5x58+Zp/vz5WrRokXJycpSamqqRI0eqrKzMusIBAI3SunVrdejQQRKLy+E8ra0uoCFz585V586d9corr/iPdevWzf9rY4wWLFigGTNmaNy4cZKkFStWKCUlRatWrdKkSZNaumQAQBOlpqaqoKBAhw4d0kUXXWR1OUCj2Xok6t1339WAAQN08803Kzk5Wf369dOSJUv87+fm5urQoUMaNWqU/5jX69XQoUOVnZ1d73UrKipUWlpa4wUAsAbbHMCpbB2ifvrpJ7344otKT0/XBx98oHvvvVcPPPCAVq5cKek/d3OkpKTU+FxKSkqDd3pkZmYqLi7O/+rcuXPoGgEAaBB36MGpbB2iqqurdckllygjI0P9+vXTpEmTdM899+jFF1+scZ7H46nxszGm1rEzTZ8+XSUlJf5XXl5eSOoHAJwdI1FwKluHqI4dO6pXr141jvXs2VN79+6VVP8mbQUFBbVGp87k9XoVGxtb4wUAsAYjUXAqW4eoyy67TNu3b69x7Mcff1TXrl0lSd27d1dqaqqysrL871dWVmrdunUaMmRIi9YKAAgMI1FwKlvfnffQQw9pyJAhysjI0C233KKvv/5aixcv1uLFiyWdnsabOnWqMjIylJ6ervT0dGVkZCgmJkbjx4+3uHoAQGPw6Bc4la1D1MCBA/XOO+9o+vTpmjNnjrp3764FCxbojjvu8J8zbdo0lZeXa/LkySouLtagQYP04Ycfqn379hZWDgBoLN90HiNRcBqPMcZYXYTVSktLFRcXp5KSEtZHAUALKysr8//ZW1ZWpnbt2llcEZzC6r+/bb0mCgDgfu3atVNMTIwkpvTgLIQoAIClPB4Pd+jBkQhRAADLsbgcTkSIAgBYjsXlcCJCFADAckznwYkIUQAAy7HhJpyIEAUAsBwhCk5EiAIAWI41UXAiQhQAwHLcnQcnIkQBACznC1GHDx9WVVWVxdUAjUOIAgBYLjk5WREREaqurtbhw4etLgdoFEIUAMByrVq1UocOHSSxLgrOQYgCANgCe0XBaQhRAABbYJsDOA0hCgBgC2xzAKchRAEAbIHpPDgNIQoAYAvsFQWnIUQBAGyBNVFwGkIUAMAWWBMFpyFEAQBswTcSlZ+fb3ElQOMQogAAtuALUceOHVNZWZnF1QBnR4gCANhCu3bt1K5dO0ksLoczEKIAALbBuig4CSEKAGAbbHMAJyFEAQBsg5EoOAkhCgBgG4xEwUkIUQAA22AkCk5CiAIA2AYjUXASQhQAwDZ4CDGchBAFALANnp8HJyFEAQBswzcSdfjwYZ06dcriaoCGEaIAALaRlJSkVq1ayRijgoICq8sBGkSIAgDYRkREhFJSUiQxpQf7I0QBAGyFdVFwCkIUAMBW2OYATkGIAgDYCtscwCkIUQAAWyFEwSkIUQAAW2FNFJyCEAUAsBWenwenIEQBAGyFheVwCkIUAMBWzpzOM8ZYXA1QP0IUAMBWfCHqxIkTKi0ttbgaoH6EKACArcTExCg2NlYSU3qwN0IUAMB2uEMPTkCIAgDYDnfowQkIUQAA2+EOPTgBIQoAYDuMRMEJCFEAANthJApOQIgCANgOI1FwAkIUAMB2eAgxnIAQBQCwHabz4ASEKACA7fhC1M8//6zKykqLqwHqRogCANhOYmKiWrduLUkqKCiwuBqgboQoAIDtREREKCUlRRJTerAvQhQAwJa4Qw92R4gCANgSz8+D3RGiAAC2xDYHsDtCFADAltjmAHZHiAIA2BJromB3hCgAgC2xJgp2R4gCANgS03mwO0IUAMCWzlxYboyxuBqgNkIUAMCWfCNRFRUVOnLkiLXFAHWwdYg6deqUnnjiCXXv3l3R0dE699xzNWfOHFVXV/vPMcZo1qxZSktLU3R0tIYNG6atW7daWDUAIBiioqIUHx8viSk92JOtQ9TcuXP10ksvadGiRfr+++81b948/fd//7cWLlzoP2fevHmaP3++Fi1apJycHKWmpmrkyJEqKyuzsHIAQDBwhx7szNYhasOGDRozZoyuu+46devWTTfddJNGjRqljRs3Sjo9CrVgwQLNmDFD48aNU58+fbRixQodP35cq1atsrh6AEBzsbgcdmbrEHX55Zfr448/1o8//ihJ+te//qUvvvhC1157rSQpNzdXhw4d0qhRo/yf8Xq9Gjp0qLKzs+u9bkVFhUpLS2u8AAD2wzYHsLPWVhfQkMcee0wlJSW64IIL1KpVK1VVVenpp5/W7bffLuk//zLxPenbJyUlRXv27Kn3upmZmZo9e3boCgcABAWPfoGd2XokavXq1Xrttde0atUqbd68WStWrNAzzzyjFStW1DjP4/HU+NkYU+vYmaZPn66SkhL/Ky8vLyT1AwCah5Eo2JmtR6L+/Oc/6y9/+Ytuu+02SdKFF16oPXv2KDMzU3feeWeNuXLfv1YkqaCgoNbo1Jm8Xq+8Xm9oiwcANBsjUbAzW49EHT9+XBERNUts1aqVf4uD7t27KzU1VVlZWf73KysrtW7dOg0ZMqRFawUABB9358HObD0SdcMNN+jpp59Wly5d1Lt3b33zzTeaP3++7rrrLkmnp/GmTp2qjIwMpaenKz09XRkZGYqJidH48eMtrh4A0FzcnQc7s3WIWrhwoZ588klNnjxZBQUFSktL06RJk/T//t//858zbdo0lZeXa/LkySouLtagQYP04Ycfqn379hZWDgAIBl+IKioqUkVFBUsxYCsewwOJVFpaqri4OJWUlCg2NtbqcgAA/8cYI6/Xq5MnT2rPnj3q0qWL1SXBRqz++9vWa6IAAOHN4/Fwhx5sixAFALA17tCDXRGiAAC2xuJy2BUhCgBga2xzALsiRAEAbI3pPNgVIQoAYGssLIddEaIAALZGiIJdEaIAALbGmijYFSEKAGBrvpGo/Px8sT807IQQBQCwtZSUFEnSyZMnVVRUZHE1wH8QogAAtub1epWQkCCJO/RgL4QoAIDtsbgcdkSIAgDYHruWw44IUQAA22PDTdgRIQoAYHtscwA7IkQBAGyP6TzYESEKAGB7jETBjghRAADb4+482BEhCgBge4Qo2BEhCgBge77pvJKSEpWXl1tcDXAaIQoAYHvx8fHyer2STj9DD7ADQhQAwPY8Hg9TerAdQhQAwBG4Qw92Q4gCADgCe0XBbghRAABH4NEvsBtCFADAEVgTBbshRAEAHIHpPNgNIQoA4AhM58FuCFEAAEdgOg92Q4gCADiCbyQqPz9f1dXVFlcDEKIAAA6RkpIiSTp16pQKCwstrgYgRAEAHCIyMlJJSUmSWBcFeyBEAQAcg3VRsBNCFADAMXj0C+yEEAUAcAz2ioKdEKIAAI7BXlGwE0IUAMAxmM6DnRCiAACOwXQe7IQQBQBwDKbzYCeEKACAY7DFAeyEEAUAcAxfiCotLdXx48ctrgbhjhAFAHCM2NhYRUdHS2JKD9YjRAEAHMPj8bC4HLZBiAIAOArbHMAuCFEAAEdhcTnsghAFAHAUtjmAXRCiAACOwkgU7IIQBQBwFEaiYBeEKACAozASBbsgRAEAHIUtDmAXhCgAgKP4pvMKCgpUVVVlcTUIZ4QoAICjJCcny+PxqKqqSj///LPV5SCMEaIAAI7SunVrdejQQRJTerAWIQoA4DgsLocdEKIAAI7DNgewA0IUAMBxGImCHRCiAACOw0gU7IAQBQBwHEaiYAeEKACA4zASBTsgRAEAHIeRKNgBIQoA4DiMRMEOCFEAAMfxjUQdPXpUR48etbgahCtLQ9T69et1ww03KC0tTR6PR3/7299qvG+M0axZs5SWlqbo6GgNGzZMW7durXFORUWF7r//fiUlJalt27a68cYbtW/fvhZsBQCgpbVv315t27aVxGgUrGNpiDp27JguuugiLVq0qM73582bp/nz52vRokXKyclRamqqRo4cqbKyMv85U6dO1TvvvKM333xTX3zxhY4eParrr7+eh1ICgMv5RqMIUbBKayu/fPTo0Ro9enSd7xljtGDBAs2YMUPjxo2TJK1YsUIpKSlatWqVJk2apJKSEi1dulSvvvqqrrrqKknSa6+9ps6dO+ujjz7S1Vdf3WJtAQC0rI4dO2rXrl0sLodlbLsmKjc3V4cOHdKoUaP8x7xer4YOHars7GxJ0qZNm3Ty5Mka56SlpalPnz7+cwAA7sRIFKxm6UhUQ3z/p0hJSalxPCUlRXv27PGf06ZNG51zzjm1zmno/1QVFRWqqKjw/1xSUiJJKi0tDUrtAIDQS0hIkCTt3r2bP7/DlK/fjTGWfL9tQ5SPx+Op8bMxptaxXzrbOZmZmZo9e3at4507dw6sSACAZebPn6/58+dbXQYsVFhYqLi4uBb/XtuGqDOHaX37gUhSQUGBf3QqNTVVlZWVKi4urjEaVVBQoCFDhtR77enTp+vhhx/2/3zkyBF17dpVe/futaQTrFJaWqrOnTsrLy9PsbGxVpfTYmg37Q4HtJt2h4OSkhJ16dLFPyrZ0mwborp3767U1FRlZWWpX79+kqTKykqtW7dOc+fOlST1799fkZGRysrK0i233CLp9O613333nebNm1fvtb1er7xeb63jcXFxYfUfn09sbCztDiO0O7zQ7vASru2OiLBmibelIero0aPauXOn/+fc3Fx9++23SkhIUJcuXTR16lRlZGQoPT1d6enpysjIUExMjMaPHy/pdOi5++679cgjjygxMVEJCQl69NFHdeGFF/rv1gMAAAgFS0PUxo0bNXz4cP/Pvim2O++8U8uXL9e0adNUXl6uyZMnq7i4WIMGDdKHH36o9u3b+z/z3HPPqXXr1rrllltUXl6uK6+8UsuXL1erVq1avD0AACB8WBqihg0b1uCKeo/Ho1mzZmnWrFn1nhMVFaWFCxdq4cKFAdfh9Xo1c+bMOqf43Ix20+5wQLtpdzig3da022Osui8QAADAwWy72SYAAICdEaIAAAACQIgCAAAIACEKAAAgAK4PUbt379bdd9+t7t27Kzo6Wuedd55mzpypyspK/znLly+Xx+Op81VQUFDvtSsqKnT//fcrKSlJbdu21Y033qh9+/a1RLPOqjHt9lm+fLn69u2rqKgopaamasqUKQ1ee9iwYbV+n2677bZQNaVJQtluN/R3Xf+Nv/TSSw1e2w39HUi73dDfPoWFherUqZM8Ho+OHDnS4LXd0N8+TWm30/u7sLBQ11xzjdLS0uT1etW5c2dNmTLlrM8UdHp/B9ruoPW3cbm1a9eaiRMnmg8++MDs2rXL/P3vfzfJycnmkUce8Z9z/Phxc/DgwRqvq6++2gwdOrTBa997773mV7/6lcnKyjKbN282w4cPNxdddJE5depUiFt1do1ptzHGPPvssyYtLc28/vrrZufOnea7774z7777boPXHjp0qLnnnntq/H4dOXIklM1ptFC22w39Lcm88sorNfru+PHjDV7bDf0dSLvd0N8+Y8aMMaNHjzaSTHFxcYPXdkN/+zSl3U7v76KiIvPCCy+YnJwcs3v3bvPRRx+ZHj16mNtvv73Bazu9vwNtd7D62/Uhqi7z5s0z3bt3r/f9goICExkZaVauXFnvOUeOHDGRkZHmzTff9B/bv3+/iYiIMP/4xz+CWm+w/LLdRUVFJjo62nz00UdNus7QoUPNgw8+GOTqQicY7XZDfxtzOky88847TbqO0/vbmKa32y39bYwxL7zwghk6dKj5+OOPGx2inN7fxjSt3W7q7zM9//zzplOnTg2e45b+PtPZ2h3M/nb9dF5dSkpKGnxY4cqVKxUTE6Obbrqp3nM2bdqkkydPatSoUf5jaWlp6tOnj7Kzs4Nab7D8st1ZWVmqrq7W/v371bNnT3Xq1Em33HKL8vLyznqt119/XUlJSerdu7ceffRRlZWVhbL0ZglGu93Q3z5TpkxRUlKSBg4cqJdeeknV1dVnvZaT+9unKe12S39v27ZNc+bM0cqVK5v0bDGn93dT2+2W/j7TgQMHtGbNGg0dOvSs13J6f5+pMe0Oan83KXK5wM6dO01sbKxZsmRJvef06tXL/OlPf2rwOq+//rpp06ZNreMjR440f/zjH5tdZ7DV1e7MzEwTGRlpevToYf7xj3+YDRs2mCuvvNL06NHDVFRU1HutxYsXm6ysLLNlyxbzxhtvmG7dupmrrrqqJZrRZMFqtxv62xhjnnrqKZOdnW2++eYb88wzz5iYmBjz1FNPNXgtp/e3MU1vtxv6+8SJE6Zv377m1VdfNcYY8+mnnzZqJMrp/R1Iu93Q3z633XabiY6ONpLMDTfcYMrLyxu8ltP726cp7Q5mfzs2RM2cOdNIavCVk5NT4zP79+83v/71r83dd99d73Wzs7ONJLNx48YGv7++TrjqqqvMpEmTAmtUIwSz3U8//bSRZD744AP/sYKCgiYPaW7cuNFIMps2bWpe4xpgdbvd0N91eeaZZ0xsbGyTanJaf9flbO12Q38/9NBD5tZbb/X/3NgQ9UtO6+9A2u2G/vY5ePCg+f77783f/va3Rg0I/JLT+tunKe0OZn9b+uy85pgyZcpZ7yDo1q2b/9cHDhzQ8OHDNXjwYC1evLjez7z88su6+OKL1b9//wavnZqaqsrKShUXF+ucc87xHy8oKNCQIUMa14gABLPdHTt2lCT16tXLf6xDhw5KSkrS3r17G13TJZdcosjISO3YsUOXXHJJoz/XFFa32w39XZdLL71UpaWlys/PV0pKSqNqclp/1+Vs7XZDf3/yySfasmWL/vd//1eS/M8pTUpK0owZMzR79uxG1eS0/g6k3W7ob5/U1FSlpqbqggsuUGJioq644go9+eST/j/3zsZp/e3TlHYHtb+bFLkcat++fSY9Pd3cdtttDa68LysrM+3atTMLFy486zV9C9NWr17tP3bgwAFbLUQ8W7u3b99uJNVYYF1YWGgiIiJqjNKczZYtW4wks27duqDU3VyhaLcb+rsuCxcuNFFRUebEiRON/h6n9XddztZuN/T3zp07zZYtW/yvZcuWGUkmOzvb5OfnN/p7nNbfgbTbDf1dl/Xr1xtJJjc3t9Hf47T+rsvZ2h3M/nZ9iPINAY4YMcLs27evxm2cv/Tyyy+bqKgoU1RUVOu9ffv2mR49epivvvrKf+zee+81nTp1Mh999JHZvHmzGTFihG1uiW1su8eMGWN69+5t/vnPf5otW7aY66+/3vTq1ctUVlYaY2q3e+fOnWb27NkmJyfH5Obmmvfee89ccMEFpl+/fq5utzHO7+93333XLF682GzZssXs3LnTLFmyxMTGxpoHHnjAf44b+zuQdhvj/P7+pbqmtdzY37/UmHYb4/z+fu+998yyZcvMli1b/H3Xu3dvc9lll/nPcWN/B9JuY4LX364PUa+88kq9c66/NHjwYDN+/Pg6r5Obm2skmU8//dR/rLy83EyZMsUkJCSY6Ohoc/3115u9e/eGqilN0th2l5SUmLvuusvEx8ebhIQE89vf/rZGG37Z7r1795rf/OY3JiEhwbRp08acd9555oEHHjCFhYUt2bx6hardxji/v9euXWsuvvhi065dOxMTE2P69OljFixYYE6ePOk/x439HUi7jXF+f/9SXWHCjf39S41ptzHO7+9PPvnEDB482MTFxZmoqCiTnp5uHnvsMdf3dyDtNiZ4/e0x5v8mjAEAANBoYblPFAAAQHMRogAAAAJAiAIAAAgAIQoAACAAhCgAAIAAEKIAAAACQIgCAAAIACEKAAAgAIQoAK5VWFio5ORk7d69u0mfW7RokW688cbQFAXANQhRAGzN4/E0+Jo4cWK9n83MzNQNN9xQ44nwkvT2229r2LBhiouLU7t27dS3b1/NmTNHRUVFkqR77rlHOTk5+uKLL0LYMgBOR4gCYGsHDx70vxYsWKDY2Ngax55//vk6P1deXq6lS5fqv/7rv2ocnzFjhm699VYNHDhQa9eu1Xfffadnn31W//rXv/Tqq69Kkrxer8aPH6+FCxeGvH0AnKu11QUAQENSU1P9v46Li5PH46lxrD5r165V69atNXjwYP+xr7/+WhkZGVqwYIEefPBB//Fu3bpp5MiROnLkiP/YjTfeqFGjRqm8vFzR0dHBaQwAV2EkCoArrV+/XgMGDKhx7PXXX1e7du00efLkOj8THx/v//WAAQN08uRJff3116EsE4CDEaIAuNLu3buVlpZW49iOHTt07rnnKjIy8qyfb9u2reLj45u8KB1A+CBEAXCl8vJyRUVF1ThmjJHH42n0NaKjo3X8+PFglwbAJQhRAFwpKSlJxcXFNY6df/752rVrl06ePNmoaxQVFalDhw6hKA+ACxCiALhSv379tG3bthrHxo8fr6NHj+qFF16o8zNnLizftWuXTpw4oX79+oWyTAAORogC4EpXX321tm7dWmM0atCgQZo2bZoeeeQRTZs2TRs2bNCePXv08ccf6+abb9aKFSv8537++ec699xzdd5551lRPgAHIEQBcKULL7xQAwYM0FtvvVXj+Ny5c7Vq1Sp99dVXuvrqq9W7d289/PDD6tu3r+68807/eW+88Ybuueeeli4bgIN4jDHG6iIAIBTef/99Pfroo/ruu+8UEdH4fzN+9913uvLKK/Xjjz8qLi4uhBUCcDI22wTgWtdee6127Nih/fv3q3Pnzo3+3IEDB7Ry5UoCFIAGMRIFAAAQANZEAQAABIAQBQAAEABCFAAAQAAIUQAAAAEgRAEAAASAEAUAABAAQhQAAEAACFEAAAABIEQBAAAE4P8DVYOG2M8YovkAAAAASUVORK5CYII=", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "Caption: The temperature tau as a function of depth z\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkYAAAHFCAYAAAAXETaHAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAABWAUlEQVR4nO3dd1QUZ8MF8Du0pSioqCDRYIlGjdGlqqCCDTX2EgvG2F+NJWKNqFEwimIh9t5FRWNvL4oFBFGk7GrsscVKCBa61Pn+iPIt0eQVXJjd5f7O2XPC7OzOXSa612fKI4iiKIKIiIiIoCd1ACIiIiJNwWJERERE9AaLEREREdEbLEZEREREb7AYEREREb3BYkRERET0BosRERER0RssRkRERERvsBgRERERvcFiRERaJzIyEj4+Pnj16pXUUYhIx7AYEZHWiYyMhK+vL4sREakdixERERHRGyxGRKRVfHx8MHnyZABAjRo1IAgCBEFAaGgodu/eDQ8PD1SpUgUmJiaoV68epk6dirS0tALv4e7uDnd393fee9CgQahevXoJfAoi0lQGUgcgIiqMYcOG4cWLF1i+fDn279+PKlWqAADq16+PZcuW4auvvoKXlxfMzMxw8+ZN+Pv749KlSzhz5ozEyYlIG7AYEZFWqVq1Kj799FMAgJ2dXYERnhkzZuT/tyiKcHV1Rb169eDm5oYrV66gYcOGJR2XiLQMD6URkc64d+8ePD09YW1tDX19fRgaGsLNzQ0AcOPGDYnTEZE24IgREemE1NRUNG/eHMbGxpgzZw7q1KkDU1NTPHr0CD169EBGRobUEYlIC7AYEZFOOHPmDJ4+fYrQ0ND8USIA772k39jYGElJSe8sT0xMLM6IRKQFeCiNiLSOTCYDgAKjQIIgFHjurbVr177z+urVq+P27dvIzMzMX/b8+XNERkYWR1wi0iIsRkSkdb788ksAwNKlS3HhwgXExMSgYcOGKF++PEaOHIkDBw7g6NGj6NevHy5fvvzO6wcMGIAXL17gm2++wcmTJ7Fr1y60adMG5ubmJf1RiEjDsBgRkdZxd3eHt7c3jhw5gmbNmsHJyQn379/HsWPHYGpqim+++QZDhgxBmTJlsHv37nde7+rqiq1bt+LatWvo2rUr5syZA29v7/fe24iIShdBFEVR6hBEREREmoAjRkRERERvsBgRERERvcFiRERERPSGzhSjVatWoUaNGjA2NoaDgwPCw8OljkRERERaRieK0e7du+Hl5YXp06dDoVCgefPm6NChAx4+fCh1NCIiItIiOnFVWuPGjWFvb4/Vq1fnL6tXrx66deuGefPmSZiMiIiItInWTwmSlZWF2NhYTJ06tcByDw+Pf7yLbWZmZoE73ubl5eHFixewtLTMv3suERERaTZRFJGSkgIbGxvo6annIJjWF6PExETk5ubCysqqwHIrKyvEx8e/9zXz5s2Dr69vScQjIiKiYvbo0SNUrVpVLe+l9cXorb+P9Iii+I+jP97e3pgwYUL+z0lJSfj000/z3+eHH37AlClToK+vX3yBiYiI6KMkJyejWrVqKFu2rNreU+uLUcWKFaGvr//O6FBCQsI7o0hvyWSydyaaBIBvvvkGgYGBmD9/PqKiorBjxw5UqVKlWHITERGReqjzNBitvyrNyMgIDg4OCAkJKbA8JCQELi4uhXqvlStXIjAwEGZmZjh79izkcvk770tERES6S+uLEQBMmDABGzZswKZNm3Djxg2MHz8eDx8+xMiRIwv9Xv3790dsbCwaNmyIhIQEtGvXDjNmzEBOTk4xJCciIiJNohPFqE+fPliyZAlmz54NuVyOc+fO4fjx47C1tS3U+2RlZQEAPv/8c1y8eBEjR46EKIqYO3cuWrVqhcePHxdHfCIiItIQOnEfo4+VnJwMCwsLPH369J1zinbv3o3hw4cjJSUFlpaW2LZtG7766iuJkhIREdFbb7+/k5KSYG5urpb31IkRI3UxMHj3XPQ+ffogLi4O9vb2eP78OTp27IgpU6YgOztbgoRERERUnFiMVLzvSjUA+OyzzxAZGYkxY8YAABYuXAg3NzdOOUJERKRjWIw+kEwmw/Lly7F3715YWFjgwoULkMvlOHz4sNTRiIiISE1YjAqpZ8+eUCgUcHJywsuXL9G1a1eMHz8+/8RtIiIi0l4sRirS0tI+aL0aNWogIiICXl5eAIAlS5agWbNmuH//fjGmIyIiouLGYlRERkZG+Pnnn3Ho0CGUL18e0dHRsLOzw/79+6WORkREREXEYqTCxMSk0K/p0qULFAoFmjZtiqSkJPTs2RNjx45FZmZmMSQkIiKi4sRipEJPr2i/DltbW4SFhWHKlCkAgBUrVqBp06a4c+eOOuMRERFRMWMxUhNDQ0P4+/vj+PHjsLS0hEKhgL29PXbv3i11NCIiIvpALEYq1HHTxg4dOkCpVKJ58+ZISUlB3759MXLkSGRkZKghIRERERUnFiMV6rrkvmrVqjhz5gymT58OQRCwdu1aNGnSBLdu3VLL+xMREVHxYDFSoa+vr7b3MjAwwJw5c3DixAlUrlwZV65cgYODAwIDA9W2DSIiIlIvFiMVxsbGan/Ptm3bQqlUomXLlkhLS8OAAQMwdOhQpKenq31bRERE9HFYjEpAlSpVEBISAh8fHwiCgE2bNsHJyQnXr1+XOhoRERGpYDEqIfr6+pg1axZOnz4Na2trXL9+HY6OjtiyZYvU0YiIiOgNFiMVHzolyMdo2bIllEol2rZti4yMDAwePBgDBw5EampqsW+biIiI/h2LkQSsrKwQHByMuXPnQk9PD9u2bYOTkxOuXLkidTQiIqJSjcVIRVGmBCkqPT09TJs2DaGhofjkk09w8+ZNNG7cGOvWrYMoiiWWg4iIiP4fi5GKok4J8jGaN28OpVKJDh064PXr1xgxYgQ8PT2RnJxc4lmIiIhKOxYjDVCxYkUcPXoUCxYsgIGBAYKCguDg4ACFQiF1NCIiolKFxUiFOqYEKSo9PT1MnjwZ586dw6effoo7d+6gSZMmWLlyJQ+tERERlRAWIxXqmhLkYzRt2hQKhQJdunRBVlYWxowZg6+//hqvXr2SOhoREZHOYzFSoc4pQT5GhQoVcPDgQQQEBMDQ0BD79u2Dvb09oqOjpY5GRESk01iMVBTHlCBFJQgCxo8fj4iICFSvXh3379+Hq6srlixZwkNrRERExYTFSMM5OztDoVCgR48eyM7Oxvjx49G9e3e8ePFC6mhEREQ6h8VIC5QrVw579+7FihUrYGRkhEOHDsHOzg4XLlyQOhoREZFOYTFSockz3guCgNGjR+PChQuoVasWHj58iBYtWmDhwoXIy8uTOh4REZFOYDFSoQ3n7tjb2yMuLg59+vRBTk4OpkyZgs6dOyMxMVHqaERERFqPxUiFJp18/W/Mzc2xa9curF27FjKZDMePH4dcLkd4eLjU0YiIiLQai5EKTblc/0MIgoD//Oc/uHTpEurUqYMnT56gZcuW8PPz46E1IiKiImIx0nINGzZEbGwsvvnmG+Tm5mL69Olo3749EhISpI5GRESkdViMVOTk5EgdoUjKlCmDbdu2YePGjTAxMUFISAgaNWqEs2fPSh2NiIhIq7AYqcjMzJQ6QpEJgoAhQ4YgOjoa9evXR3x8PNq0aQNfX1/k5uZKHY+IiEgrsBip0NPT/l/HF198gUuXLmHw4MHIy8uDj48P2rZti2fPnkkdjYiISONpfxNQIxMTE6kjqIWZmRk2bdqEbdu2wczMDGfPnoVcLkdISIjU0YiIiDQai5EOGzBgAGJiYvDll18iISEB7dq1w4wZM7T2XCoiIqLixmKk4+rWrYuoqCiMGDECoihi7ty5aNWqFZ48eSJ1NCIiIo3DYqRCk6cE+RgmJiZYs2YNdu3ahbJlyyI8PBxyuRzBwcFSRyMiItIoLEYqtGFKkI/Rt29fxMbGws7ODomJiejQoQOmTp2K7OxsqaMRERFpBBYjFdoyJcjHqF27NiIjIzFmzBgAgL+/P9zd3fHw4UOJkxEREUmPxUiFNk0J8jGMjY2xfPly7N27FxYWFoiMjISdnR2OHDkidTQiIiJJsRiVYj179kRcXBycnJzw4sULdOnSBRMnTkRWVpbU0YiIiCTBYqSiNF7GXrNmTURERGD8+PEAgICAADRv3hz379+XOBkREVHJYzFSoc1TgnwMIyMjBAQE4ODBgyhXrhwuXboEOzs77N+/X+poREREJYrFSIUuTAnyMbp27QqlUokmTZogKSkJPXv2xNixY0ttYSQiotKndDeBv9GVKUE+hq2tLc6dO4dJkyYBAFasWAEXFxfcuXNH4mRERETFj8WI3mFoaIiFCxfi6NGjsLS0RFxcHOzt7bFnzx6poxERERUrFiP6Rx07doRSqUSzZs2QkpKCPn36YOTIkcjIyJA6GhERUbFgMVLBL/x3Va1aFWfPnsW0adMgCALWrl2LJk2a4NatW1JHIyIiUjsWIxV5eXlSR9BIBgYGmDt3LoKDg1GpUiVcuXIFDg4OCAwMlDoaERGRWrEYqZDJZFJH0GgeHh5QKpVwd3dHWloaBgwYgKFDh+rs5LtERFT6sBipMDAwkDqCxrOxscGpU6cwa9YsCIKATZs2wdnZGdevX5c6GhER0UdjMaJC09fXh4+PD06dOgVra2tcu3YNjo6O2LJli9TRiIiIPgqLkYrc3FypI2iVVq1aQalUom3btsjIyMDgwYMxcOBApKamSh2NiIioSFiMVLx+/VrqCFrHysoKwcHBmDNnDvT09LBt2zY4OTnh119/lToaERFRobEYqSjtU4IUlZ6eHqZPn46zZ8/CxsYGN2/ehLOzM9atWwdRFKWOR0RE9MHYBFRwSpCP06JFCyiVSnTo0AGvX7/GiBEj4OnpieTkZKmjERERfRAWI1KrSpUq4ejRo/D394e+vj6CgoLg4OAAhUIhdTQiIqL/icWI1E5PTw9TpkzBuXPnUK1aNdy5cwdNmzbFqlWreGiNiIg0GouRCk4Jol4uLi5QKpXo3LkzMjMzMXr0aPTu3RtJSUlSRyMiInovFiMVnBJE/SpUqIBDhw4hICAAhoaG2Lt3L+zt7RETEyN1NCIionewGKnglCDFQxAEjB8/HhEREahevTru3bsHFxcXLF26lIfWiIhIo7AYqeCUIMXL2dkZCoUCPXr0QHZ2Nry8vNC9e3e8fPlS6mhEREQANLwYzZs3D05OTihbtiwqV66Mbt264datWwXWEUURPj4+sLGxgYmJCdzd3XHt2jWJEtP/Uq5cOezduxfLly+HkZERDh06BDs7O1y8eFHqaERERJpdjMLCwjB69GhcvHgRISEhyMnJgYeHB9LS0vLXWbBgAQICArBixQpER0fD2toabdu2RUpKSqG3xylBSoYgCBgzZgwuXLiAWrVq4ffff0fz5s2xaNEinudFRESSEkQtOsnjzz//ROXKlREWFoYWLVpAFEXY2NjAy8sLP/zwAwAgMzMTVlZW8Pf3x4gRIz7ofZOTk2FhYYGnT5+iSpUqxfkR6G+Sk5MxfPhw7NmzBwDQsWNHbNmyBRUrVpQ4GRERabq3399JSUkwNzdXy3tq9IjR3729zLtChQoAgPv37yM+Ph4eHh7568hkMri5uSEyMvIf3yczMxPJyckFHsBfIxlUsszNzREUFIQ1a9ZAJpPh2LFjsLOzQ0REhNTRiIioFNKaYiSKIiZMmIBmzZqhQYMGAID4+HgAf01kqsrKyir/ufeZN28eLCws8h/VqlUDAJiamhZTevo3giBgxIgRiIqKQp06dfD48WO4u7tj3rx5PLRGREQlSmuK0ZgxY3DlyhXs2rXrnef+PtIjiuK/jv54e3sjKSkp//Ho0SO156XCa9SoEWJiYtC/f3/k5uZi2rRp6NChAxISEqSORkREpYRWFKOxY8fi8OHDOHv2LKpWrZq/3NraGgDeGR1KSEh4ZxRJlUwmg7m5eYEHaYayZcti+/bt2LhxI0xMTHDy5EnI5XKEhoZKHY2IiEoBjS5GoihizJgx2L9/P86cOYMaNWoUeL5GjRqwtrZGSEhI/rKsrCyEhYXBxcWl0Nt7/fr1R2emjycIAoYMGYJLly6hXr16ePbsGVq3bo3Zs2fzykEiIipWGl2MRo8ejcDAQOzcuRNly5ZFfHw84uPj8+c0EwQBXl5e8PPzw4EDB3D16lUMGjQIpqam8PT0LPT2+KWrWRo0aIDo6GgMGjQIeXl5mDVrFjw8PP71/DEiIqKPodGX6//TeUKbN2/GoEGDAPw1quTr64u1a9fi5cuXaNy4MVauXJl/gvaHeHu5X2JiIiwtLdURndRs+/btGDlyJNLT02FlZYXAwEC0adNG6lhERCSh4rhcX6OLUUkpjl8sqd/NmzfRu3dv/PrrrxAEAdOnT8esWbM4lQsRUSlV6u9jRKVb3bp1ERUVheHDh0MURcyZMwetW7fGkydPpI5GREQ6gsVIBc8x0nwmJiZYt24ddu7ciTJlyuDcuXOQy+UIDg6WOhoREekAFiMVvCpNe/Tr1w9xcXGQy+VITExEhw4d4O3tjezsbKmjERGRFmMxUsEpQbRL7dq1ceHCBYwaNQoAMH/+fLi7u/OGnUREVGQsRio4JYj2MTY2xsqVK/HLL7/A3NwckZGRkMvlOHr0qNTRiIhIC7EYkU7o1asXFAoFHB0d8eLFC3Tu3BkTJ05EVlaW1NGIiEiLsBiRzqhZsyYiIiLg5eUFAAgICEDz5s1x//59aYMREZHWYDFSwZOvtZ9MJsPPP/+MgwcPoly5crh06RLs7e1x4MABqaMREZEWYDFSwcv1dUfXrl2hVCrRpEkTvHr1Cj169MD333+PzMxMqaMREZEGYzFSYWRkJHUEUiNbW1ucO3cOkyZNAgAsX74crq6uuHv3rsTJiIhIU7EYqTA0NJQ6AqmZoaEhFi5ciKNHj8LS0hKxsbGwt7fHL7/8InU0IiLSQCxGVCp07NgRSqUSrq6uSE5ORu/evTFq1CieV0ZERAWwGKnIy8uTOgIVo6pVqyI0NBTe3t4AgNWrV6NJkya4ffu2xMmIiEhTsBipyMjIkDoCFTMDAwP4+fkhODgYlSpVwuXLl+Hg4ICdO3dKHY2IiDQAixGVSu3atYNSqYS7uztSU1PRv39/DBs2DOnp6VJHIyIiCbEYqTAzM5M6ApUgGxsbnDp1CjNnzoQgCNi4cSMaN26MGzduSB2NiIgkwmJEpZq+vj58fX1x6tQpWFlZ4erVq3B0dMTWrVuljkZERBJgMSIC0KpVK1y+fBlt2rRBeno6Bg0ahIEDByI1NVXqaEREVIJYjFTwrsilm5WVFYKDg/HTTz9BT08P27Ztg5OTE3799VepoxERUQlhMVKRk5MjdQSSmL6+PmbMmIEzZ87AxsYGN2/ehLOzMzZs2ABRFKWOR0RExYzFSAXvfE1vubm5QalUon379nj9+jWGDx+O/v37IyUlRepoRERUjFiMVHCuNFJVqVIlHDt2DPPnz4e+vj527doFe3t7KBQKqaMREVExYTEi+hd6enr44YcfEBYWhqpVq+LOnTto2rQpVq9ezUNrREQ6iMVIBacEoX/i6uoKpVKJTp06ITMzE6NGjUKfPn2QlJQkdTQiIlIjFiMVnBKE/o2lpSUOHz6MxYsXw8DAAL/88gvs7e0RGxsrdTQiIlITFiOiQhAEARMmTEBERARsbW1x7949NG3aFMuWLeOhNSIiHcBipIJTgtCHaty4MRQKBbp3747s7GyMGzcOPXr0wMuXL6WORkREH4HFiKiIypcvj3379mH58uUwMjLCwYMHYWdnh6ioKKmjERFREbEYEX0EQRAwZswYREZGolatWvj999/RrFkzLF68mCfzExFpIRYjFZwShIrKwcEBsbGx6N27N3JycjBp0iR06dIFz58/lzoaEREVAouRCk4JQh/DwsICQUFBWL16NWQyGY4dOwa5XI6IiAipoxER0QdiMVLBKUHoYwmCgJEjR+LixYuoXbs2Hj9+DHd3d8yfP5+H1oiItACLkQpOCULqIpfLERsbC09PT+Tm5sLb2xtfffUVEhISpI5GRET/gsWIqJiULVsWgYGBWL9+PYyNjXHixAnI5XKEhYVJHY2IiP4Bi5EK3qCP1E0QBAwbNgzR0dGoV68enj17hlatWmH27NnIzc2VOh4REf0Ni5GK9PR0qSOQjmrQoAGio6MxaNAg5OXlYdasWWjXrh3i4+OljkZERCpYjIhKiJmZGTZv3oytW7fC1NQUp0+fhlwux+nTp6WORkREb7AYqTA1NZU6ApUC3377LWJiYtCgQQP88ccfaNu2LWbOnMnbRRARaQAWIxWCIEgdgUqJevXqISoqCsOGDYMoivjpp5/QunVrPHnyROpoRESlGosRkURMTU2xfv167NixA2XKlMG5c+cgl8sRHBwsdTQiolKLxUhFVlaW1BGoFPL09ERsbCwaNWqExMREdOjQAd7e3jy0RkQkARYjFdnZ2VJHoFKqTp06uHjxIr777jsAwPz58+Hu7o5Hjx5JnIyIqHRhMVLBKUFISsbGxli1ahX27NkDc3NznD9/HnK5HEePHpU6GhFRqcFipIJTgpAm+PrrrxEXFwcHBwe8ePECnTt3xqRJk3iol4ioBLAYEWmgWrVq4fz58/j+++8BAIsXL0aLFi3w4MEDaYMREek4FiMVnBKENIlMJsPSpUuxf/9+lCtXDlFRUbCzs8PBgweljkZEpLNYjFRwShDSRN27d4dCoYCzszNevXqF7t27Y9y4ccjMzJQ6GhGRzmExItIC1atXR3h4OCZOnAgAWLZsGVxdXXH37l2JkxER6RYWIxWcEoQ0mZGRERYtWoQjR46gQoUKiI2Nhb29PX755RepoxER6QwWIxWcEoS0QadOnaBUKuHq6ork5GT07t0bo0aNwuvXr6WORkSk9ViMiLRQtWrVcPbsWXh7ewMAVq9ejaZNm+K3336TOBkRkXZjMVLB+8SQNjE0NISfnx+Cg4NRsWJFKJVK2NvbY9euXVJHIyLSWixGKjglCGmjdu3a4fLly3Bzc0Nqaio8PT0xfPhwXmVJRFQELEYqDAwMpI5AVCQ2NjY4ffo0Zs6cCUEQsGHDBjRu3Bg3btyQOhoRkVZhMVIhk8mkjkBUZPr6+vD19UVISAisrKxw9epVODo6YuvWrVJHIyLSGixGRDqmdevWUCqVaN26NdLT0zFo0CAMGjQIaWlpUkcjItJ4LEZEOsja2honTpzA7Nmzoaenh61bt8LJyQlXr16VOhoRkUZjMVLBf1GTLtHX18ePP/6IM2fOwMbGBjdu3ICTkxM2btzIeQGJiP4BixGRjnNzc4NSqUS7du3w+vVrDBs2DAMGDEBKSorU0YiINA6LkQoTExOpIxAVi0qVKuH48eOYN28e9PX1sWPHDjg6OuLy5ctSRyMi0igsRir09PjrIN2lp6eHqVOnIiwsDFWrVsXt27fRuHFjrFmzhofWiIjeYBMgKmVcXV2hVCrRqVMnZGZm4rvvvkPfvn2RlJQkdTQiIsmxGKnglCBUWlhaWuLw4cNYtGgRDAwMsGfPHtjb2yMmJkbqaEREktKqYjRv3jwIggAvL6/8ZaIowsfHBzY2NjAxMYG7uzuuXbtWpPfnlCBUmgiCgIkTJyI8PBy2tra4d+8eXFxcsGzZMh5aI6JSS2uKUXR0NNatW4eGDRsWWL5gwQIEBARgxYoViI6OhrW1Ndq2bVukK244JQiVRk2aNIFCoUC3bt2QnZ2NcePGoWfPnnj58qXU0YiISpxWFKPU1FT0798f69evR/ny5fOXi6KIJUuWYPr06ejRowcaNGiArVu3Ij09HTt37iz0djglCJVW5cuXx/79+7F06VIYGhriwIEDsLOzQ1RUlNTRiIhKlFYUo9GjR6Njx45o06ZNgeX3799HfHw8PDw88pfJZDK4ubkhMjLyH98vMzMTycnJBR5EpZ0gCPj+++8RGRmJmjVr4vfff0ezZs2wePFiHlojolJD44tRUFAQ4uLiMG/evHeei4+PBwBYWVkVWG5lZZX/3PvMmzcPFhYW+Y9q1aqpNzSRFnN0dERcXBy+/vpr5OTkYNKkSejSpQueP38udTQiomKn0cXo0aNHGDduHAIDA2FsbPyP6wmCUOBnURTfWabK29sbSUlJ+Y9Hjx4B4JQgRG9ZWFhg9+7dWLVqFWQyGY4ePQo7OzucP39e6mhERMVKo4tRbGwsEhIS4ODgAAMDAxgYGCAsLAzLli2DgYFB/kjR30eHEhIS3hlFUiWTyWBubl7gQUQFCYKA7777DhcvXkTt2rXx6NEjuLm5Yf78+cjLy5M6HhFRsdDoYtS6dWv8+uuvUCqV+Q9HR0f0798fSqUSNWvWhLW1NUJCQvJfk5WVhbCwMLi4uBR6e5wShOhdcrkcsbGx8PT0RG5uLry9vdGxY0f8+eefUkcjIlI7jb4+vWzZsmjQoEGBZWZmZrC0tMxf7uXlBT8/P9SuXRu1a9eGn58fTE1N4enpWejtcUoQovcrW7YsAgMD0bJlS4wdOxbBwcFo1KgRdu3aBTc3N6njERGpjdY3gSlTpsDLywujRo2Co6Mjnjx5gpMnT6Js2bJSRyPSKYIgYNiwYYiOjkbdunXx7NkztGrVCnPmzEFubq7U8YiI1EIQeR0ukpOTYWFhgcTERFhaWkodh0jjpaWlYfTo0di6dSsAoE2bNggMDPzXc/uIiNTt7fd3UlKS2s4X1voRI3XiXGlEH8bMzAxbtmzBli1bYGpqilOnTqFRo0Y4c+aM1NGIiD4Ki5EKfX19qSMQaZWBAwciJiYGDRo0wB9//IE2bdpg1qxZPLRGRFqLxUjFv90riYjer169eoiKisKwYcMgiiJmz56NNm3a4OnTp1JHIyIqNBYjIvpopqamWL9+PXbs2IEyZcogNDQUcrkcJ0+elDoaEVGhsBgRkdp4enoiNjYWjRo1wp9//ol27dph2rRpyMnJkToaEdEHYTFSkZ6eLnUEIq1Xp04dXLx4Ed999x2Av+YmdHd3z596h4hIk7EYqeCdC4jUw9jYGKtWrcLu3bthbm6O8+fPQy6X49ixY1JHIyL6VyxGKnjyNZF69e7dG3FxcXBwcMCLFy/QqVMnTJ48GdnZ2VJHIyJ6LxYjFbxcn0j9atWqhfPnz2Ps2LEAgEWLFqF58+Z48OCBtMGIiN6DxYiIip1MJsOyZcuwf/9+lCtXDlFRUbCzs8PBgweljkZEVACLkQoO7xMVr+7du0OhUMDZ2RmvXr1C9+7dMW7cOGRmZkodjYgIAItRAZwShKj4Va9eHeHh4Zg4cSIAYNmyZXB1dcW9e/ckTkZExGJUAM8xIioZRkZGWLRoEY4cOYIKFSogNjYWdnZ22Lt3r9TRiKiUYzFSwavSiEpWp06doFQq4eLiguTkZHz99dcYPXo0Xr9+LXU0IiqlCl2Mbt26BR8fH7Ru3Rq1atVClSpV0LBhQwwcOBA7d+7kuQJEVCjVqlVDaGgopk6dCgBYtWoVmjZtit9++03iZERUGgniB97VUKFQYMqUKQgPD4eLiwucnZ3xySefwMTEBC9evMDVq1cRHh6O5ORkTJkyBV5eXpDJZMWdXy2Sk5NhYWGBpKQkmJubSx2HqNQKDg7GgAEDkJiYiDJlymDdunXo16+f1LGISEMVx/f3BxcjW1tbTJ48GZ6enqhQocI/rnfhwgX8/PPPkMvlmDZtmlpCFre3v9hnz57B2tpa6jhEpdqTJ0/g6emJc+fOAQCGDx+OpUuXwsTEROJkRKRpJC1GWVlZMDIy+uA3Luz6Unr7i3369CmqVKkidRyiUi8nJwe+vr6YO3cuRFHEl19+iT179qBu3bpSRyMiDVIcxeiDzzEqbMnRllKkiidfE2kGAwMD/PTTTzh58iSsrKzw66+/wsHBAdu2bZM6GhHpuA8eMfq7S5cuITQ0FAkJCcjLyyvwXEBAgFrClRSeY0SkueLj49G/f3+cOXMGADBo0CCsWLECZmZmEicjIqlJeihNlZ+fH2bMmIHPP/8cVlZWEATh/99QEPL/AtMWLEZEmi03Nxd+fn7w8fFBXl4e6tevjz179uCLL76QOhoRSUhjipGVlRX8/f0xaNAgtYSQ2ttf7PPnz//1xHIiklZoaCg8PT3x7NkzmJiYYPny5RgyZEiBf5wRUekh6TlGBV6kpwdXV1e1BNAkvAcTkWZzd3eHUqmEh4cHMjIyMGzYMAwYMAApKSlSRyMiHVGkYjR+/HisXLlS3Vkkp6fHG4ETabrKlSvjv//9L/z8/KCvr48dO3bA0dERly9fljoaEemAIh1Ky8vLQ8eOHXH79m3Ur18fhoaGBZ7fv3+/2gKWBJ5jRKSdIiIi0LdvXzx58gQymQxLlizBiBEjeGiNqJTQmENpY8eOxdmzZ1GnTh1YWlrCwsKiwIOIqCQ0a9YMSqUSHTt2RGZmJr777jv07dsXSUlJUkcjIi1VpBGjsmXLIigoCB07diyOTCWOI0ZE2i0vLw8BAQHw9vZGTk4OatWqhd27d8PBwUHqaERUjDRmxKhChQqoVauWWgJokoyMDKkjEFER6OnpYdKkSQgPD4etrS3u3r0LFxcXLF++HEW8VRsRlVJFKkY+Pj6YNWsW0tPT1Z1HUn+/USURaZcmTZpAoVCga9euyMrKwvfff49evXrh1atXUkcjIi1RpENpdnZ2uHv3LkRRRPXq1d85+TouLk5tAUvC26G4Fy9eoHz58lLHIaKPJIoili1bhsmTJyM7OxvVq1fH7t274ezsLHU0IlKj4jiUZlCUF3Xr1k0tG9c0+vr6UkcgIjUQBAHjxo2Dq6sr+vTpg3v37sHV1RX+/v4YP348r1ojon9U5LnSdAlPvibSXUlJSRg2bBj27t0LAOjcuTO2bNnCu9wT6QCNOfn6Q2hj38rJyZE6AhGpmYWFBfbs2YOVK1fCyMgIR44cgVwuR2RkpNTRiEgDfXAxqlevHnbu3ImsrKx/Xe+3337Dd999B39//48OV9I4JQiRbhIEAaNGjcLFixfx2Wef4dGjR2jRogUWLFjAiy6IqIAPPpR25swZ/PDDD7hz5w48PDzg6OgIGxsbGBsb4+XLl7h+/ToiIiJw/fp1jBkzBtOmTdOaw1Jvh+Li4+NhZWUldRwiKkYpKSkYMWIEdu3aBQDo0KEDtm7dikqVKkmcjIgKqzgOpRX6HKPIyEjs3r0b586dw4MHD5CRkYGKFSvCzs4O7dq1wzfffINy5cqpJVxJ4TlGRKWLKIrYsGEDvv/+e7x+/Ro2NjbYtWsXWrRoIXU0IioEjShGuojFiKh0unLlCnr37o1bt25BT08Pvr6+8Pb25hWqRFpCq06+JiLSdA0bNkRMTAwGDBiAvLw8/Pjjj2jfvj3++OMPqaMRkURYjFRwShCi0qdMmTLYtm0bNm/eDFNTU5w6dQpyuRxnzpyROhoRSYDFSAWvTiEqvQYNGoTo6Gh88cUXiI+PR5s2bTBr1izk5uZKHY2IShCLkQqZTCZ1BCKSUP369XHp0iUMHToUoihi9uzZaNOmDZ4+fSp1NCIqISxGKgwMijRDChHpEFNTU2zYsAGBgYEoU6YMQkNDIZfLcfLkSamjEVEJKFIxatWqFXx9fd9Z/vLlS7Rq1eqjQxERSa1///6IjY1Fo0aN8Oeff6J9+/aYPn0675BPpOOKVIxCQ0OxYsUKdOvWDWlpafnLs7KyEBYWprZwJY3nEhCRqjp16uDChQsYOXIkRFGEn58fWrZsicePH0sdjYiKSZEPpZ06dQrx8fFo0qQJHjx4oMZI0nn9+rXUEYhIw5iYmGD16tXYvXs3ypYti4iICMjlchw/flzqaERUDIpcjKpUqYKwsDA0bNgQTk5OCA0NVWMsaQiCIHUEItJQvXv3RlxcHOzt7fH8+XN07NgRU6ZMQXZ2ttTRiEiNilSM3hYImUyGHTt2YNy4cWjfvj1WrVql1nAlzdTUVOoIRKTBPvvsM0RGRmLs2LEAgIULF6JFixb4/fffJU5GROpSpGL091lEZsyYgR07dmDx4sVqCUVEpKlkMhmWLVuGffv2wcLCAhcvXoSdnR0OHTokdTQiUoMiFaP79++/MxN1z549ERUVhU2bNqklGBGRJuvRowcUCgWcnZ3x8uVLdOvWDePHj0dWVpbU0YjoI3ASWfz/JHTx8fGwsrKSOg4RaZGsrCx4e3sjICAAAODo6Ijdu3ejZs2aEicj0n2cRLaYcUoQIiosIyMjLF68GIcPH0b58uURExMDOzs77Nu3T+poRFQELEYqOCUIERVV586doVQq4eLiguTkZPTq1QtjxozhbUCItAyLkQpOCUJEH+PTTz9FaGgofvjhBwDAypUr4eLigjt37kicjIg+FIsREZEaGRoaYv78+Th+/DgqVqwIhUIBe3t7BAUFSR2NiD4Ai5EKTglCROrSoUMHKJVKtGjRAikpKejXrx9GjBiBjIwMqaMR0b9gMVLBcwGISJ0++eQTnD59GjNmzIAgCFi3bh0aN26MmzdvSh2NiP4Bi5EKTglCROpmYGCAn376CSdOnEDlypXx66+/wtHREdu3b5c6GhG9B4uRCk4JQkTFpW3btrh8+TJatWqFtLQ0fPvttxgyZAjS0tKkjkZEKliMiIhKiLW1NU6ePAlfX1/o6elh8+bNcHZ2xrVr16SORkRvsBgREZUgfX19zJw5E6dPn4a1tTWuX78OJycnbNq06Z15KImo5LEYqeDJ10RUUtzd3XH58mV4eHggIyMDQ4cOxbfffovU1FSpoxGVaixGKni5PhGVpMqVK+O///0v5s6dCz09PQQGBsLBwQFXrlyROhpRqcVipMLIyEjqCERUyujp6WHatGkIDQ3FJ598gtu3b8PZ2Rlr167loTUiCWh8MXry5Am++eYbWFpawtTUFHK5HLGxsfnPi6IIHx8f2NjYwMTEBO7u7kU+kdHQ0FBdsYmICqV58+ZQKpX46quvkJmZiZEjR6Jfv35ITk6WOhpRqaLRxejly5dwdXWFoaEh/vvf/+L69etYvHgxypUrl7/OggULEBAQgBUrViA6OhrW1tZo27YtUlJSpAtORFQEFStWxJEjR7Bw4UIYGBhg9+7dcHBwQFxcnNTRiEoNQdTgsdqpU6fi/PnzCA8Pf+/zoijCxsYGXl5e+ZM2ZmZmwsrKCv7+/hgxYsQHbSc5ORkWFhZ4+fJlgdJFRCSVCxcuoG/fvnj48CGMjIywePFijB49mjeiJVLx9vs7KSkJ5ubmanlPjR4xOnz4MBwdHfH111+jcuXKsLOzw/r16/Ofv3//PuLj4+Hh4ZG/TCaTwc3NDZGRkf/4vpmZmUhOTi7wAMA5jIhIYzRt2hQKhQJdu3ZFVlYWxo4di6+//hqvXr2SOhqRTtPoYnTv3j2sXr0atWvXxokTJzBy5Eh8//332LZtGwAgPj4eAGBlZVXgdVZWVvnPvc+8efNgYWGR/6hWrVrxfQgioiKqUKECDhw4gCVLlsDQ0BD79u2DnZ0dLl26JHU0Ip2l0cUoLy8P9vb28PPzg52dHUaMGIHhw4dj9erVBdb7+9CyKIr/Otzs7e2NpKSk/MejR48AAGZmZur/EEREH0EQBIwbNw7nz59HjRo18ODBAzRr1gw///wzr1ojKgYaXYyqVKmC+vXrF1hWr149PHz4EMBft9cH8M7oUEJCwjujSKpkMhnMzc0LPIiINJmTkxMUCgV69eqF7OxsTJgwAd26dcOLFy+kjkakUzS6GLm6uuLWrVsFlt2+fRu2trYAgBo1asDa2hohISH5z2dlZSEsLAwuLi4lmpWIqLhZWFhgz549WLFiBYyMjHD48GHI5fJ/PaeSiApHo4vR+PHjcfHiRfj5+eHOnTvYuXMn1q1bh9GjRwP4a4jZy8sLfn5+OHDgAK5evYpBgwbB1NQUnp6ehd4epwQhIk0nCAJGjx6Nixcv4rPPPsOjR4/QokULLFiwAHl5eVLHI9J6Gn25PgAcPXoU3t7e+O2331CjRg1MmDABw4cPz39eFEX4+vpi7dq1ePnyJRo3boyVK1eiQYMGH7yNt5f7PX36FFWqVCmOj0FEpHbJyckYMWIEgoKCAAAdOnTA1q1bUalSJYmTEZWM4rhcX+OLUUl4+4tNTEyEpaWl1HGIiD6YKIrYsGEDvv/+e7x+/Ro2NjYICgpC8+bNpY5GVOxK3X2MShqnBCEibSMIAoYPH46oqCh8/vnnePr0Kdzd3TF37lweWiMqAhYjIiId0LBhQ8TExGDAgAHIy8vDjBkz0L59e/zxxx9SRyPSKixGKvivKyLSZmXKlMG2bduwefNmmJiYICQkBHK5HGfPnpU6GpHWYDFSwSlBiEgXDBo0CDExMfjiiy8QHx+PNm3awNfXF7m5uVJHI9J4LEZERDqofv36uHTpEoYOHYq8vDz4+PjAw8MDz549kzoakUZjMVLBKUGISJeYmppiw4YNCAwMhJmZGc6cOQO5XF7gprhEVBCLERGRjuvfvz9iY2PRsGFDJCQkoF27dpgxYwZycnKkjkakcViMiIhKgc8//xwXL17EiBEjIIoi5s6di1atWuHx48dSRyPSKCxGKjIzM6WOQERUbExMTLBmzRoEBQWhbNmyCA8Ph1wux/Hjx6WORqQxWIxUcFiZiEqDPn36IC4uDnZ2dnj+/Dk6duyIKVOmIDs7W+poRJJjMVLBO18TUWnx2WefITIyEmPGjAEALFy4EG5ubnj48KHEyYikxWKkwsjISOoIREQlxtjYGMuXL8fevXthYWGBCxcuQC6X4/Dhw1JHI5IMixERUSnXs2dPKBQKODk54eXLl+jatSvGjx+PrKwsqaMRlTgWIxWiKEodgYhIEjVq1EBERAS8vLwAAEuWLEGzZs1w//59aYMRlTAWIxXp6elSRyAikoyRkRF+/vlnHDp0COXLl0d0dDTs7Oywb98+qaMRlRgWIyIiKqBLly5QKBRo2rQpkpKS0KtXL4wdOxavX7+WOhpRsWMxUsEpQYiI/mJra4uwsDBMmTIFALBixQq4uLjgzp07EicjKl4sRkRE9F6Ghobw9/fHsWPHYGlpCYVCAXt7e+zevVvqaETFhsWIiIj+1VdffQWlUonmzZsjJSUFffv2xciRI5GRkSF1NCK1YzFSwSlBiIjer2rVqjhz5gymT58OQRCwdu1aNGnSBLdu3ZI6GpFasRip4JQgRET/zMDAAHPmzMGJEydQuXJlXLlyBQ4ODggMDJQ6GpHasBip4JQgRET/W9u2baFUKtGyZUukpaVhwIABGDJkCG95QjqBxUgFpwQhIvowVapUQUhICHx8fCAIAjZv3gwnJydcu3ZN6mhEH4XFiIiIikRfXx+zZs3C6dOnYW1tjevXr8PJyQmbN2/mTAKktViMVPAPMhFR4bVs2RJKpRJt27ZFRkYGhgwZgoEDByI1NVXqaESFxmKkgsfHiYiKxsrKCsHBwZg7dy709PSwfft2ODo64sqVK1JHIyoUFiMiIlILPT09TJs2DaGhofjkk09w69YtNG7cGOvWreOIPGkNFiMVpqamUkcgItJ6zZs3h1KpRIcOHfD69WuMGDECnp6eSE5Oljoa0f/EYqRCEASpIxAR6YSKFSvi6NGjWLBgAQwMDBAUFAQHBwcoFAqpoxH9KxYjIiIqFnp6epg8eTLOnTuHTz/9FHfu3EGTJk2wcuVKHlojjcVipCIrK0vqCEREOqdp06ZQKBTo0qULsrKyMGbMGPTu3RuvXr2SOhrRO1iMVGRnZ0sdgYhIJ1WoUAEHDx7Ezz//DENDQ+zduxf29vaIjo6WOhpRASxGKgwMDKSOQESkswRBgJeXF86fP4/q1avj/v37cHV1xZIlS3hojTQGi5EKmUwmdQQiIp3n5OQEhUKBHj16IDs7G+PHj0f37t3x4sULqaMRsRgREVHJK1euHPbu3YsVK1bAyMgIhw4dgp2dHS5evCh1NCrlWIyIiEgSgiBg9OjRuHDhAmrVqoWHDx+iefPmWLhwIfLy8qSOR6UUi5GKtLQ0qSMQEZU69vb2iIuLQ58+fZCTk4MpU6agc+fOSExMlDoalUIsRkREJDlzc3Ps2rULa9asgUwmw/HjxyGXyxEeHi51NCplWIxUcEoQIiLpCIKAESNG4NKlS6hTpw6ePHmCli1bws/Pj4fWqMSwGKnglCBERNJr2LAhYmNj8c033yA3NxfTp09H+/btkZCQIHU0KgVYjIiISOOUKVMG27Ztw8aNG2FiYoKQkBA0atQIZ8+elToa6TgWIxWcEoSISHMIgoAhQ4YgOjoa9evXR3x8PNq0aQNfX1/k5uZKHY90FIuRCk4JQkSkeb744gtcunQJgwcPRl5eHnx8fNC2bVs8e/ZM6mikg1iMVHBKECIizWRmZoZNmzZh27ZtMDMzw9mzZyGXyxESEiJ1NNIxLEYqOCUIEZFmGzBgAGJiYvDll18iISEB7dq1w4wZM5CTkyN1NNIRLEZERKRV6tati6ioKPznP/+BKIqYO3cuWrVqhSdPnkgdjXQAixEREWkdExMTrF27Frt27ULZsmURHh4OuVyO4OBgqaORlmMxUsEpQYiItEvfvn0RGxsLOzs7JCYmokOHDpg6dSovpqEiYzEiIiKtVrt2bURGRmLMmDEAAH9/f7i7u+PRo0cSJyNtxGKkwsTEROoIRERUBMbGxli+fDn27t0LCwsLREZGQi6X48iRI1JHIy3DYqRCT4+/DiIibdazZ0/ExcXByckJL168QJcuXTBx4kTewJc+GJsAERHplJo1ayIiIgLjx48HAAQEBKB58+a4f/++xMlIG7AYqeDJekREusHIyAgBAQE4dOgQypcvj0uXLsHOzg779++XOhppOBYjFRxqJSLSLV26dIFCoUCTJk2QlJSEnj17YuzYscjMzJQ6GmkoFiMV+vr6UkcgIiI1s7W1xblz5zBlyhQAwIoVK+Di4oI7d+5InIw0EYuRCmNjY6kjEBFRMTA0NIS/vz+OHTsGS0tLxMXFwd7eHnv27JE6GmkYFiMiIio1vvrqKyiVSjRr1gwpKSno06cPRo4ciYyMDKmjkYZgMSIiolKlatWqOHv2LKZNmwZBELB27Vo0adIEt27dkjoaaQAWIxWcEoSIqHQwMDDA3LlzERwcjEqVKuHKlStwcHBAYGCg1NFIYixGRERUanl4eECpVMLd3R1paWkYMGAAhg4divT0dKmjkURYjFRwShAiotLHxsYGp06dwqxZsyAIAjZt2gRnZ2dcv35d6mgkARYjFZwShIiodNLX14ePjw9OnToFa2trXLt2DY6OjtiyZYvU0aiEsQkQERG90apVKyiVSrRp0wYZGRkYPHgwvv32W6SmpkodjUqIRhejnJwczJgxAzVq1ICJiQlq1qyJ2bNnIy8vL38dURTh4+MDGxsbmJiYwN3dHdeuXSvS9jglCBERWVlZ4cSJE5g7dy709PSwfft2ODk54ddff5U6GpUAjS5G/v7+WLNmDVasWIEbN25gwYIFWLhwIZYvX56/zoIFCxAQEIAVK1YgOjoa1tbWaNu2LVJSUgq9PU4JQkREwF+nVkybNg1nz56FjY0Nbt68CWdnZ6xfvx6iKEodj4qRRhejCxcuoGvXrujYsSOqV6+OXr16wcPDAzExMQD+Gi1asmQJpk+fjh49eqBBgwbYunUr0tPTsXPnzkJvj1OCEBGRqhYtWkCpVKJDhw54/fo1/vOf/6B///5F+sc3aQeNLkbNmjXD6dOncfv2bQDA5cuXERERga+++goAcP/+fcTHx8PDwyP/NTKZDG5uboiMjPzH983MzERycnKBB8ApQYiI6F2VKlXC0aNHsWDBAujr62PXrl1wcHCAUqmUOhoVA40uRj/88AP69euHunXrwtDQEHZ2dvDy8kK/fv0AAPHx8QD+Oh6sysrKKv+595k3bx4sLCzyH9WqVSu+D0FERFpPT08PkydPRnh4OKpVq4bffvsNTZo0wapVq3hoTcdodDHavXs3AgMDsXPnTsTFxWHr1q1YtGgRtm7dWmA9QRAK/CyK4jvLVHl7eyMpKSn/8ejRo2LJT0REuqVp06ZQKpXo0qULMjMzMXr0aPTu3RtJSUlSRyM10ehiNHnyZEydOhV9+/bFl19+iQEDBmD8+PGYN28eAMDa2hoA3hkdSkhIeGcUSZVMJoO5uXmBBwDe6ZSIiP6nChUq4ODBgwgICIChoSH27t0Le3v7/PNfSbtpdDFKT09/56aL+vr6+Zfr16hRA9bW1ggJCcl/PisrC2FhYXBxcSn09jgcSkREH0IQBIwfPx4RERGoXr067t27BxcXFyxdupTfJVpOo4tR586dMXfuXBw7dgwPHjzAgQMHEBAQgO7duwP4639MLy8v+Pn54cCBA7h69SoGDRoEU1NTeHp6Fnp7PPmaiIgKw9nZGQqFAj169EB2dja8vLzQo0cPvHz5UupoVESCqMHVNiUlBT/++CMOHDiAhIQE2NjYoF+/fpg5cyaMjIwA/DXK4+vri7Vr1+Lly5do3LgxVq5ciQYNGnzwdpKTk2FhYYGkpKT8w2pEREQfShRFrFy5EhMnTkRWVhZsbW0RFBSEJk2aSB1NpxXH97dGF6OSwmJERETqEBsbiz59+uDu3bswMDDAvHnzMGHCBM7FWUyK4/ube0pFTk6O1BGIiEiLOTg4IDY2Fr1790ZOTg4mT56MLl26IDExUepo9IFYjFRkZmZKHYGIiLSchYUFgoKCsHr1ashkMhw7dgx2dnaIiIiQOhp9ABYjFRzqJCIidRAEASNHjkRUVBTq1KmDx48fw93dHfPmzSswETppHjYBFSYmJlJHICIiHdKoUSPExMSgf//+yM3NxbRp09ChQwckJCRIHY3+AYsRERFRMSpbtiy2b9+OjRs3wsTEBCdPnoRcLkdoaKjU0eg9WIyIiIiKmSAIGDJkCC5duoR69erh2bNnaN26NWbPno3c3Fyp45EKFiMVnBKEiIiKU4MGDRAdHY3BgwcjLy8Ps2bNgoeHx79OfE4li8VIBW/pRERExc3MzAybNm3Ctm3bYGZmhjNnzkAul+PUqVNSRyOwGBXAKUGIiKikDBgwADExMfjyyy/xxx9/wMPDAz/++CPvqScxFiMV+vr6UkcgIqJSpG7duoiKisLw4cMhiiLmzJmD1q1b48mTJ1JHK7VYjIiIiCRkYmKCdevWYefOnShTpgzOnTsHuVyO4OBgqaOVSixGKjh8SUREUunXrx/i4uIgl8uRmJiIDh06YOrUqcjOzpY6WqnCYqSCU4IQEZGUateujQsXLmDUqFEAAH9/f7i7u+PRo0cSJys9WIxUcEoQIiKSmrGxMVauXIlffvkF5ubmiIyMhFwux5EjR6SOViqwCajglCBERKQpevXqBYVCAUdHR7x48QJdunTBxIkTkZWVJXU0ncZiREREpKFq1qyJiIgIjBs3DgAQEBCA5s2b48GDB9IG02EsRkRERBpMJpNhyZIlOHjwIMqVK4dLly7Bzs4OBw4ckDqaTmIxUpGRkSF1BCIiovfq2rUrlEolmjRpglevXqFHjx74/vvveeGQmrEYqcjLy5M6AhER0T+ytbXFuXPnMHnyZADA8uXL4erqirt370qcTHewGKmQyWRSRyAiIvpXhoaGWLBgAY4ePQpLS0vExsbC3t4ev/zyi9TRdAKLkQoDAwOpIxAREX2Qjh07QqlUolmzZkhOTkbv3r0xatQovH79WupoWo3FiIiISEtVrVoVZ8+ehbe3NwBg9erVaNKkCW7fvi1xMu3FYqQiNzdX6ghERESFYmBgAD8/PwQHB6NSpUq4fPkyHBwcsHPnTqmjaSUWIxUcfiQiIm3Vrl07KJVKuLu7IzU1Ff3798ewYcOQnp4udTStwmKkglOCEBGRNrOxscGpU6cwc+ZMCIKAjRs3onHjxrhx44bU0bQGm4AKTglCRETaTl9fH76+vggJCYGVlRWuXr0KR0dHbNmyRepoWoHFiIiISAe1bt0aly9fRps2bZCeno7Bgwdj4MCBSE1NlTqaRmMxIiIi0lFWVlYIDg7GTz/9BD09PWzbtg1OTk749ddfpY6msViMVHBKECIi0jX6+vqYMWMGzpw5AxsbG9y8eRPOzs5Yv349RFGUOp7GYTFSwSlBiIhIV7m5uUGpVKJ9+/Z4/fo1/vOf/6B///5ISUmROppGYTFSwSlBiIhIl1WqVAnHjh3D/Pnzoa+vj127dsHe3h4KhULqaBqDxUgFpwQhIiJdp6enhx9++AFhYWGoWrUq7ty5g6ZNm2LVqlU8tAYWIyIiolLJ1dUVSqUSnTp1QmZmJkaPHo3evXsjKSlJ6miSYjFSwSlBiIioNLG0tMThw4exePFiGBgYYO/evbC3t0dMTIzU0STDYqSCU4IQEVFpIwgCJkyYgPPnz6N69eq4d+8eXFxcsHTp0lJ5aI3FSIUgCFJHICIikoSzszPi4uLQvXt3ZGdnw8vLCz169MDLly+ljlaiWIxUmJqaSh2BiIhIMuXLl8e+ffuwfPlyGBkZ4eDBg7Czs0NUVJTU0UoMixERERHlEwQBY8aMQWRkJGrVqoXff/8dzZo1w+LFi0vFoTUWIyIiInqHg4MD4uLi0Lt3b+Tk5GDSpEno0qULnj9/LnW0YsVipIInXxMREf0/c3NzBAUFYfXq1ZDJZDh69Cjs7Oxw/vx5qaMVGxYjFbxcn4iIqCBBEDBy5EhERUWhTp06ePToEdzc3DB//nydnEqLxUiFkZGR1BGIiIg0UqNGjRATE4P+/fsjNzcX3t7e6NixI/7880+po6kVi5EKQ0NDqSMQERFprLJly2L79u3YsGEDjI2NERwcDLlcjrCwMKmjqQ2LEREREX0wQRAwdOhQREdHo169enj69ClatWqFn376SSdOSWExUqELO5SIiKgkNGjQANHR0Rg4cCDy8vIwc+ZMtGvXDvHx8VJH+ygsRip4VRoREdGHMzMzw5YtW7BlyxaYmpri9OnTkMvlOH36tNTRiozFSAWnBCEiIiq8gQMHIiYmBg0aNMAff/yBtm3bYubMmcjJyZE6WqGxGKnglCBERERFU69ePURFRWHYsGEQRRE//fQTWrdujadPn0odrVBYjIiIiEgtTE1NsX79euzYsQNlypTBuXPn0KhRIwQHB0sd7YOxGBEREZFaeXp6IjY2Fo0aNUJiYiI6dOgAb29vrTi0xmKkgidfExERqUedOnVw8eJFjBo1CgAwf/58uLu749GjRxIn+3csRip4uT4REZH6GBsbY+XKldizZw/Mzc1x/vx5yOVyHD16VOpo/4jFSAWnBCEiIlK/r7/+GgqFAo6Ojnjx4gU6d+6MSZMmITs7W+po72AxUsEpQYiIiIpHzZo1ERERgXHjxgEAFi9ejObNm+PBgwfSBvsbFiMiIiIqETKZDEuWLMGBAwdQrlw5REVFwc7ODgcPHpQ6Wj4WIxV5eXlSRyAiItJ53bp1g0KhQOPGjfHq1St0794dXl5eyMzMlDoai5GqjIwMqSMQERGVCtWrV0d4eDgmTpwIAFi6dClcXV1x7949SXOxGBEREZEkDA0NsWjRIhw5cgQVKlRAbGws7OzssHfvXskysRipMDMzkzoCERFRqdOpUycolUq4uroiOTkZX3/9NUaNGiXJ/QVZjIiIiEhy1apVw9mzZ+Ht7Q0AWL16NZo2bYrffvutRHOwGBEREZFGMDQ0hJ+fH4KDg1GxYkUolUrY29tj165dJZaBxUiFJpwNT0REVNq1a9cOly9fhpubG1JTU+Hp6Ynhw4cjPT292LctaTE6d+4cOnfuDBsbGwiC8M59DERRhI+PD2xsbGBiYgJ3d3dcu3atwDqZmZkYO3YsKlasCDMzM3Tp0gWPHz8uUh5tmNyOiIioNLCxscGpU6fw448/QhAEbNiwAY0bN8aNGzeKdbuSFqO0tDQ0atQIK1aseO/zCxYsQEBAAFasWIHo6GhYW1ujbdu2SElJyV/Hy8sLBw4cQFBQECIiIpCamopOnToVad4z3vmaiIhIcxgYGGD27NkICQmBlZUVrl69CkdHR2zdurX4NipqCADigQMH8n/Oy8sTra2txfnz5+cve/36tWhhYSGuWbNGFEVRfPXqlWhoaCgGBQXlr/PkyRNRT09PDA4O/uBtJyUliQDEpKSkj/8gREREpHbPnj0TW7VqJQIQAYgDBw4Unz59qvbvb409x+j+/fuIj4+Hh4dH/jKZTAY3NzdERkYCAGJjY5GdnV1gHRsbGzRo0CB/HSIiItJ+1tbWOHnyJGbPng09PT1s3boV7u7uat+OgdrfUU3i4+MBAFZWVgWWW1lZ4ffff89fx8jICOXLl39nnbevf5/MzMwCJ1onJSUBAF69eqWO6ERERFRMxo0bBwcHBwwdOhS3b98G8Nc5yeqiscXoLUEQCvwsiuI7y/7uf60zb948+Pr6vrPc1ta2aCGJiIhIMs+fP4eFhYVa3ktji5G1tTWAv0aFqlSpkr88ISEhfxTJ2toaWVlZePnyZYFRo4SEBLi4uPzje3t7e2PChAn5P7969Qq2trZ4+PCh2n6xVDTJycmoVq0aHj16BHNzc6njlGrcF5qF+0NzcF9ojqSkJHz66aeoUKGC2t5TY4tRjRo1YG1tjZCQENjZ2QEAsrKyEBYWBn9/fwCAg4MDDA0NERISgt69ewMAnj17hqtXr2LBggX/+N4ymQwymeyd5RYWFvyfXEOYm5tzX2gI7gvNwv2hObgvNIeenvpOmZa0GKWmpuLOnTv5P9+/fx9KpRIVKlTAp59+Ci8vL/j5+aF27dqoXbs2/Pz8YGpqCk9PTwB/FZmhQ4di4sSJsLS0RIUKFTBp0iR8+eWXaNOmjVQfi4iIiLSUpMUoJiYGLVu2zP/57eGtgQMHYsuWLZgyZQoyMjIwatQovHz5Eo0bN8bJkydRtmzZ/Nf8/PPPMDAwQO/evZGRkYHWrVtjy5Yt0NfXL/HPQ0RERNpN0mLk7u7+r2eSC4IAHx8f+Pj4/OM6xsbGWL58OZYvX17kHDKZDLNmzXrv4TUqWdwXmoP7QrNwf2gO7gvNURz7QhDVeY0bERERkRbT2Bs8EhEREZU0FiMiIiKiN1iMiIiIiN5gMSIiIiJ6o9QUo1WrVqFGjRowNjaGg4MDwsPD/3X9sLAwODg4wNjYGDVr1sSaNWtKKKnuK8y+2L9/P9q2bYtKlSrB3NwcTZs2xYkTJ0owrW4r7J+Lt86fPw8DAwPI5fLiDViKFHZfZGZmYvr06bC1tYVMJkOtWrWwadOmEkqr+wq7P3bs2IFGjRrB1NQUVapUweDBg/H8+fMSSqubzp07h86dO8PGxgaCIODgwYP/8zVq+e4WS4GgoCDR0NBQXL9+vXj9+nVx3LhxopmZmfj777+/d/179+6Jpqam4rhx48Tr16+L69evFw0NDcW9e/eWcHLdU9h9MW7cONHf31+8dOmSePv2bdHb21s0NDQU4+LiSji57insvnjr1atXYs2aNUUPDw+xUaNGJRNWxxVlX3Tp0kVs3LixGBISIt6/f1+MiooSz58/X4KpdVdh90d4eLiop6cnLl26VLx3754YHh4ufvHFF2K3bt1KOLluOX78uDh9+nRx3759IgDxwIED/7q+ur67S0UxcnZ2FkeOHFlgWd26dcWpU6e+d/0pU6aIdevWLbBsxIgRYpMmTYotY2lR2H3xPvXr1xd9fX3VHa3UKeq+6NOnjzhjxgxx1qxZLEZqUth98d///le0sLAQnz9/XhLxSp3C7o+FCxeKNWvWLLBs2bJlYtWqVYstY2nzIcVIXd/dOn8oLSsrC7GxsfDw8Ciw3MPDA5GRke99zYULF95Zv127doiJiUF2dnaxZdV1RdkXf5eXl4eUlBS1ThhYGhV1X2zevBl3797FrFmzijtiqVGUfXH48GE4OjpiwYIF+OSTT1CnTh1MmjQJGRkZJRFZpxVlf7i4uODx48c4fvw4RFHEH3/8gb1796Jjx44lEZneUNd3t8ZOIqsuiYmJyM3NhZWVVYHlVlZWiI+Pf+9r4uPj37t+Tk4OEhMTUaVKlWLLq8uKsi/+bvHixUhLS8ufNJiKpij74rfffsPUqVMRHh4OAwOd/6ujxBRlX9y7dw8REREwNjbGgQMHkJiYiFGjRuHFixc8z+gjFWV/uLi4YMeOHejTpw9ev36NnJwcdOnS5aNmZKDCU9d3t86PGL0lCEKBn0VRfGfZ/1r/fcup8Aq7L97atWsXfHx8sHv3blSuXLm44pUqH7ovcnNz4enpCV9fX9SpU6ek4pUqhflzkZeXB0EQsGPHDjg7O+Orr75CQEAAtmzZwlEjNSnM/rh+/Tq+//57zJw5E7GxsQgODsb9+/cxcuTIkohKKtTx3a3z/+yrWLEi9PX132n6CQkJ7zTLt6ytrd+7voGBASwtLYstq64ryr54a/fu3Rg6dCh++eUXtGnTpjhjlgqF3RcpKSmIiYmBQqHAmDFjAPz15SyKIgwMDHDy5Em0atWqRLLrmqL8uahSpQo++eQTWFhY5C+rV68eRFHE48ePUbt27WLNrMuKsj/mzZsHV1dXTJ48GQDQsGFDmJmZoXnz5pgzZw6PMpQQdX136/yIkZGRERwcHBASElJgeUhICFxcXN77mqZNm76z/smTJ+Ho6AhDQ8Niy6rrirIvgL9GigYNGoSdO3fymL2aFHZfmJub49dff4VSqcx/jBw5Ep9//jmUSiUaN25cUtF1TlH+XLi6uuLp06dITU3NX3b79m3o6emhatWqxZpX1xVlf6Snp0NPr+DXqb6+PgD860TppF5q++4u1KnaWurtpZcbN24Ur1+/Lnp5eYlmZmbigwcPRFEUxalTp4oDBgzIX//tJX/jx48Xr1+/Lm7cuJGX66tJYffFzp07RQMDA3HlypXis2fP8h+vXr2S6iPojMLui7/jVWnqU9h9kZKSIlatWlXs1auXeO3aNTEsLEysXbu2OGzYMKk+gk4p7P7YvHmzaGBgIK5atUq8e/euGBERITo6OorOzs5SfQSdkJKSIioUClGhUIgAxICAAFGhUOTfNqG4vrtLRTESRVFcuXKlaGtrKxoZGYn29vZiWFhY/nMDBw4U3dzcCqwfGhoq2tnZiUZGRmL16tXF1atXl3Bi3VWYfeHm5iYCeOcxcODAkg+ugwr750IVi5F6FXZf3LhxQ2zTpo1oYmIiVq1aVZwwYYKYnp5ewql1V2H3x7Jly8T69euLJiYmYpUqVcT+/fuLjx8/LuHUuuXs2bP/+vd/cX13C6LIcT4iIiIioBScY0RERET0oViMiIiIiN5gMSIiIiJ6g8WIiIiI6A0WIyIiIqI3WIyIiIiI3mAxIiIiInqDxYiIiIjoDRYjIiIiojdYjIhILdzd3eHl5VWs779mzRqEhoZCEAS8evWq2LZFRKUXixERabwXL14gMjISnTt3ljoKEek4FiMi+miDBg1CWFgYli5dCkEQIAgC7t69i6FDh6JGjRowMTHB559/jqVLlxZ43ftGmbp164ZBgwYVWHbs2DE0atQI2dnZaNmyJQCgfPnyEAQhf93g4GA0a9YM5cqVg6WlJTp16oS7d+/mv8f7RpqUSiUEQcCDBw8AAFu2bEG5cuVw9OhRfP755zA1NUWvXr2QlpaGrVu3onr16ihfvjzGjh2L3Nzc/PcJDAyEo6MjypYtC2tra3h6eiIhISH/+dmzZ8PGxgbPnz/PX9alSxe0aNECeXl5hf11E1ExYjEioo+2dOlSNG3aFMOHD8ezZ8/w7NkzVK1aFVWrVsWePXtw/fp1zJw5E9OmTcOePXsK/f6HDx9G165dUa1aNezbtw8AcOvWLTx79iy/bKWlpWHChAmIjo7G6dOnoaenh+7duxe6eKSnp2PZsmUICgpCcHAwQkND0aNHDxw/fhzHjx/H9u3bsW7dOuzduzf/NVlZWfjpp59w+fJlHDx4EPfv3y9Q7qZPn47q1atj2LBhAIA1a9bg3Llz2L59O/T0+NcwkSYxkDoAEWk/CwsLGBkZwdTUFNbW1vnLfX198/+7Ro0aiIyMxJ49e9C7d+8Pfu/MzEycOHECM2fOhL6+PipUqAAAqFy5MsqVK5e/Xs+ePQu8buPGjahcuTKuX7+OBg0afPD2srOzsXr1atSqVQsA0KtXL2zfvh1//PEHypQpg/r166Nly5Y4e/Ys+vTpAwAYMmRI/utr1qyJZcuWwdnZGampqShTpgz09fURGBgIuVyOqVOnYvny5Vi3bh1sbW0/OBcRlQz+U4WIis2aNWvg6OiISpUqoUyZMli/fj0ePnxYqPc4c+YMLC0t8eWXX/7renfv3oWnpydq1qwJc3Nz1KhRAwAKvT1TU9P8UgQAVlZWqF69OsqUKVNgmeqhMoVCga5du8LW1hZly5aFu7v7O9uuWbMmFi1aBH9/f3Tu3Bn9+/cvVC4iKhksRkRULPbs2YPx48djyJAhOHnyJJRKJQYPHoysrKz8dfT09CCKYoHXZWdnF/j57WG0/6Vz5854/vw51q9fj6ioKERFRQFA/vbeHrJS3d7ftwUAhoaGBX4WBOG9y94eoktLS4OHhwfKlCmDwMBAREdH48CBAwW2/da5c+egr6+PBw8eICcn539+JiIqeSxGRKQWRkZGBU5IDg8Ph4uLC0aNGgU7Ozt89tlnBU6GBoBKlSrh2bNn+T/n5ubi6tWr+T+LoogjR46gS5cuBbbzdt23nj9/jhs3bmDGjBlo3bo16tWrh5cvX76zLQAFtqdUKj/iE//l5s2bSExMxPz589G8eXPUrVu3wGjSW7t378b+/fsRGhqKR48e4aeffvrobROR+rEYEZFaVK9eHVFRUXjw4AESExPx2WefISYmBidOnMDt27fx448/Ijo6usBrWrVqhWPHjuHYsWO4efMmRo0aVeCqsdjYWKSlpaFFixb5y2xtbSEIAo4ePYo///wTqampKF++PCwtLbFu3TrcuXMHZ86cwYQJEwps67PPPkO1atXg4+OD27dv49ixY1i8ePFHf+5PP/0URkZGWL58Oe7du4fDhw+/U3oeP36M7777Dv7+/mjWrBm2bNmCefPm4eLFix+9fSJSLxYjIlKLSZMmQV9fH/Xr10elSpXQvn179OjRA3369EHjxo3x/PlzjBo1qsBrhgwZgoEDB+Lbb7+Fm5sbatSokX85PgAcOnQIHTt2hIHB/18n8sknn8DX1xdTp06FlZUVxowZAz09PQQFBSE2NhYNGjTA+PHjsXDhwgLbMjQ0xK5du3Dz5k00atQI/v7+mDNnzkd/7kqVKmHLli345ZdfUL9+fcyfPx+LFi3Kf14URQwaNAjOzs4YM2YMAKBt27YYM2YMvvnmG6Smpn50BiJSH0H8+wF+IiIN0bBhQ8yYMaNQV7EREX0MjhgRkUbKyspCz5490aFDB6mjEFEpwhEjIiIiojc4YkRERET0BosRERER0RssRkRERERvsBgRERERvcFiRERERPQGixERERHRGyxGRERERG+wGBERERG9wWJERERE9Mb/ATvYNaFSC2tfAAAAAElFTkSuQmCC", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "Caption: The shear stress tau as a function of depth z\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjsAAAHFCAYAAAAUpjivAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAABCDklEQVR4nO3deVgW9f7/8RebCCqopCCJO4rgvuR+MHNJ0zQzNbXUzKNlv6Q6uXTypC2YnpOVa2WluZdbapqKZYjiiruYmisnxV1wQRCY3x8e7293gCFyM/d9+3xc13113TOfmfs9n2uKV5+Z+YyLYRiGAAAAnJSr2QUAAADYEmEHAAA4NcIOAABwaoQdAADg1Ag7AADAqRF2AACAUyPsAAAAp0bYAQAATo2wAwAAnBphB4BTeuGFF/T444/f0zY//fSTihYtqt9//91GVQEwgwuviwDgbHbt2qUGDRpo69atatCgwT1t26pVKwUFBembb76xUXUAChphB4DT6dGjh06dOqXNmzff87aLFy9Wjx49dPz4cQUFBdmgOgAFjctYABzC999/LxcXF/30009Z1k2bNk0uLi7au3evzp49q6VLl+q5556zatOyZUu5uLhk+5k5c6alXadOnVS0aFFNnz7d1ocEoIAwsgPAIaSnp+vhhx9WmzZtNGfOHKt1jRo1Unp6uuLi4jR79mw9//zzio+PV/Xq1S1t4uPjlZycbLXdqFGjtH79esXExKhJkyaW5R06dNDZs2cVFxdn24MCUCAY2QHgENzd3dWnTx8tWbJESUlJluUHDx7Utm3b1L9/f0nS5s2b5eXlpZCQEKvtQ0ND1bhxY8tn48aNWrdunaZNm2YVdCSpXr162r17t65fv277AwNgc4QdAA7jhRdeUEpKir799lvLshkzZsjT01O9evWSJJ0+fVqlSpWSi4tLjvuZP3++hg0bprffflsDBw7Msr506dLKzMxUYmJi/h8EgAJH2AHgMMLCwtSwYUPNmDFDkpSRkaE5c+aoc+fOKlmypCQpJSVFhQsXznEf69evV79+/fT888/rvffey7bNne1TUlLy+QgAmIGwA8Ch9O/fX1u2bNHBgwe1evVqnTlzxnIJS5IeeughXbp0Kdtt9+7dqy5duig8PPyuNyDf2f6hhx7K3+IBmIKwA8ChPPvssypcuLBmzpypmTNn6uGHH1bbtm0t60NCQnTx4kWr+3ok6dSpU2rfvr0qVaqkxYsXy8PDI8ffOHbsmPz8/OTv72+z4wBQcNzNLgAA7kXx4sX11FNPaebMmbpy5Yr+8Y9/yNX1//6/rWXLljIMQ1u3brUKQe3bt9eVK1c0efJkHThwwGqflStXVqlSpSzft2zZovDw8Lve9wPAcfDoOQCHExUVZQkyhw8fVnBwsGVdZmamKleurA4dOmjKlCmW5XcLLjNmzFC/fv0kSUePHlWVKlW0ePFide3a1TYHAKBAEXYAOJ2PPvpIH3zwgX7//Xd5eXnd07ajRo3SrFmzdPToUbm7M/gNOAPu2QHgdIYMGSJfX1+rkZ3cuHLliqZMmaLIyEiCDuBECDsAnE7hwoU1e/ZseXp63tN2x48f18iRIy1z9gBwDlzGAgAATs1pRnamTp2qihUrqnDhwqpfv75iYmLMLgkAANgBpwg73377rSIiIvTPf/5Tu3btUosWLdS+fXudOnXK7NIAAIDJnOIyVqNGjVSvXj1NmzbNsqx69erq0qWLxo4da2JlAADAbA7/uEFaWpri4uI0YsQIq+Vt27ZVbGxsttukpqYqNTXV8j0zM1OXLl2Sn58fk4gBAOAgDMPQ1atXFRgYaDW56J85fNi5cOGCMjIyskzr7u/vn+Mbi8eOHasxY8YURHkAAMDGEhISVLZs2RzXO3zYuePPIzKGYeQ4SjNy5Ei9/vrrlu9JSUkqV66cEhIS5OPjY9M6AQDA/Tt69Kjq1asnSSpWrNhd2zp82HnooYfk5uaWZRTn3LlzOb7Ez9PTM9v5N3x8fAg7AAA4gD8GnL+6BcXhn8YqVKiQ6tevr6ioKKvlUVFRatq0qUlVAQAAe+HwIzuS9Prrr+u5555TgwYN1KRJE33xxRc6deqUBg8ebHZpAADAZE4Rdnr06KGLFy/q3Xff1ZkzZ1SjRg2tWrVK5cuXN7s0AABgMqeYZ+d+JScny9fXV0lJSdyzAwCAA/jtt98UHBwsSX/599vh79kBAAC4G8IOAABwaoQdAADg1Ag7AADAqRF2AACAUyPsAAAAp0bYAQAATo2wAwAAnBphBwAAODXCDgAAcGqEHQAA4NQIOwAAwOHcy6s9CTsAAMCpEXYAAIBTI+wAAACnRtgBAAAOh3t2AAAA/oewAwAAnBphBwAAOBwuYwEAAPwPYQcAADgcRnYAAAD+h7ADAAAcDiM7AAAA/0PYAQAADoeRHQAAgP8h7AAAAIfDyA4AAHBqhB0AAODUCDsAAAD/Q9gBAAAOh5EdAADg1Ag7AADAqWVmZua6LWEHAAA4HEZ2AACAUyPsAAAAp0bYAQAATo17dgAAgFMj7AAAAKdG2AEAAE6Ne3YAAIBTY2QHAAA4NcIOAABwaoQdAADg1DIyMnLdlrADAAAcDiM7AADAqTGyAwAAnBphBwAAODXCDgAAcGqEHQAA4NQIOwAAwKmlp6fnui1hBwAAOBxGdgAAgFNjZAcAADg1wg4AAHBqhB0AAODUbt26leu2hB0AAOBwCDsAAMCpEXYAAIBTS0tLy3Vbwg4AAHA4jOwAAACnxsgOAABwaoQdAADg1Jwm7IwdO1YNGzZUsWLFVLp0aXXp0kWHDh2yamMYhkaPHq3AwEB5eXmpZcuWOnDggEkVAwCAguA0YSc6OlpDhgzRli1bFBUVpfT0dLVt21bXr1+3tBk/frwmTJigyZMna/v27QoICFCbNm109epVEysHAAC2lJqamuu2LoZhGDasJV+dP39epUuXVnR0tP72t7/JMAwFBgYqIiJCw4cPl3T74P39/TVu3DgNGjQoV/tNTk6Wr6+vkpKS5OPjY8tDAAAA+aBHjx767rvvJOkv/37b9cjOnyUlJUmSSpYsKUk6fvy4EhMT1bZtW0sbT09PhYeHKzY2Nsf9pKamKjk52eoDAAAcx72M7DhM2DEMQ6+//rqaN2+uGjVqSJISExMlSf7+/lZt/f39LeuyM3bsWPn6+lo+QUFBtiscAADku5s3b+a6rcOEnVdeeUV79+7V/Pnzs6xzcXGx+m4YRpZlfzRy5EglJSVZPgkJCfleLwAAsJ17CTvuNqwj3/y///f/tHz5cm3YsEFly5a1LA8ICJB0e4SnTJkyluXnzp3LMtrzR56envL09LRdwQAAwKZSUlJy3dauR3YMw9Arr7yiJUuW6Oeff1bFihWt1lesWFEBAQGKioqyLEtLS1N0dLSaNm1a0OUCAIAC4jQjO0OGDNG8efO0bNkyFStWzHIfjq+vr7y8vOTi4qKIiAhFRkYqODhYwcHBioyMlLe3t3r16mVy9QAAwFbuZWTHrsPOtGnTJEktW7a0Wj5jxgz169dPkjRs2DClpKTo5Zdf1uXLl9WoUSOtXbtWxYoVK+BqAQBAQblx40au2zrUPDu2wjw7AAA4lpIlS+ry5cuSnGyeHQAAAOneRnYIOwAAwKFkZGQ456SCAAAAkqzekZkbhB0AAOBQ7oSdu00g/EeEHQAA4FCuXbsmSSpSpEiu2hN2AACAQ7l69aokqWjRorlqT9gBAAAOhbADAACc2p3LWLmdQJiwAwAAHEpycrIkwg4AAHBSSUlJkpTrtx4QdgAAgEO5E3YY2QEAAE6JkR0AAODUrly5IkkqXrx4rtoTdgAAgEO587Zzwg4AAHBKd0Z2fH19c9WesAMAABwKIzsAAMCpXbx4UZJUsmTJXLUn7AAAAIdy6dIlSVKJEiVy1Z6wAwAAHEZmZqblMhZhBwAAOJ1Lly7JMAxJXMYCAABO6Pz585Ju35zs4eGRq20IOwAAwGHcCTulSpXK9TaEHQAA4DAIOwAAwKmdPXtWkuTv75/rbQg7AADAYRB2AACAUyPsAAAAp5aYmCiJsAMAAJzU6dOnJUkPP/xwrrch7AAAAIdxJ+wEBgbmehvCDgAAcAgZGRmWy1iEHQAA4HTOnj2rjIwMubq6qnTp0rnejrADAAAcQkJCgqTbozru7u653o6wAwAAHMKdsFOuXLl72o6wAwAAHMKdsBMUFHRP2xF2AACAQzh58qQkqXz58ve0HWEHAAA4hBMnTkiSKlSocE/bEXYAAIBDIOwAAACnZRiGjh8/LonLWAAAwAlduHBBycnJkqSKFSve07aEHQAAYPeOHj0qSSpbtqy8vLzuaVvCDgAAsHt3wk7lypXveVvCDgAAsHuHDx+WJFWpUuWetyXsAAAAu3fo0CFJUrVq1e55W8IOAACwe3dGdgg7AADA6WRmZlrCTtWqVe95e8IOAACwawkJCbp+/bo8PDy4QRkAADifAwcOSLo9quPh4XHP2xN2AACAXbsTdsLCwvK0PWEHAADYtTthJzQ0NE/bE3YAAIBd27NnjySpVq1aedqesAMAAOzWrVu3FB8fL0mqXbt2nvZB2AEAAHbr0KFDSktLU7FixVShQoU87YOwAwAA7NauXbsk3b6E5eqat9hC2AEAAHYrLi5OklS/fv0874OwAwAA7BZhBwAAOK2MjAzLZSzCDgAAcDoHDx7U9evXVaRIEYWEhOR5P4QdAABgl7Zs2SJJeuSRR+Tm5pbn/RB2AACAXboTdho3bnxf+yHsAAAAu7R582ZJUqNGje5rP4QdAABgdy5evGiZOblp06b3tS/CDgAAsDubNm2SJIWEhKhUqVL3tS/CDgAAsDsxMTGSpBYtWtz3vhwq7IwdO1YuLi6KiIiwLDMMQ6NHj1ZgYKC8vLzUsmVLy6vgAQCAY9qwYYMkqXnz5ve9L4cJO9u3b9cXX3yR5fXu48eP14QJEzR58mRt375dAQEBatOmja5evWpSpQAA4H4kJSVpx44dkqRHH330vvfnEGHn2rVr6t27t6ZPn64SJUpYlhuGoU8++UT//Oc/1bVrV9WoUUPffPONbty4oXnz5plYMQAAyKsNGzYoMzNTwcHBCgoKuu/9OUTYGTJkiJ544gm1bt3aavnx48eVmJiotm3bWpZ5enoqPDxcsbGxOe4vNTVVycnJVh8AAGAf1q9fLyl/RnUkyT1f9mJDCxYs0M6dO7V9+/Ys6xITEyVJ/v7+Vsv9/f118uTJHPc5duxYjRkzJn8LBQAA+WLNmjWSpMceeyxf9mfXIzsJCQkaOnSo5syZo8KFC+fYzsXFxeq7YRhZlv3RyJEjlZSUZPkkJCTkW80AACDvEhISFB8fL1dX1yxXdPLKrkd24uLidO7cOas3nWZkZGjDhg2aPHmyDh06JOn2CE+ZMmUsbc6dO5dltOePPD095enpabvCAQBAntwZ1XnkkUdUsmTJfNmnXY/sPPbYY9q3b592795t+TRo0EC9e/fW7t27ValSJQUEBCgqKsqyTVpamqKjo+97tkUAAFDwVq9eLUlq165dvu3Trkd2ihUrpho1algtK1KkiPz8/CzLIyIiFBkZqeDgYAUHBysyMlLe3t7q1auXGSUDAIA8Sk1NtYzsPPHEE/m2X7sOO7kxbNgwpaSk6OWXX9bly5fVqFEjrV27VsWKFTO7NAAAcA+io6N17do1BQQEWN3Ccr8cLuz88ssvVt9dXFw0evRojR492pR6AABA/lixYoUkqWPHjnJ1zb87bez6nh0AAPBgMAxDy5YtkyR16tQpX/dN2AEAAKbbvn27EhISVLRoUavJgvMDYQcAAJhu0aJFkm7fmHy3ufXygrADAABMZRiGFi9eLEnq1q1bvu+fsAMAAEy1Y8cOHTt2TN7e3mrfvn2+75+wAwAATDVv3jxJUufOnVWkSJF83z9hBwAAmCYjI0MLFiyQJJtNCEzYAQAAplm/fr0SExNVokSJfH8K6w7CDgAAMM2MGTMkST169FChQoVs8huEHQAAYIqkpCQtWbJEktS/f3+b/Q5hBwAAmOLbb7/VzZs3FRoaqoYNG9rsdwg7AADAFF9++aWk26M6Li4uNvsdwg4AAChwcXFx2r59uzw8PNS3b1+b/hZhBwAAFLjPP/9c0u0Zk0uVKmXT3yLsAACAApWUlGSZSHDw4ME2/z3CDgAAKFAzZszQ9evXFRoaqhYtWtj89wg7AACgwGRkZGjixImSpFdffdWmNybfQdgBAAAF5ocfftDx48dVokQJPffccwXym4QdAABQYCZMmCBJGjRokLy9vQvkNwk7AACgQGzevFkbNmyQh4eHhgwZUmC/S9gBAAAFYty4cZKk5557TmXLli2w3yXsAAAAm4uPj9eyZcvk4uKiN998s0B/m7ADAABsbuzYsZKkLl26KCQkpEB/m7ADAABs6tChQ5ZJBN9+++0C/33CDgAAsKn3339fmZmZevLJJ1WvXr0C/33CDgAAsJk/juq88847ptRA2AEAADYzatQoU0d1JMIOAACwke3bt2vhwoVycXHR+++/b1odeQo7rVq10pgxY7Isv3z5slq1anXfRQEAAMdmGIZGjBgh6fa8OjVr1jStFhfDMIx73cjV1VV+fn5q1qyZ5s6dqyJFikiSzp49q8DAQGVkZOR7obaUnJwsX19fJSUlycfHx+xyAABweKtXr1b79u1VqFAhHT58WOXLl8/338jt3+88X8Zat26dEhMT1bhxY504cSKvuwEAAE4mPT1dr7/+uiTplVdesUnQuRd5DjtlypRRdHS0atWqpYYNG+qXX37Jx7IAAICj+uyzz3Tw4EH5+flp1KhRZpeTt7Dj4uIiSfL09NTcuXM1dOhQPf7445o6dWq+FgcAABzLpUuXLI+Yv/feeypevLi5BUlyz8tGf77N5+2331b16tXVt2/ffCkKAAA4plGjRunSpUuqUaOGBg4caHY5kvIYdo4fP65SpUpZLXv66acVEhKiHTt25EthAADAsezYsUPTpk2TJE2cOFHu7nmKGfkuT1XkdKNRWFiYwsLC7qsgAADgeDIyMjR48GAZhqHevXvr0UcfNbskCyYVBAAA9+2zzz5TXFycfH199Z///MfscqwQdgAAwH1JSEjQyJEjJd1+6WdAQIDJFVkj7AAAgDwzDEODBw/W1atX1aRJE7300ktml5QFYQcAAOTZvHnztGrVKhUqVEhfffWV3NzczC4pC8IOAADIk8TERA0dOlSS9K9//UvVq1c3uaLsEXYAAMA9MwxDL774oi5evKg6depo2LBhZpeUI8IOAAC4Z19++aVWrlwpT09PzZ49Wx4eHmaXlCPCDgAAuCdHjx7Va6+9JkmKjIxUjRo1TK7o7gg7AAAg127duqXevXvr+vXratmypSIiIswu6S8RdgAAQK69/fbb2rp1q4oXL66ZM2fK1dX+o4T9VwgAAOzC6tWrNX78eEnSV199lePro+wNYQcAAPylM2fO6Pnnn5ckDRkyRF27djW5otwj7AAAgLu6deuWunfvrvPnz6tOnTp29+6rv0LYAQAAd/Xmm29q48aN8vHx0XfffafChQubXdI9IewAAIAczZ8/X59++qkkadasWQoODja5ontH2AEAANnau3evXnzxRUnSW2+9pc6dO5tcUd4QdgAAQBZnz55Vp06ddOPGDbVp00bvvvuu2SXlGWEHAABYSU1NVdeuXXXq1CkFBwfr22+/tcu3mecWYQcAAFgYhqG///3vio2NVfHixbVixQqVKFHC7LLuC2EHAABYjB07VrNmzZKbm5u+++47VatWzeyS7hthBwAASLr9tNU///lPSdKnn36qNm3amFxR/iDsAAAArVu3TgMGDJB0e16dIUOGmFxR/iHsAADwgNuzZ4+6du2q9PR09ezZUx9++KHZJeUrwg4AAA+w3377Te3atdPVq1cVHh7uMG8yvxfOdTQAACDXfv/9d7Vu3Vpnz55VrVq1tHTpUnl6eppdVr4j7AAA8AC6cOGC2rRpo5MnT6pKlSpau3atwz9inhPCDgAAD5ikpCS1b99eBw8eVNmyZbVu3Tr5+/ubXZbN2H3Y+f3339WnTx/5+fnJ29tbderUUVxcnGW9YRgaPXq0AgMD5eXlpZYtW+rAgQMmVgwAgP1KTk7W448/rh07duihhx5SVFSUypcvb3ZZNmXXYefy5ctq1qyZPDw89OOPPyo+Pl4fffSRihcvbmkzfvx4TZgwQZMnT9b27dsVEBCgNm3a6OrVq+YVDgCAHbp69arat2+vLVu2qGTJklq3bp1CQkLMLsvmXAzDMMwuIicjRozQpk2bFBMTk+16wzAUGBioiIgIDR8+XNLt93n4+/tr3LhxGjRoUK5+Jzk5Wb6+vkpKSpKPj0++1Q8AgL24du2a2rdvr40bN6pEiRL66aefVLduXbPLui+5/ftt1yM7y5cvV4MGDfTMM8+odOnSqlu3rqZPn25Zf/z4cSUmJqpt27aWZZ6engoPD1dsbGyO+01NTVVycrLVBwAAZ3XnHp2NGzeqePHiioqKcvigcy/sOuwcO3ZM06ZNU3BwsNasWaPBgwfr1Vdf1axZsyRJiYmJkpTlpip/f3/LuuyMHTtWvr6+lk9QUJDtDgIAABNdvHhRrVu31saNG+Xr66u1a9eqfv36ZpdVoOw67GRmZqpevXqKjIxU3bp1NWjQIA0cOFDTpk2zaufi4mL13TCMLMv+aOTIkUpKSrJ8EhISbFI/AABmSkxMVMuWLS03I69fv14NGzY0u6wCZ9dhp0yZMgoNDbVaVr16dZ06dUqSFBAQIElZRnHOnTt310foPD095ePjY/UBAMCZJCQkKDw8XPv371eZMmUUHR39QF26+iO7DjvNmjXToUOHrJYdPnzY8ohcxYoVFRAQoKioKMv6tLQ0RUdHq2nTpgVaKwAA9uLgwYNq1qyZDh8+rHLlymnDhg1ZBg8eJO5mF3A3r732mpo2barIyEh1795d27Zt0xdffKEvvvhC0u3LVxEREYqMjFRwcLCCg4MVGRkpb29v9erVy+TqAQAoeJs3b1bHjh116dIlVatWTWvXrlW5cuXMLstUdh12GjZsqKVLl2rkyJF69913VbFiRX3yySfq3bu3pc2wYcOUkpKil19+WZcvX1ajRo20du1aFStWzMTKAQAoeD/88IO6d++ulJQUNW7cWD/88IP8/PzMLst0dj3PTkFhnh0AgKP7+uuv9fe//10ZGRl64okn9O2336pIkSJml2VTTjHPDgAAuLvMzEy99dZbGjBggDIyMtS3b18tXbrU6YPOvbDry1gAACBnKSkp6tu3rxYuXChJ+te//qXRo0ffdfqVBxFhBwAAB3Tu3Dl17txZW7ZskYeHh7788ks9//zzZpdllwg7AAA4mL1796pz5846ceKESpQooaVLlyo8PNzssuwW9+wAAOBAFi1apCZNmujEiROqUqWKtmzZQtD5C4QdAAAcQGZmpkaNGqVnnnlGN27cUJs2bbR161ZVrVrV7NLsHpexAACwc8nJyerTp49WrFghSXrjjTf04Ycfyt2dP+O5QS8BAGDH9u3bp6efflpHjhyRp6envvzyS/Xp08fsshwKl7EAALBTs2fPVqNGjXTkyBEFBQUpJiaGoJMHhB0AAOzMzZs3NXjwYD3//PNKSUlR27ZttXPnTjVs2NDs0hwSYQcAADty7NgxNW/eXJ9//rlcXFz0zjvvaNWqVXrooYfMLs1hcc8OAAB2Yv78+Ro0aJCuXr0qPz8/zZ07V+3atTO7LIfHyA4AACa7fv26BgwYoF69eunq1atq1qyZdu7cSdDJJ4QdAABMtHv3btWvX19ff/21XFxcNGrUKP3yyy8qV66c2aU5DS5jAQBggszMTH366acaOXKkUlNTFRgYqLlz56ply5Zml+Z0CDsAABSwU6dOqV+/flq/fr0kqWPHjpoxYwY3IdsIl7EAACgghmFozpw5qlmzptavXy9vb2999tlnWr58OUHHhhjZAQCgAFy8eFEvvfSSFi5cKElq3LixZs2apeDgYJMrc36M7AAAYGNLlixRWFiYFi5cKHd3d7333nuKiYkh6BQQRnYAALCR8+fP65VXXtF3330nSQoNDdWsWbNUv359kyt7sDCyAwBAPjMMQwsWLFBoaKi+++47ubm56a233tLOnTsJOiZgZAcAgHx0+vRpvfLKK1q6dKkkqVatWpoxY4bq1atncmUPLkZ2AADIBxkZGZo6daqqV6+upUuXyt3dXaNHj9b27dsJOiZjZAcAgPu0Z88eDRo0SFu3bpUkPfLII5o+fbpq1aplcmWQGNkBACDPrl+/rmHDhql+/fraunWrihUrpsmTJys2NpagY0cY2QEA4B4ZhqEVK1Zo6NChOnHihCTp6aef1qeffqqHH37Y3OKQBWEHAIB78Ntvv+nVV1/Vjz/+KEkKCgrSlClT1KlTJ5MrQ064jAUAQC7cuHFDb7/9tsLCwvTjjz/Kw8NDI0aMUHx8PEHHzjGyAwDAXRiGoSVLluj111/XqVOnJElt27bVxIkTVa1aNZOrQ24QdgAAyMGePXv02muvWd5OXr58eX388cfq0qWLXFxcTK4OucVlLAAA/iQxMVEDBw5U3bp1tX79enl6emrUqFGKj4/XU089RdBxMIzsAADwPzdv3tQnn3yiDz74QNeuXZMk9ejRQ+PGjVP58uVNrg55RdgBADzwDMPQwoULNXz4cMuj5I888og+/vhjNW3a1NzicN+4jAUAeKCtX79ejRo1Uo8ePXTixAk9/PDDmj17tjZv3kzQcRKM7AAAHkh79uzRiBEjtHr1aklS0aJF9eabb+qNN95QkSJFTK4O+YmwAwB4oJw8eVKjRo3SnDlzZBiG3N3dNXjwYI0aNUqlS5c2uzzYAGEHAPBAOHv2rD788ENNnTpVaWlpkm7ffPz++++rSpUqJlcHWyLsAACc2qVLl/Tvf/9bEydO1I0bNyRJjz76qMaNG6eGDRuaXB0KAmEHAOCUkpOT9cknn+ijjz5ScnKyJKlhw4Z677331LZtW+bKeYAQdgAATuX69euaMmWKxo0bp0uXLkmSatWqpffee0+dOnUi5DyACDsAAKdw7do1TZs2Tf/5z3907tw5SVK1atX07rvvqlu3bnJ1ZbaVBxVhBwDg0JKTkzVlyhR99NFHunjxoiSpUqVKeuedd9SrVy+5u/On7kHHGQAAcEhXrlzRpEmT9PHHH+vy5cuSpCpVqujtt99Wr1695OHhYXKFsBeEHQCAQ7l48aImTpyoTz/9VElJSZKkkJAQvf322+rRowcjOciCMwIA4BASEhI0YcIEffHFF5ZHyMPCwjRq1Ch169ZNbm5uJlcIe0XYAQDYtYMHD2r8+PGaM2eO0tPTJUl169bVW2+9pa5du3LjMf4SYQcAYJe2bt2qcePG6fvvv5dhGJJuTwY4YsQItWnThkfIkWuEHQCA3cjMzNTq1av1n//8R+vXr7csf+qppzR8+HA1atTIxOrgqAg7AADTpaSkaM6cOZowYYJ+/fVXSZK7u7v69OmjYcOGqXr16iZXCEdG2AEAmObcuXOaOnWqpk6dqvPnz0uSfHx8NHDgQA0dOlRBQUEmVwhnQNgBABS4gwcPasKECZo9e7ZSU1MlSeXKlVNERIQGDBggHx8fkyuEMyHsAAAKxJ37cSZOnKg1a9ZYljds2FBvvPGGnn76aebIgU1wVgEAbCopKUkzZ87U5MmT9dtvv0mSXFxc1LlzZ73xxhtq1qwZT1bBpgg7AACb+PXXXzV58mR98803unbtmiTJ19dXAwYM0JAhQ1SpUiWTK8SDgrADAMg3GRkZWr16tSZNmmR1qap69ep69dVX1adPHxUtWtTECvEgIuwAAO7b2bNn9fXXX+uLL77QiRMnJN2+VNWpUye9+uqratWqFZeqYBrCDgAgTwzD0IYNGzRt2jQtWbJEt27dkiSVKFFC/fv351IV7AZhBwBwT65cuaJZs2bps88+08GDBy3LGzVqpMGDB6tHjx7y8vIysULAGmEHAPCXDMPQtm3bNH36dM2fP9/y1nFvb2/17t1bL730kurWrWtylUD2CDsAgBxdvHhRc+bM0Zdffqn9+/dbloeFhemll15Snz595Ovra2KFwF8j7AAArGRmZuqXX37R9OnTtWTJEqWlpUmSChcurGeeeUYDBw5U8+bNueEYDoOwAwCQJJ0+fVozZ87UV199pWPHjlmW16lTRwMHDlSvXr1UvHhx8woE8oiwAwAPsNTUVK1YsUIzZ87Ujz/+qMzMTEm3X8bZu3dvvfjii6pXr57JVQL3x9XsAu4mPT1db7/9tipWrCgvLy9VqlRJ7777ruVfRun2TXOjR49WYGCgvLy81LJlSx04cMDEqgHAvhmGoe3bt+uVV15RmTJl9Mwzz2jlypXKzMxU8+bNNXPmTJ05c0ZTp04l6MAp2PXIzrhx4/TZZ5/pm2++UVhYmHbs2KH+/fvL19dXQ4cOlSSNHz9eEyZM0MyZM1W1alW9//77atOmjQ4dOqRixYqZfAQAYD/OnDmjOXPmaObMmYqPj7csL1u2rJ577jn17dtX1apVM7FCwDZcDMMwzC4iJx07dpS/v7+++uory7Knn35a3t7emj17tgzDUGBgoCIiIjR8+HBJt4dk/f39NW7cOA0aNChXv5OcnCxfX18lJSXJx8fHJscCAGa4efOm5TLV6tWrLSPjhQsXVteuXdWvXz+1atVKbm5uJlcK3Lvc/v2265Gd5s2b67PPPtPhw4dVtWpV7dmzRxs3btQnn3wiSTp+/LgSExPVtm1byzaenp4KDw9XbGxsjmEnNTVVqamplu/Jyck2PQ4AKEiZmZmKjo7W3LlztWjRIiUlJVnWNW3aVP369VP37t15ZBwPDLsOO8OHD1dSUpJCQkLk5uamjIwMffDBB3r22WclSYmJiZIkf39/q+38/f118uTJHPc7duxYjRkzxnaFA4AJ9u3bpzlz5mjevHn673//a1keFBRkuUxVtWpVEysEzGHXYefbb7+1/IsbFham3bt3KyIiQoGBgerbt6+l3Z/nejAM467zP4wcOVKvv/665XtycrKCgoLy/wAAwMYSEhI0f/58zZkzR/v27bMs9/X1Vffu3dW7d2+1aNFCrq52/TwKYFN2HXbefPNNjRgxQj179pQk1axZUydPntTYsWPVt29fBQQESLo9wlOmTBnLdufOncsy2vNHnp6e8vT0tG3xAGAjly5d0pIlSzR37lxFR0frzq2XhQoVUseOHdW7d2916NBBhQsXNrlSwD7Yddi5ceNGlv8bcXNzs9xgV7FiRQUEBCgqKsryTpa0tDRFR0dr3LhxBV4vANhKcnKyli1bpgULFmjt2rVKT0+3rAsPD1fv3r3VrVs3lShRwsQqAftk12GnU6dO+uCDD1SuXDmFhYVp165dmjBhgl544QVJty9fRUREKDIyUsHBwQoODlZkZKS8vb3Vq1cvk6sHgPtz48YNrVy5UgsWLNDKlSutHqyoXbu2evbsqV69eqlcuXImVgnYP7sOO5MmTdKoUaP08ssv69y5cwoMDNSgQYP0r3/9y9Jm2LBhSklJ0csvv6zLly+rUaNGWrt2LXPsAHBIqampWrNmjRYsWKDly5fr+vXrlnXVqlXTs88+qx49eigkJMTEKgHHYtfz7BQU5tkBYKbU1FRFRUVp0aJF+v77760eFa9QoYJ69uypnj17qlatWrx8E/gDp5hnBwCcVUpKitasWaNFixZpxYoVVvN9BQYGqkePHurZs6caNmxIwAHuE2EHAArI9evX9eOPP2rRokX64YcfrC5RBQYG6umnn1a3bt3UvHlzHhUH8hFhBwBs6Nq1a1q5cqUWLVqkVatW6caNG5Z1QUFB6tatm7p166bGjRsTcAAbIewAQD47f/68li9frqVLl2rdunVWT1FVqFBBzzzzjLp168YlKqCAEHYAIB8cP35c33//vZYuXapNmzZZ5gOTpCpVqqhbt2565plnVLduXQIOUMAIOwCQB4ZhaO/evVq6dKm+//577dmzx2p9vXr19NRTT6lLly4KCwsj4AAmIuwAQC6lp6dr06ZNWrZsmb7//nsdP37css7V1VV/+9vfLAGHif4A+0HYAYC7SEpK0urVq7VixQqtWrVKly9ftqwrXLiw2rVrpy5duqhjx4566KGHTKwUQE4IOwDwJ8eOHdOKFSu0YsUKRUdHW72Hys/PTx06dFCXLl3Url07FSlSxMRKAeQGYQfAAy8jI0Nbt261BJwDBw5YrQ8JCVGnTp305JNPqkmTJnJzczOpUgB5QdgB8EC6cuWKoqKitHLlSq1atUrnz5+3rHNzc1OLFi305JNPqlOnTqpSpYqJlQK4X4QdAA8EwzC0f/9+rVq1SqtWrdKmTZuUkZFhWe/r66v27dvrySef1OOPP64SJUqYWC2A/ETYAeC0rl27pp9++skScP773/9arQ8NDVWHDh3UoUMHNW/eXB4eHiZVCsCWCDsAnIZhGDpy5Igl3ERHRystLc2y3svLS61atbIEnAoVKphXLIACQ9gB4NCSk5P1888/a82aNVqzZo3V3DeSVKlSJT3xxBPq0KGDwsPD5eXlZVKlAMxC2AHgUDIzM7Vz505LuNm8ebPVo+EeHh4KDw9Xhw4d9MQTTyg4OJjZi4EHHGEHgN07c+aM1q5dqzVr1igqKkoXLlywWh8cHKx27dqpXbt2atmypYoWLWpSpQDsEWEHgN25efOmNm3aZAk4f37vVLFixdSqVStLwKlUqZJJlQJwBIQdAKbLzMzUnj17FBUVpXXr1ikmJkY3b960alO/fn1LuGnSpAlPTgHINcIOAFOcOHFC69atU1RUlH766SddvHjRan2ZMmXUunVrtWvXTm3atFHp0qVNqhSAoyPsACgQly5d0vr16y0B5+jRo1brixYtqpYtW6p169Zq3bq1QkNDubEYQL4g7ACwievXr2vTpk1av369fvrpJ+3YsUOGYVjWu7m5qXHjxpZw06hRIy5NAbAJwg6AfJGamqotW7bo559/1s8//6ytW7fq1q1bVm2qV6+uNm3aqHXr1goPD5ePj49J1QJ4kBB2AOTJrVu3tGPHDv38889av369Nm3alOWm4qCgILVq1UqPPvqoWrdurYcfftikagE8yAg7AHIlIyNDu3fv1vr16/Xzzz8rJiZG165ds2rj7+9vCTetWrVSpUqVuO8GgOkIOwCylZ6ert27dys6OlrR0dGKiYnRlStXrNqULFlSLVu2VKtWrdSqVSuFhIQQbgDYHcIOAEm3L0vFxcVZws3GjRt19epVqzbFihVTeHi4ZeSmVq1acnV1NaliAMgdwg7wgEpNTdX27dst4SY2NlbXr1+3auPr66sWLVooPDxc4eHhqlu3rtzd+c8GAMfCf7WAB0RKSoq2bt1qCTebN2/OckNxyZIl9be//c0SbmrVqiU3NzeTKgaA/EHYAZzUxYsXtWnTJm3cuFExMTGKi4vL8ih4qVKlLMEmPDxcYWFhXJYC4HQIO4CTOHnypCXYxMTEKD4+PkubwMBAq5EbbigG8CAg7AAOKDMzUwcOHLCEm40bNyohISFLu5CQELVo0UItWrRQ8+bNVaFCBcINgAcOYQdwACkpKdqxY4diY2O1ceNGbdq0SZcvX7Zq4+7urnr16lmCTbNmzVSqVCmTKgYA+0HYAezQ6dOntWnTJsXGxio2NlY7d+5Uenq6VZsiRYqoSZMmat68uVq0aKFGjRqpSJEiJlUMAPaLsAOYLD09XXv37rUEm9jYWJ08eTJLuzJlyqhZs2Zq2rSpWrRoodq1a/PiTADIBcIOUMAuX76sLVu2WILN1q1bs8xv4+rqqtq1a6tp06aWT/ny5bnfBgDygLAD2FBGRobi4+O1ZcsWyye7p6R8fX3VpEkTS7B55JFHVKxYMRMqBgDnQ9gB8tG5c+e0detWS7DZtm1blpdlSlKVKlUsl6SaNm2q0NBQ5rcBABsh7AB5lJaWpj179liN2hw7dixLu6JFi6phw4Zq3Lix5VO6dGkTKgaABxNhB8gFwzD03//+1yrYxMXFKTU1NUvb0NBQq2ATGhrKKxcAwESEHSAbly9f1vbt27Vt2zZt27ZN27dvV2JiYpZ2JUuWtAo2DRs2VPHixQu+YABAjgg7eODdvHlTu3fvtgSbbdu26ciRI1naubu7q2bNmmrSpIkl3FSpUoUnpADAzhF28EDJyMjQr7/+ahVs9u7dm2XCPun2TcSPPPKI5VOnTh15eXmZUDUA4H4QduC0DMPQiRMntGPHDu3YsUPbtm3Tjh07sn06qnTp0lbBpkGDBvLz8zOhagBAfiPswCkYhqGEhARLsImLi9OOHTt06dKlLG2LFCmiBg0aWIWboKAgLkcBgJMi7MDhGIah06dPW4LNnXBz/vz5LG09PDxUu3Zt1a9f3xJsqlevztNRAPAAIezA7iUmJmYZscnuySh3d3fVqFFDDRo0sHxq1KghT09PE6oGANgLwg7sxp0Rm507d1o+cXFx+v3337O0dXV1VVhYmFWwqVWrlgoXLmxC5QAAe0bYgSkMw9Dx48etgs3OnTuzvRTl4uKi6tWrq0GDBqpfv74aNGigOnXqyNvb24TKAQCOhrADm8vIyNCRI0esQs2uXbt05cqVLG1dXV0VGhqqevXqqV69eqpbt67q1aunokWLFnzhAACnQNhBvrp165bi4+O1a9cuS7DZvXu3rl+/nqVtoUKFVLNmTatQU7NmTUZsAAD5irCDPEtKStLevXu1e/du7dq1S7t379aBAweUlpaWpa2Xl5fq1KljGbGpV6+eQkNDVahQIRMqBwA8SAg7+Et3XoK5e/duq092b/iWJB8fH6tQU69ePVWtWpXHvQEApiDswMqtW7d06NAhy0jNnU92k/NJUlBQkOrUqaO6deuqTp06qlOnjipUqMAEfQAAu0HYeYBduXJFe/futVyK2r17t/bv36/U1NQsbd3c3BQaGmoJNHXq1FHt2rV5pQIAwO4Rdh4Ad56GuhNs9uzZo7179+rUqVPZti9WrJhq165tNWITGhrKHDYAAIdE2HEyly5dyhJq9u/fr5s3b2bbvly5cqpVq5bViE3FihXl6upawJUDAGAbhB0HlZ6ersOHD1sCzZ1wk91sw5Lk7e2tGjVqqHbt2qpVq5blU7x48YItHACAAkbYsXOGYejMmTPat2+f9u3bp/3792vv3r2Kj4/P9t4aSapYsaIlzNwJN5UqVeJpKADAA4mwY0eSkpK0f/9+S6i588+cnoQqWrSoatasaTVaU7NmTfn4+BRw5QAA2C/CjglSU1P166+/Wo3W7Nu3TwkJCdm2d3V1VdWqVVWzZk3VqFHDEnAqVKjAvTUAAPwFwo4NZWZm6tixY1lGaw4fPqyMjIxstylbtqxVqKlZs6ZCQkJ4EgoAgDwyNexs2LBB//73vxUXF6czZ85o6dKl6tKli2W9YRgaM2aMvvjiC12+fFmNGjXSlClTFBYWZmmTmpqqf/zjH5o/f75SUlL02GOPaerUqSpbtmyBHUdmZqZOnjypAwcOKD4+XgcOHNCBAwd08OBB3bhxI9ttihcvbgkzd4JNWFiYSpQoUWB1AwDwIDA17Fy/fl21a9dW//799fTTT2dZP378eE2YMEEzZ85U1apV9f7776tNmzY6dOiQihUrJkmKiIjQihUrtGDBAvn5+emNN95Qx44dFRcXl+835BqGoVOnTlnCzB9DTXYvupQkT09PhYaGZhmtCQwMZJZhAAAKgIthGIbZRUiSi4uL1ciOYRgKDAxURESEhg8fLun2KI6/v7/GjRunQYMGKSkpSaVKldLs2bPVo0cPSdLp06cVFBSkVatWqV27drn67eTkZPn6+iopKUk+Pj6Wd0H9OdTEx8fr2rVr2e7Dw8ND1apVU1hYmNWncuXKcnfnaiEAAPntz3+/c2K3f4WPHz+uxMREtW3b1rLM09NT4eHhio2N1aBBgxQXF6dbt25ZtQkMDFSNGjUUGxub67BzxyuvvKIjR44oPj5eycnJ2bZxd3fPNtRUqVKFUAMAgB2y27/OiYmJkiR/f3+r5f7+/jp58qSlTaFChbLc5+Lv72/ZPjupqalWc9QkJSVJkmbPnm1Z5urqqsqVK6t69eqqXr26QkJCFBoaqsqVK8vDwyPLPnO6NwcAANjGnYGJv7pIZbdh544/39diGMZf3uvyV23Gjh2rMWPG3HUfmZmZOnLkiI4cOaLly5fnvmAAAFCgrl69Kl9f3xzX223YCQgIkHR79KZMmTKW5efOnbOM9gQEBCgtLU2XL1+2Gt05d+6cmjZtmuO+R44cqddff93y/cqVKypfvrxOnTp1186CteTkZAUFBSkhIYGJDO8RfZc39Fve0Xd5Q7/lXUH0nWEYunr1qgIDA+/azm7DTsWKFRUQEKCoqCjVrVtXkpSWlqbo6GiNGzdOklS/fn15eHgoKipK3bt3lySdOXNG+/fv1/jx43Pct6enpzw9PbMs9/X15WTOAx8fH/otj+i7vKHf8o6+yxv6Le9s3Xe5GaQwNexcu3ZNv/32m+X78ePHtXv3bpUsWVLlypVTRESEIiMjFRwcrODgYEVGRsrb21u9evWSdPsABwwYoDfeeEN+fn4qWbKk/vGPf6hmzZpq3bq1WYcFAADsiKlhZ8eOHXr00Uct3+9cWurbt69mzpypYcOGKSUlRS+//LJlUsG1a9da5tiRpI8//lju7u7q3r27ZVLBmTNn8tJLAAAgyeSw07Jly7veQe3i4qLRo0dr9OjRObYpXLiwJk2apEmTJuW5Dk9PT73zzjvZXtpCzui3vKPv8oZ+yzv6Lm/ot7yzp76zm0kFAQAAbIFXZgMAAKdG2AEAAE6NsAMAAJwaYQcAADg1pww7U6dOVcWKFVW4cGHVr19fMTExd20fHR2t+vXrq3DhwqpUqZI+++yzLG0WL16s0NBQeXp6KjQ0VEuXLrVV+abK776bOXOmXFxcsnxu3rxpy8MocPfSb2fOnFGvXr1UrVo1ubq6KiIiItt2nHNZ5abvOOeyWrJkidq0aaNSpUrJx8dHTZo00Zo1a7K045zLKjd9xzmX1caNG9WsWTP5+fnJy8tLISEh+vjjj7O0K7BzznAyCxYsMDw8PIzp06cb8fHxxtChQ40iRYoYJ0+ezLb9sWPHDG9vb2Po0KFGfHy8MX36dMPDw8NYtGiRpU1sbKzh5uZmREZGGgcPHjQiIyMNd3d3Y8uWLQV1WAXCFn03Y8YMw8fHxzhz5ozVx5nca78dP37cePXVV41vvvnGqFOnjjF06NAsbTjn8t53nHNZDR061Bg3bpyxbds24/Dhw8bIkSMNDw8PY+fOnZY2nHN57zvOuax27txpzJs3z9i/f79x/PhxY/bs2Ya3t7fx+eefW9oU5DnndGHnkUceMQYPHmy1LCQkxBgxYkS27YcNG2aEhIRYLRs0aJDRuHFjy/fu3bsbjz/+uFWbdu3aGT179synqu2DLfpuxowZhq+vb77Xak/utd/+KDw8PNs/2Jxzee87zrncCQ0NNcaMGWP5zjmX977jnMudp556yujTp4/le0Gec051GSstLU1xcXFq27at1fK2bdsqNjY22202b96cpX27du20Y8cO3bp1665tctqnI7JV30m3XwtSvnx5lS1bVh07dtSuXbvy/wBMkpd+yw3Oufs7Ts65u8vMzNTVq1dVsmRJyzLOubz3ncQ591d27dql2NhYhYeHW5YV5DnnVGHnwoULysjIsLwV/Q5/f38lJiZmu01iYmK27dPT03XhwoW7tslpn47IVn0XEhKimTNnavny5Zo/f74KFy6sZs2a6ciRI7Y5kAKWl37LDc65vB8n59xf++ijj3T9+nXLC5Qlzrn76TvOuZyVLVtWnp6eatCggYYMGaIXX3zRsq4gzzm7fev5/XBxcbH6bhhGlmV/1f7Py+91n44qv/uucePGaty4sWV9s2bNVK9ePU2aNEkTJ07Mr7JNZ4vzg3Mubzjn7m7+/PkaPXq0li1bptKlS+fLPh1Nfvcd51zOYmJidO3aNW3ZskUjRoxQlSpV9Oyzz97XPvPCqcLOQw89JDc3tyyp8Ny5c1nS4x0BAQHZtnd3d5efn99d2+S0T0dkq777M1dXVzVs2NBp/o8nL/2WG5xz+XecnHP/59tvv9WAAQO0cOFCtW7d2mod51ze++7POOf+T8WKFSVJNWvW1NmzZzV69GhL2CnIc86pLmMVKlRI9evXV1RUlNXyqKgoNW3aNNttmjRpkqX92rVr1aBBA3l4eNy1TU77dES26rs/MwxDu3fvVpkyZfKncJPlpd9yg3Mu/46Tc+62+fPnq1+/fpo3b56eeOKJLOs55/Led3/GOZc9wzCUmppq+V6g51y+3/JssjuPx3311VdGfHy8ERERYRQpUsQ4ceKEYRiGMWLECOO5556ztL/z+PRrr71mxMfHG1999VWWx6c3bdpkuLm5GR9++KFx8OBB48MPP3TqRzLzs+9Gjx5trF692jh69Kixa9cuo3///oa7u7uxdevWAj8+W7nXfjMMw9i1a5exa9cuo379+kavXr2MXbt2GQcOHLCs55zLe99xzmXtt3nz5hnu7u7GlClTrB6NvnLliqUN51ze+45zLmu/TZ482Vi+fLlx+PBh4/Dhw8bXX39t+Pj4GP/85z8tbQrynHO6sGMYhjFlyhSjfPnyRqFChYx69eoZ0dHRlnV9+/Y1wsPDrdr/8ssvRt26dY1ChQoZFSpUMKZNm5ZlnwsXLjSqVatmeHh4GCEhIcbixYttfRimyO++i4iIMMqVK2cUKlTIKFWqlNG2bVsjNja2IA6lQN1rv0nK8ilfvrxVG865vPUd51zWfgsPD8+23/r27Wu1T865vPUd51zWfps4caIRFhZmeHt7Gz4+PkbdunWNqVOnGhkZGVb7LKhzzsUw/ndHKQAAgBNyqnt2AAAA/oywAwAAnBphBwAAODXCDgAAcGqEHQAA4NQIOwAAwKkRdgAAgFMj7ABwKF999ZXatm1rdhkWkydP1pNPPml2GQDugkkFATiM1NRUVapUSQsWLFCLFi3ue38pKSny8/PTzp07FRISkueaKlSooIULF6p58+b3XROA/MfIDgCHsXjxYhUtWjRfgo50+0WGQUFBeQo6hmEoPT1dnp6e6tWrlyZNmpQvNQHIf4QdAAXu888/18MPP6zMzEyr5U8++aT69u2b43YLFizIcsmoX79+6tKliyIjI+Xv76/ixYtrzJgxSk9P15tvvqmSJUuqbNmy+vrrr7Psb9myZXryySd14sQJubq6aseOHVbrJ02apPLly8swDP3yyy9ycXHRmjVr1KBBA3l6eiomJsZS9/fff6+UlJS8dgkAGyLsAChwzzzzjC5cuKD169dbll2+fFlr1qxR7969c9wuJiZGDRo0yLL8559/1unTp7VhwwZNmDBBo0ePVseOHVWiRAlt3bpVgwcP1uDBg5WQkGDZJjMzUz/88IM6d+6sChUqqHXr1poxY4bVfmfMmKF+/frJxcXFsmzYsGEaO3asDh48qFq1akmSGjRooFu3bmnbtm157hMAtkPYAVDgSpYsqccff1zz5s2zLFu4cKFKliypxx57LNttrly5oitXrigwMDDb/U2cOFHVqlXTCy+8oGrVqunGjRt66623FBwcrJEjR6pQoULatGmTZZstW7YoMzNTTZs2lSS9+OKLmj9/vlJTUyVJe/bs0e7du9W/f3+r33r33XfVpk0bVa5cWX5+fpKkIkWKqHjx4jpx4sR99QsA2yDsADBF7969tXjxYku4mDt3rnr27Ck3N7ds29+5RFS4cOEs68LCwuTq+n//OfP391fNmjUt393c3OTn56dz585Zli1btkwdO3a0bNelSxe5u7tr6dKlkqSvv/5ajz76qCpUqGD1W9mNLEmSl5eXbty48VeHDcAEhB0ApujUqZMyMzO1cuVKJSQkKCYmRn369MmxvZ+fn1xcXHT58uUs6zw8PKy+u7i4ZLvsj/cILV++XJ07d7Z8L1SokJ577jnNmDFDaWlpmjdvnl544YUsv1WkSJFs67t06ZJKlSqVY/0AzONudgEAHkxeXl7q2rWr5s6dq99++01Vq1ZV/fr1c2xfqFAhhYaGKj4+/r7n2Tly5IhOnDiRZT8vvviiatSooalTp+rWrVvq2rVrrvZ39OhR3bx5U3Xr1r2vugDYBiM7AEzTu3dvrVy5Ul9//fVdR3XuaNeunTZu3Hjfv7ts2TK1bt1a3t7eVsurV6+uxo0ba/jw4Xr22Wfl5eWVq/3FxMSoUqVKqly58n3XBiD/EXYAmKZVq1YqWbKkDh06pF69ev1l+4EDB2rVqlVKSkq6r99dtmyZ1SWsPxowYIDS0tKyvYSVk/nz52vgwIH3VRMA22EGZQAOpXv37qpbt65GjhyZp+0vXLigMmXKKCEhQQEBAVnWf/DBB1qwYIH27duXq/3t379fjz32mA4fPixfX9881QTAthjZAeBQ/v3vf6to0aJ53v7SpUuaMGFClqBz7do1bd++XZMmTdKrr76a6/2dPn1as2bNIugAdoyRHQDQ7ZmY58+fry5dumjevHk5PgIPwPEQdgAAgFPjMhYAAHBqhB0AAODUCDsAAMCpEXYAAIBTI+wAAACnRtgBAABOjbADAACcGmEHAAA4NcIOAABwav8fgwr16074voYAAAAASUVORK5CYII=", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "Caption: The velocity as a function of depth z\n" ] } ], "source": [ "# Simulation 1\n", "# this section exercizes the basic features of the glacier\n", "\n", "# parameters that can be varied\n", "zmax = 100.0; # thickness of the glacier on meters\n", "theta = 5.0; # slope of the bedrock, in deg\n", "grad = 30.0 / 1000.0 # geothermal gradient in degC per km\n", "T0 = -10.0 # surface temperature in degC\n", "rho = 917.0; # density of ice in kg/m3\n", "g = 9.81; # acceleration of gravity in m/s2\n", "# end parameters that can be varied\n", "\n", "# constant A n dv / sz = A tau**3\n", "def AofT(T):\n", " if( (np.min(T)<(-50.0)) or (np.min(T)>0.0) ):\n", " print(\"Error: temperature out of allowable range of -50 to 0\" );\n", " xxxx\n", " NT, i = np.shape(T);\n", " logA = np.zeros((NT,1));\n", " logA0 = -25.0 + 0.88/(5.18/4.0);\n", " C1 = (1.23/(5.18/4.0)) / 10.0;\n", " C2 = (2.75/(5.18/4.0)) / 40.0;\n", " T0 = -10.0; # C\n", " for i in range(NT):\n", " Ti = T[i,0];\n", " if( Ti > (-10.0) ):\n", " logA[i,0] = logA0 + C1 * (Ti-T0);\n", " else:\n", " logA[i,0] = logA0 + C2 * (Ti-T0);\n", " return np.power(10.0*np.ones((NT,1)),logA);\n", " \n", "# z-axis\n", "Nz = 101;\n", "zmin = 0.0;\n", "Dz = (zmax-zmin)/(Nz-1);\n", "z = gda_cvec( np.linspace(zmin,zmax,Nz) );\n", "\n", "Tmin = -50.0;\n", "Tmax = 0.0;\n", "T = gda_cvec( np.linspace(Tmin,Tmax,Nz) );\n", "A = AofT(T);\n", "logA = np.log10(A);\n", "\n", "fig1 = plt.figure();\n", "ax1 = plt.subplot(1,1,1);\n", "plt.axis( [-50, 0.0, -27, -23] );\n", "plt.xlabel(\"T\");\n", "plt.ylabel(\"log10 A\");\n", "plt.plot(T,logA,'k-');\n", "plt.title(\"A(T)\");\n", "plt.show();\n", "print(\"Caption: The glacial flow parameter A(T) as a function of temperatire T\");\n", "print(\"Note this version uses line segments and is only approximate\");\n", "print(\"Note also this code does not adjust for presure\");\n", "\n", "# seconds in year\n", "sinyr = 60*60*24*365.25;\n", "\n", "# temperature\n", "T = T0*np.ones((Nz,1))+grad*z;\n", "\n", "fig1 = plt.figure();\n", "ax1 = plt.subplot(1,1,1);\n", "plt.axis( [-50, 10, zmin, zmax] );\n", "ax1.invert_yaxis();\n", "plt.xlabel(\"T (C)\");\n", "plt.ylabel(\"z (m)\");\n", "plt.title(\"T(z)\");\n", "plt.plot(T,z,'k-');\n", "plt.show();\n", "print(\"Caption: The temperature T as a function of depth z\");\n", "\n", "# flow constant\n", "A = AofT(T);\n", "logA = np.log10(A);\n", "\n", "fig1 = plt.figure();\n", "ax1 = plt.subplot(1,1,1);\n", "plt.axis( [-27, -23, zmin, zmax] );\n", "ax1.invert_yaxis();\n", "plt.xlabel(\"T (C)\");\n", "plt.ylabel(\"z (m)\");\n", "plt.title(\"log A(z)\");\n", "plt.plot(logA,z,'k-');\n", "plt.show();\n", "print(\"Caption: The temperature tau as a function of depth z\");\n", "\n", "# force of gravity parallel to sloping surface\n", "f = rho*g*sin(pi*theta/180.0)*np.ones((Nz,1));\n", "\n", "# d tau / d z = - f\n", "dtaudz = -f;\n", "tau = gda_cvec( Dz*np.cumsum(dtaudz) );\n", "\n", "# free surface boundary condition tau(z=0)=0;\n", "tau = tau - tau[0,0];\n", "taumax = np.max(np.abs(tau));\n", "\n", "fig1 = plt.figure();\n", "ax1 = plt.subplot(1,1,1);\n", "ax1.invert_yaxis();\n", "plt.axis( [0, 1, zmin, zmax] );\n", "plt.plot([0,0],[zmin,zmax],'k:');\n", "plt.xlabel(\"tau/taumax\");\n", "ax1.invert_yaxis();\n", "plt.ylabel(\"z (m)\");\n", "plt.title(\"tau\");\n", "plt.plot(-tau/taumax,z,'k-');\n", "plt.show();\n", "print(\"Caption: The shear stress tau as a function of depth z\");\n", "\n", "# dvdz = A tau^3, and boundary condition v(0)=0\n", "dvdz = np.multiply(A,np.power(tau,3));\n", "v = gda_cvec( Dz*np.cumsum(dvdz) );\n", "v = v-v[Nz-1,0];\n", "vmax = np.max(v);\n", "\n", "fig1 = plt.figure();\n", "ax1 = plt.subplot(1,1,1);\n", "plt.axis( [0, sinyr*vmax, zmin, zmax] );\n", "ax1.invert_yaxis();\n", "plt.xlabel(\"v (m/yr)\");\n", "plt.ylabel(\"z\");\n", "plt.title(\"v(z)\");\n", "plt.plot(sinyr*v,z,'k-');\n", "plt.show();\n", "print(\"Caption: The velocity as a function of depth z\");\n", "\n", "\n", "\n" ] }, { "cell_type": "code", "execution_count": 19, "id": "ab76266d-7260-4c18-a99d-8a1adfaa4d0d", "metadata": { "tags": [] }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjsAAAHFCAYAAAAUpjivAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAADNfUlEQVR4nOydd3Qc1f23n9mq3mVJ7nLvBmMDprgAJtRQQycQ8kIIJZiEkBAgoQSckISQhJJAfgHTS+gBAzYuYMAV3Lst27IsWbZ63TrvH3d2V7J2V7ur2Sbd5xydHe/cuXMlS3c/862KqqoqEolEIpFIJL0UQ7wXIJFIJBKJRBJNpNiRSCQSiUTSq5FiRyKRSCQSSa9Gih2JRCKRSCS9Gil2JBKJRCKR9Gqk2JFIJBKJRNKrkWJHIpFIJBJJr0aKHYlEIpFIJL0aKXYkEolEIpH0aqTYkSQMiqKE9LV06VLvNV9++SVWq5V9+/aFfB+Hw8Hw4cN54okn9P8mJBJJwnPDDTdw1llnhXXN559/TkZGBhUVFVFalSSaKLJdhCRRWLFiRad/P/zwwyxZsoTFixd3en/cuHFkZWWhqipTp05l+vTpPPnkk2Hda/78+dx5553s3LmT/Pz8Hq9dIpEkB9999x1Tp05l5cqVTJ06NaxrTzvtNAYNGsT8+fOjtDpJtJBiR5KwXH/99fz3v/+lubnZ7/kFCxZwzjnnsG3bNkaPHh3W3Ha7nZKSEn7xi1/wm9/8Ro/lSiSSJODyyy9n//79fPPNN2Ff+/bbb3P55ZdTVlbGoEGDorA6SbSQbixJ0vLMM88wbdq0TkLnhRdeCOj+mjVrlnecxWLh8ssv59lnn0XqfYkkuXnvvfdQFIXPP/+8y7lnnnkGRVHYsGEDhw4d4t133+Xaa6/tNGbWrFkB940XXnjBO+78888nIyOD5557LtrfkkRnpNiRJCV2u51FixYxe/bsTu+fe+65fPPNN52+Hn/8cQDGjx/faeysWbPYt28fmzZtitm6JRKJ/px33nn069eP559/vsu5F154gSlTpjBp0iQ+++wzHA5Hl33j6aef7rJvnHHGGRiNxk4PUxaLhZNOOomPPvoo6t+TRF9M8V6ARBIJ69ato62tjSlTpnR6v7CwkMLCQu+/t2/fziOPPMLs2bP561//2mms59qvvvqKiRMnRn/REokkKphMJq655hqeeeYZGhoayM7OBmDr1q2sWrWKf/zjHwB88803pKamMmbMmE7Xjxs3rtO///znP7No0SKeffZZpk+f3unclClTmDdvHi0tLaSnp0fxu5LoibTsSJKSgwcPAtCvX7+AY6qqqjjrrLMoKSnh3XffxWKxdDrvuVZmV0gkyc8NN9xAW1sbb7zxhve9559/HqvVylVXXQWIfaOwsBBFUQLO89prr3H33Xdz3333ceONN3Y5369fP9xuN1VVVfp/E5KoIcWOJClpa2sDICUlxe/5pqYmzjnnHBwOBwsWLPA+6XXEc61nLolEkryMHz+eadOmeV1ZLpeLl19+mQsuuIC8vDxA/K0H2jMAlixZwvXXX88Pf/hDHn74Yb9j5L6RnEixI0lKCgoKAKitre1yzuFwcMkll7B7924+/vhjBg4c6HcOz7WeuSQSSXLzox/9iBUrVrB161Y++eQTKisr+dGPfuQ9X1BQ4HfPANiwYQMXXnghM2fODBqALPeN5ESKHUlSMnbsWAB2797d5dyPf/xjli5dyjvvvMOkSZMCzrFnzx6gq79eIpEkJ1deeSUpKSm88MILvPDCCwwYMIAzzzzTe37MmDHU1NTQ0NDQ6br9+/dz9tlnM2zYMN5++23MZnPAe+zZs4f8/HyKioqi9n1I9EcGKEuSkoEDBzJs2DBWrFjBz372M+/7f/rTn3jppZe4/fbbSU9P71SoMCsrq5OwWbFiBUajkRkzZsR07RKJJDrk5ORw0UUX8cILL1BfX89dd92FweB7pp81axaqqrJy5cpOIujss8+mvr6eJ598ks2bN3eac/jw4Z2SHlasWMHMmTODxv1IEhBVIklQrrvuOjU9PT3g+fvvv1/Nzc1V29vbO10D+P2aOXNmp+tPPfVU9fzzz4/W8iUSSRz47LPPvH/zO3bs6HTO5XKpQ4cOVW+55ZZO7wfaMwD1+eef947btWuXCqhvv/12LL4ViY7ICsqSpOXgwYOUlpby4osvcvnll4d17e7duxk5ciSffvopc+bMidIKJRJJovGXv/yFRx55hIqKClJTU8O69v777+fFF19k9+7dmEzSMZJMSLEjSWp+9atfsWDBAtatW9fJXN0dP/rRjzhw4AALFy6M4uokEkmi0d7eztixY7n11lu56667Qr6uvr6eYcOG8Y9//IOrr746iiuURAMZoCxJau677z4uueSSsGrlOJ1Ohg8fzlNPPRXFlUkkkkQkJSWFl156CavVGtZ1ZWVl3HPPPd6aPZLkQlp2JBKJRCKR9Gp6jWXn6aefprS0lJSUFI477ji+/PLLeC9JIpEkAXLvkEh6P71C7LzxxhvMnTuXe++9l++++45TTz2Vs88+m/3798d7aRKJJIGRe4dE0jfoFW6sE044gSlTpvDMM8943xs7diwXXngh8+bNi+PKJBJJIiP3Domkb5D0uXN2u521a9fy61//utP7Z555Jl9//bXfa2w2Gzabzftvt9tNbW0t+fn5slCURBIHVFWlqamJ/v37h5VV1xPC3TvkviGRJB6h7h1JL3aOHDmCy+XqUrq7qKgoYFfaefPm8eCDD8ZieRKJJAzKy8sD9jLTm3D3DrlvSCSJS3d7R9KLHQ9HP1mpqhrwaeuee+7h5z//ufffDQ0NDB48mPLycrKysqK6zo643So2mxObzYXd7nl1YbO5sNmc2nHn9+12J+3tXd/zXePucG3n99rbfXN63ut4vcPhitn3HglGowGr1YjVasJi8bwasFpNWK1GLBbPq9E7znfO855vnNVqoqklhc078li/JYc9+9PEjQoh5ectHP+D5fxs9mWs2QiTjhnMucs2xvcH0ItpbGxk0KBBZGZmxvzeoe4dibJvSIKTe3cb0x5eidnq4J9MZxAZ3V5jo44vuAaAOXwU2o02XAOHP4TRj8PAH/dkyeHx6E/h41fhpw/C1XMDDnv9wgspW7KE8599lglhFl1NJkLdO5Je7BQUFGA0Grs8iVVXVwds1Ga1Wv3WWNi2rRFFsXtFQnevHtER6viOr+3tTpxOd1R+JuFj0L46N78zm31C4ujXlBRTwHP+3wvluuCvRqM+7o1de+C/H8CbH8Dadb73FQNMvAB2neFmzPc2U5BvZ/TxJjZtdHJ4V5X8QIsBsXQHhbt3BNo3srKy5O9GAqFYzJiy0jFZHWSSRVZIYsdFuvZxmEWI/5cZZmgFMlMhlv//VgsYgdSUoPdNNZlIATLS0vrE72d3e0fSix2LxcJxxx3HwoULueiii7zvL1y4kAsuuCCsuebMeQlI0XmFoWOxeMRAOEJAHId/XXDxYbEYMRh6TxzCrj3w1vvi67sNvvcNBph5Mlz6fXAeB3dtg4ETdpGV30A/tYXiWWaU/3NS12ynfvducoYPj983IdEVPfcOiUSS2CS92AH4+c9/zrXXXsvUqVOZPn06zz77LPv37+fmm28Oe67UVBNjxxYGERGhCYlwxYfFYpRBjjoTSOAYjTD7FPjBBXDhuVBYAA9uhAc3QXZhLUPG7wHgEiUDwwgzAzLaONAMZW+9yrG/vj9O340kGui5d0gkksSlV4idyy+/nJqaGh566CEqKyuZMGECH3/8MUOGDAl7LoNB4Ysvric93RKFlUqize4yIW7efM+/wLnsQrjoPCjIF+/bXXDdN/DSXjCZHZwwcwN2Bc5iAEOoRDUZKB0AB7bD3k8+lmKnl6Hn3iGRSBKXXiF2AG655RZuueWWHs0xdGgue/e28cEH27nyyok6rUwSbfbuhzfeFQLn2/W+9wMJHA91drj4C1haDUZF5aqzNrPf0k5/0ridsezmY9wGA6UT4MvtUPbthqCB75LkRI+9QyKRJDa9ooKyXlx++TgAXnppQzcjJfHmYCX87Z8w/UwoPQZ+/aAQOkYjnDET/vU4VG6Fhe/Cjdd1FTplzXDSZ0LoZJrgD2cdZH9mFQYU7mMSaZho4xBuRWHgNDAq0NTUSs327XH5fiUSiUQSOb3GsqMHl18+gT/+cS2ffbabqqpmiou7j+KXxI4jNfD2h/D6O7DsK/DU/lYUmH2qsOBcfJ6IwQnG6ho4bxlUt8PANJg/u5W/ZG8B4HpGMJYcANqpxm0wYB4Gg9JhbzOUffoJBWPGRO+blEgkEonuSMtOB4YPz+PEEwficqm89pqsqZIINDTCi6/DOZdByVi4+eewdLkQOicdD3//A1Rshs/fg59c373Q+eAAzFokhM7kHPjqTDfvZG+gFRcTyeUqhgGg4vaKHbKhtJ9IOd774ftR/X4lEolEoj9S7BzFD384CYAXX5SurHhhs8F7H8ElP4Si0XDdLbBgETidcOwk+OMDsHc9fPUJ3H4TlBSHNu9TO+CiL6HVBWeVwJdzYEnaHjZTTzomfsNEjIh4HDv1uHGgauXHSyf2B6Bs5SpUd6LUR5JIJBJJKEixcxSXXz4Bs9nAunVVbNx4KN7L6TOoKny1QlhuSsbCRdfCO/8TwmfMSHjw17BtJXy7FO7+GQwZFPrcbhXu/g5uWyOObxwOH8yEcnM9L7IbgDsYRzFp3mvaqQZAUVIB6D99KBYDtDW3cmijtPpJJAmNkvT9rSU6I8XOUeTlpXLeeaMAGagcC7bvhPsfgeFT4JRz4F8vQF099C+BX94O676ALSvgt3fD6JHhz29zwdVfw5+2in8/Mhn+dTw4DU4eYQNuVE6jhDn073RdmyZ2DIZ0AIyjShiihXCVLV4c4XcrkUgkknggxY4ffvjDyQC8/PIGXC7pstCb6sPw93/B8WfAmBPg93+Bsn2QkQHXXwmL3oX9G+CxB2HyBBGAHAl1djhzCby+D0wKvDgdfjNezPck2zhIK/1I4U7GdbnWY9kxKlq/laF5DPWInQUfR7YgiUQikcQFmY3lh3POGUleXiqVlc18/nkZZ54pWwT0FKdTxN385xX436fi3yBSxb93Glx7GXz/bEhLCz5PqOxvgbOXwpYGkVr+zgw4Q4vtWc4hPuYACnAPk8g4qicY+MSOwaD1lEmB0jHD4OAe9i1fjsvhwGjuep1EIklGpNurtyMtO36wWIxcccV4QLqyesr2nfCrB2DQRPj+VSLw2OmEaVNEJtXBLfDRG3DFJfoJnY31oobOlgbonwrL5/iETi02/swmAC6nlGPI8zuHx41lNGSLN1QHRSfPIMUI9rZ2Kteu1WexEolEIok6UuwEwOPKeuedrTQ32+O8muSiqQn+8zKccrZwUz32d6g6JNLCf3ErbPoKVi0SmVT9CvW997JDcOpCqGiDcdnwzZkwKVecU1F5jI004GA4mfyIwEFA7YjgdJMhR7zhtmGYdKLPlSXjdiQSiSRpkGInAMcfP4BRo/JpbXXwzjtb472chEdVYcVquOE2KBkHP/4ZfLVSdBU/73vwzotwYBP8+WEYPzY6a3hrv4jRaXDAKYXw5RkwON13/gPKWckRzBi4l0lYgvz6t3MYAJNBU0puO0w8gVIpdiQSiSTpkGInAIqicO21oubO/Pnruxndd2lpgX+/CMfNhunfg+dfFe+NHA7zfgvlG+HD10RvKksUe6s+tQMuXw52N1w8CD6bDXlW3/lyWniGbQDcxChKyQw4lxsHNmoBMCmam8ttg+ETKM1PEfMtX46zvT0634xEIkkCEjzOR03w9cUYKXaCcM01QuwsWVJGeXlDnFeTWOzYBXf+BgaMhxvnig7jKSlw3ZXw5cewfRX8eq5IIY8mqgq/3SBq6KjAT0fCmydDaofQexduHmUDNtxMIZ+LCd7RWlh1VAxYfG4s1Q4mEwVTjiPDBE6bjQMrVkTr25JIJDqgIJv2SgRS7ARh6NAcZs4cgqrCK6/IQnJOJ7z7P5hzEYw+Hp74p2jnMLwU/vyQcFO98BSccmLk6eLh4HLDzavhYRFvzIMT4ampYDzqt/oV9rCNBtIx8SsmYOhmA/RkYqXQD8WgmYfcIm5LmXgipZpRSLqyJBKJJDmQYqcbOrqy1D5qFqxvgD88IbqLX/xDWLRMiJnzz4IFb8KO1fCL2yDff2JTVGh3wWVfwbO7QAGemQa/ndhVZG2noVOV5H6kdjt3m1fsFIJX7NjE68QTZJCyRCKRJBlS7HTDpZeOIyXFxLZtR1i7tjLey4kp+8rh5/eKtPF7HoIDB0VG1T13wp7v4INX4awzRBByLGlywLlL4Z1ysBjgrVPgZj+JVTZczGMDLlRmUswZhOZT62jZQdECjTxiZ/zx3iDlipUrsTc39/C7kUgkkjDoow/dPUWKnW7Izk7hwgvHAPDSS30jUPm7DXD1TaKFw1+fgeZmmDhOuKjKN8Kj98PQwfFZW40NTv8cFh+CDBMsmAWXBFjL/7GTfbSQh5U7GRey/96TiZVKP59lR9XKD5QMJrd/ETkWcDud7F++vIffkUQiSRwi8b/HKS4oxFgBJRYxBUmAFDsh4OmE/tprm3A4XHFeTXRQVfj0czjjIpgyC179L7hccPpM4apa/6UIPrZau50qalS0woxFsLoW8q2w+HQ4LUDH83XU8l/2AnAX48km9FQwT42dFPqBwWPZ0cSOosAE6cqSSCSSZEKKnRCYM2c4RUXpHD7cyief7Ir3cnRFVeGjz2DqaXDWD+DzZaKFw5WXwNolok/VWWfEJuA4GHua4ZSFoirygFT44gyYlu9/bBtOHmMjKnAOA5lOv7Du1aZZdlI6WnY8biyACT5XVtnnn4f5nUgkkmgTm+0qsd1JfTXGNBBS7ISAyWTgqqsmAr2nfYSqwmeLYfqZcN4V8O16SE+HO34Cu9bCq8/BlMnxXqVgW4Ooiry3BYZniPYP47IDj/8n26mkjSJSuIUxYd+vvWOAsnKUZQdgwgnejKzK776jra4u7HtIJBKJJHZIsRMinvYRH3ywnbq6tjivpmcsXQ4zzoXvXQor10JqKvzydti7Dp6YF794HH+sqxOuq4NtMD4bvpyD14Xkj7Uc4QPKAfglE0kPs9etkzaciKDjzjE7HSw746eRaYYCK6Cq7Fu2LKx7SCQSiSS2SLETIpMnFzFhQj9sNhdvvbUl3suJiBWr4fQLYfb3YfkKEX8z92bY8y089iAUBHALxYuVR2D2Ijhsgym5sPR0KAmSOd6Ck8e0Jp8XMJjjCP8b8lh1TKRjIr1rzA5AZjaUjpH1diQSiSRJkGInRBRF8QYqv/hicmVlHagQ2VXTvweLvwCzGW75MexeC399FIqL4r3CriyvhjMWQ70DTioQwcgFKcGveYZtVNNOf1L5CaMium8nFxb4j9kB4cqScTsSSeIRQcCOmuDxN50INRZHxux0QoqdMLj66kkYDApffVXO7t218V5Ot7S3w+//DKNPENlVigI3XA0718BTf4IB/eO9Qv8sOwRnLYVmJ8wugs9Og+xukqnWcISPOAAI91VqmO4rD+0dg5Ohg2Wnq9gZoomdw1u20HzoUET3k0gk0SN83ROBUopX9kao9413dkmCIMVOGPTvn8kZZwwD4OWXEzdQWVXhnQ9h7Ilw/6PQ2gonnwBrFsP//QOGDIr3CgOzuArOXgotTphTDP+bCend6JZWnPxZc19dxGCOIfJSzj6xo1l2FE/MjqPzk9KE40kzQXGGEYC9S5ZEfE+JRCKRRBcpdsLE0z7ipZc2JGRq3649MOdiuOQ62LsfBpSIzKovP06c7KpALKqCc5dBmwvOKoEPZkJaCAaaf7GdQ7RTQio3Rui+8hDQjQW+woIAIyeBxUppqqi7JON2JBKJJHGRYidMLrpoDOnpZnbvruPrr8vjvRwvbjc8+RxMniFq5VitcN8vRPfxKy9JfEvm4io4f5noeXVef3hvBqQYu79uHbXe7Ku7mBCx+8pDVzdWB7HT0ZVlNsOYKb4gZRm3I5EkCAoo4T6IRvDgGq+H3RDvm4gP4/FEip0wSU+3cMkl44DEqbmzd7+w5tz+K+Gymn0qbPkGHr5X1M5JdJYdgvM6CJ23TwVrCEKnHZfXfXU+g5gSQfZV1zk79MUCX8wOdI3bmXgCg9NBMSjU7dlD/b59Pb6/RCLRj3Cf8SJ7JozXk6RsFxEOUuxEgCcr6403NmOzOeO2DlWFf78IE08RWVapqfCPP4qqx8OGxm1ZYbG82ue6OrsE/nsqWEIQOgAvsIsKWinAyk09dF95aOcI0DFmxwCKZi3qmH4OMOEErEYYkCcUpYzbkUj6EvGynEiLTSRIsRMBs2YNZcCATOrr2/nf/3bEZQ0NjXDhNXDjXNGo86TjYf0XcNuNse9CHikrj3QORn5nRmgWHYDtNPAWZQDcyXgyMPd4PU5acdICdBA7ECT9/HgASs2tgHRlSSQSSaKSJB+LiYXRaOCaa4R1Z/782Nfc2b4TTpgDHywAiwX+9CB88RGMHB7zpUTMhjo4a4lILz+tCN4PMUYHwImbP7EJN3AaxZwUZu+rQHQuKNihemEgsTOgFHILKU1zAyJIWfrJJZJkJJK/28SO2ZF1djojxU6EeLKyFizYxeHDLTG77/8+hePPEIJnQAks/xjuul0070wWtjfCnCW+goEfzITUMOKK32Ivu2kiCzO3MVa3dXUJTvYQSOwoCkw4noHpYDSbaDp4kJod8bH0SSQSf8QiakfW2UkGpNiJkPHj+3HccSU4nW7eeGNz1O+nqvDIX+D7V0FjE5xyouhKPm1K1G+tK/taRGXk6nY4Nhc+mtV9HZ2OVNDKC4jO8z9lNLlYu7kidLrU2PGgBBA7AOOPx2yAQf1FcLRMQZdIEoeYFBVMcLEjA5QFUuz0AE9z0Gi7stxuuPnncN8jQvT89Ab4/D0o0sd7EzOq22HOYjjQCmOy4NPZkNNNZeSOqKj8lc3YcXMseXyPAbquL6DYCWTZAZh4AgClKQ5Axu1IJPFGVWIkP2TqeVIhxU4PuOKKCRiNCmvWHGTbtiNRuYfLBTfeAc/OF0L+n4/D038WsTrJRJMDzlkKO5tgSDosOg0Ku+l1dTSfU8laajBj4BeMR9F5S+tW7Kj+LDvTACh1i/Yhe5cuRXW7dV2XRCKJDNkuIoxxvRwpdnpAv37pnH32SABeekl/647LBTfcDv95RWRYvfwv+Mn1ut8m6thccNEXsLYWCqzw2WwYkBbeHE04eJptAFzLcAagfwEhX9p5QecTwSw72XkweCT908CcmkJbTQ2HNm7UfW0SiSREFMLWLJE1Ak1sy44MUO6MFDs9xFNz5+WXN+J26/fL5XLBdbfAi6+L4ONXn4WrLtVt+pjhVuG6b+DzQyI2Z8EsGJUV/jzPsYM67Awmncsp1X2d4LPsWMNxYwFMPAGjAkOGiaZjMm5HIklOkqqoYDcWG48bS8bsCKTY6SHnnz+a7Gwr+/c3sGzZXt3m/e08eOUtMJngjf+Dyy/WbeqY8qt18MZ+MBvg3VNhagRFjrdSz/+0lhB3Mg5LlH5tbUcXFPTgFTvt/i+coMXtZIuUOBm3I5HEE4XwrS7SstPbkWKnh6SkmLjssvGAfu0j3noPHn1cHD//JFzyfV2mjTlP74A/bxXHz58Ac0rCn8OFyl/ZggrMoT/H6NASwv99bDhoBMIMUAZfcUFbJQD7vvgCtzN+lbUlEokgdJuGRxiEYwWJ5BodUMO8r7TsAFLs6IInK+utt7bQ2uro0VzrN8H1t4njX9wK11zW09XFh48q4Pa14vj3k+DqCD1P/6OcnTSSjombGa3fAo/CE69jJAXT0fFA3YmdUZPBbKHI2UBKdjb2piYOrl0btbVKJBJ9icgGEjfLiXZf6cYKCyl2dODkkwdRWppDc7Od99/fFvE8nhYQra0wZxb84Xf6rTGWfFcLl38l4nVuGAa/GR/ZPPXY+TeiSN+PGUmejjV1jqZjvE6XLK/uxI7FCmOOxaBA6XjRo0u6siSSREAWFZSWHYEUOzqgKIq3onJPau7c/6joYF46BF7/PxGvk2wcaoMLvhD9rk4vgn8eH/nf2r/ZQTNORpDJ9xms70KPwuZNOy/oetKg5cgHitkBGC9cWUP7yaagEklcUSLZc2TMTm9Hih2duPZa4cpauHAPlZVNYV+/5jt46t/i+Nm/Ql6unquLDTYXXPwllLfCqEx461QRmBwJ22ngYw4A8DPGYYzy05ONGiCQ2OnGsgO+4oLuOgD2L1+O0xZkvEQiiTrhxuyEV7srNHeS7qjSjRUJUuzoxIgReZx00iDcbpVXXw2vzorLBTf/QlRKvupSOGNWdNYYTVQVfroavj4C2WbR7yo3wsKHblT+3iEoeSLRV36emB1rUMtOEPGiZWQVVG4lo7gYZ3s7B775Ru9lSiSSkPCIl/DGR3KPmH+Mhih2Qh7XR5BiR0c8NXfCdWW98CqsXQfZWfCXh6OwsBjw5A54fg8YFHjzFBgdQS0dD4s4yBYaSMHITYzSb5FB8IkdP9le3aWeAwwaDtl5KA47pccJK98eGbcjkcQepeNhaB/0PqkThjCIl5gIMRvLU8ldWnYEUuzoyGWXjcdiMbJxYzXr11eFdI3bDX9+UhzffxcUF0VxgVHiq8Pw82/F8Z+OgTMjSDH30IaT57Sg5GsZTgFh9pSIEFug6skQmmVHUXxxOwOEYJJxOxJJnIj48z0JUs/DzMaSlh2BFDs6kpubyvnnC0tEqDV3FiyCbTshKxNuui6aq4sOVW3wg+XgVOHywXDnmJ7N9zplHMFGCalcyhB9FhkC7YEKCkJoMTvgi9sxtwJQsXIl9uZm3dYokUhCI/yP9x7E7MSaMN1Y0rIjkGJHZzxZWa+8shGns/uGkI8/LV5vug4yM6O5Mv1xuuGKr6CyDcZlw79P6NlDRDVtvEEZAD9hNBaMOq00OCqqN0A5uBurG7GjWXZyD2whZ+hQ3E4n+778Us+lSiSS7lAgJjE74Rb304swA5SlZUcgxY7OnH32SPLzU6mqambRoj1Bx+4ug8VfiN5Xt98UowXqyO82wrJqyDTBO6dChrln8/2bndhwM4lcZhA7f56DBlRExWP/YieE1HPwVlJm3w6GnnIyIOvtSCSxRkXx6o9QP+bVZKygLC07YSHFjs5YLEauvHIC0L0r63+fiteZJ8PggdFemb4sqoJ5m8Xxv0/oWUAywE4aWcRBAG5hTJjm5J7hcWFZyMWAn+JGocTsAOQWwMBhAJQOF/+hMm5HIokxHershLuPJFXqeXcByh6xY5Af8yDFTlTw1Nx5992tNDUF/oD0iJ3zzozFqvSjuh2u/Vr8qd80Ai7rYWiNiso/2Y4KnEYJo8nWY5khE9SFBaFlY3nwNAVNcwFQ+d13tNXW9niNEokkmvTEshPrj1Htvt2JGOnG6oQUO1Fg2rT+jB6dT1ubk7ff3up3TFMTLPtaHJ+bRGJHVeG6b6CqHcZnw1+n9HzOVRzhW2owo3AjI3s+YZj4MrECiR3NsuMKQexoQcqZFdsoGDMGVJW9S5fqsEqJRBISSviJ5Cqe+MpwUs8juEYPtJTybmN2PKnn0rIDSLETFRRF8TYHDVRzZ/V34HDA0MEwakQsV9czntkJn1RCihHeOBnSetjSwo3Ks1qq+UUMoZg0HVYZHu3dWXaMHjdWW/eTaUHKbFzJ0NmzASiTriyJJHZEUGcnsvGygnIyIcVOlLj66okALF26l3376ruc36z1C508IYaL6iE7G+Gu78TxY8fA+Jyez7mYSvbQRDomrmZYzyeMgO7dWCHG7ACMORZMZqg7TOkx4j937+LFeixTIpGEguL3sBt6YtmJdQVlj2Un+H2lZacz8qcQJYYMyWHWrKGASEM/mi3bxeu40TFcVA9wuuG6FdDmEg0+b9WhsLEDN8+zE4ArKCWLCPtL9BAbIqbGb6sICE/sWFNglLDqDc21gKJweMsWmqtCKzIpkUh6SARiR+1JnZ1uRIfuqOHF7EixI5A/hSjiaR/x4ovrfTUPNJJN7PxlG3xzBLLM8PyJoi1ET/mYAxykjVwsXBLDAoJHY/O2isjzP8AQhhsLvHE7afu2UHzMMQCUSeuORBITlIjcWEmUeh5mzI4MUBZIsRNFLrlkHKmpJrZvr2HNmoOdzlVVi9dkSDnf2QgPaMapvx0Hg9J7PqcdFy+zGxBtIVL9pXzHCJ9lRwc3Fngzsti0ktLTTgNk3I5EEjM6fKrFJEA55pYd6caKBPlTiCJZWVYuvFD0T3jxxc6Byo1N4jW7h/Vpoo2qwk2roN0Fc4rhulJ95v2Qco5gox8pnMsgfSaNAFE9uRuxYwyxqKAHzbLDtm8pnTEDkHE7EknM6JSNFW6AcjgfiXFKPfdYbLoRMbLOTmfkTyHKeLKyXnttE3a7y/u+R+xkJXiLiP/sgaXVkGqEfx6vj0W0HRevIKpLX8NwLHH8NXTQ2KF6cq7/QeGkngMMGgGZOWBrZ3BJDorRSN2ePdTv3dvj9Uokkm4w+D0MSlJZdkIVO9Ky0wn5U4gyZ5wxjOLiDGpq2vjkk12A+F1tFb0iydDBJRQtjrTDL7Xsq4cnwbAMfeb9kHLqsFNMKmcxQJ9JI8Rj1TGThYEA/S48Yke1g+ryP6bTeIO3dYS1bBMDjhfHMm5HIokBET2QRRKgHKc6OyHW9/GKHRmzA0ixE3VMJgNXXSVSkD2uLEXxiXKnM14r6557N0CdHSblwB06BVLbcPG61uzzGoZhjvOvYLdp5+ATOxBB3M4qb9yObB0hkUQfpZNlJ7QPel82Vhj7kdeyE5uGxV48lh1j8PuqLvFgpnQzrq8gxU4M8LiyPvxwB3V1bSgKpKaKc20hekZizdpaeE4YovjHVDDp9JvyMQeoxUYRKZwZZ6sOdAxODpCJBUeJnTDjdjoEKe/5/PMuWXkSiURnIsrGiqBmjtfKG2s3lnZfQzdiRxNFBil2ACl2YsLkycVMmlSE3e7ijTdE98w0Tex43FmJhKrC7WuEYfeqITCjnz7z2nHzmmbVuTIBrDoA9pDEjsn39BZq3I6nknLZNgZOGIfRaqW5spKa7dt7sFqJRNIdisH3QBFuzE5Ebqx4WXa6icVxeyw7MmYHSHCxM2/ePKZNm0ZmZib9+vXjwgsvZPtRHxaqqvLAAw/Qv39/UlNTmTVrFps3b47TigNz7bWi5o6nE7onVscTqJxIvLVf1NRJN8Fjx+o370IOcph2CrBydgJYdcBn2bEEEzsQfq2dvEJvB3Tznk0MPvlkQFh3JNGnN+0dkjCJKPU8gpo5ce+NJQOUwyGhfwrLli3j1ltvZcWKFSxcuBCn08mZZ55JS0uLd8xjjz3G448/zpNPPsnq1aspLi5mzpw5NDUlloq46qqJGAwKX39dzu7dtQwoEe8fOBj8ulhjd8FvtCz5X46FATq1qnKj8oZm1fkBQ7GQGKbVkNxYAAbNFBeqGwt81p1NKxkq43ZiSm/aOyThEUnMDmhWkLA+EjV3UswtO9p9ZcxOWCS02Pnkk0+4/vrrGT9+PJMnT+b5559n//79rF27FhBPZk888QT33nsvF198MRMmTGD+/Pm0trby6quvxnn1nenfP5M5c8ST/ksvbWBgf/F+eUUcF+WH53bD7mYoSoFfjNFv3q+oppwWMjBxXhzr6hyNT+wESDv3YNTEjitEyw744nY2ruwUpOytbCqJGr1p75CESSfLTm8MUA4tZsfjxpIxO4KEFjtH09DQAEBenngKLysro6qqijPPPNM7xmq1MnPmTL7++uuA89hsNhobGzt9xQJPoPKLL65n4ADxx5VIYqfZAQ9tEse/mwgZATKxw0VF5TWtrs6FDCYtjtWSjyakmB3o4MYKw7LToZJy/+OOw5KRQVttLVXr1we/TqI7euwd8do3JOGheIoKhpELoEYUoBznOjvdWXY8biwpdoAkEjuqqvLzn/+cU045hQkTRCp3ldZcsaioqNPYoqIi7zl/zJs3j+zsbO/XoEGxsTRceOEYMjMtlJXV43bUAbBzT0xuHRLP7ITqdhieAf9vuH7zbqKerTRgxsDFceyB5Q8b4v+h+5gdjxsrDMvOmGPBZILaaoxHDjJk5kxAurJijV57R7z2DUmYGMMXO0QUoBznbKzuYnZkgHInkuancNttt7FhwwZee+21LueOLpqkqmrQQkr33HMPDQ0N3q/y8nLd1+uPtDQzl1wyDoCd27YCsHFLTG7dLa1O+JNYEvdNALOOvxlvsReAM+lPLlb9Ju4hbpw4EE/n3bqxvFWUwxA71hQYKax5HevtlMkg5Zii194Rr31DEh4eDaCooQsXXzZWGFYQNU4xO57ibN1YbNzaOIMpcSzp8SQpxM7tt9/OBx98wJIlSxg40Nc5s7i4GKDLk1h1dXWXJ7aOWK1WsrKyOn3FCk8n9GWLVwHCjdWQANbwf+2CwzYoTYerh+o3bwWtLOcQQFw7m/vDrll1FAyY6eZ3wBhBgDL4jdvZ98UXuByO8OaRRISee0c89w1JGHjEThhWmsjcWHEOUJYxO2GR0GJHVVVuu+023nnnHRYvXkxpaeculKWlpRQXF7Nw4ULve3a7nWXLlnHSSSfFerkhMXPmUAYNyqKxoZG8HPGBF2/rjs3ls+rcq7NV5z32oQLTKKCUxGoEZqceAAs53QcmGiIIUIZOcTtFkyaRmpeHvbmZg6tXhzePJCx6494hCQ1vnZ0IYnbCC1COk9hxyWysSEhosXPrrbfy8ssv8+qrr5KZmUlVVRVVVVW0tYkPHEVRmDt3Lo8++ijvvvsumzZt4vrrryctLY2rrroqzqv3j8GgcM01wrpjNgiLx6q18VwRvL4PKtugfypcO1S/edtwsgARgZ1oVh3oGK/TjQsLOlh2whQ7HsvO1rUoLhdDZ88GoEzG7USV3rh3SELDoz0iKRAYmdiJsZvIm3oe+L6qqvoqKEs3FpDgYueZZ56hoaGBWbNmUVJS4v164403vGPuvvtu5s6dyy233MLUqVOpqKjgs88+IzMzsawIHfEUGDxcuQOAFWvitxZVhce3ieOfjQaLjg8BCzlIC04GkMY0CvSbWCfs4YidcIsKehg80tsBnV0bfSnosiloVOmte4ckBLRPNUMYMTtub52dcGJ2tNiZmFt2PDE7QcSOx/qDdGN5SGjJF0ofIUVReOCBB3jggQeivyCdGDu2kKlT+7Nm3X6wwjdx9GgsPgQb6kW15JtG6Devisp77AdEunnoxb1ih0fsdBucDJHV2QFR0n38NFixsFPczv6vvsLZ3o4pJaWbCSSR0Fv3Dkn3dGwXETqRWHY8XZwTT+y4O3SYlpYdQUJbdnozP/zhJHAeBNwcOAj74pTY8aQwLvGjYZBr0W/eTdRTRjMpGDkrQVpDHI1Ni9kxk9394EhSzz10iNvJHz2azP79cdlslAepBSWRSCJD0VLPw8vGiqCCcgLH7HQUOzJmRyDFTpy44ooJmEwucIqYliVfxn4NB1vhQ62o4S0j9Z37Q4R6O40SMtCpOqHOhGfZ0fpmhGvZgU4d0BVF8aWgy7gdiUR/NLETzoeb2hM3liHG+5vHsmMKfN+OYsdoTsz9N9ZIsRMnCgvTOfvsEeDYC8DnX8R+Dc/vAZcKpxbC2BCMG6HSiJ2liJTecxnYzej4YUdU1bWQ0/3gHll2fB3Qaar39cmScTsSie4oPUg9D1nsqCq+rucxdhNJN1ZESLETR374w8ngFM0xF3+hEkKYgW64Vfj3bnGsZ6wOiMBkB26GkcnYUFxEcSKsAOWeWHby+kH/oeJ482qvZadi1SpssumkRKIbbrfq9SqFEycYtmVH9QUAJ7LYUQwGWUFZQ/4U4sh5540iO+MwqA4OVils3hq7e39ZDXtbINsMl+hc9f4TLd38PAaGmf4ZW3yWnXBidloju5k3bmcVOUOGkDtsGG6nk/3Ll0c2n0Qi6YLdrnoDlMPJxgq7zo7qs5zENGZHVX0VlINYbDxFS6VVx4cUO3EkJcXEFZePBudeAD5eFLt7v7pPvF46GFJ1/HvYRSO7aMKMwmmU6DdxFOhYVLBbemLZgU6VlAGvK0u2jpBI9MPhcHtjdowRWXZC3AzVDhXQlRjGxHRwTwWN2fGIHRmv40WKnTjzwx9OBsdOAP73qbub0fpgd8FbIiucq3Su9fepZtU5iX5ko2N6l844acONDQhV7HhSz3to2dm8ClTVF6Qs43YkEt1wOFRvNlZ03VgdLTuxFDsdRFYQseOx7MjgZB9S7MSZ6dMHMrjkMABfr1Ri0idrYRXU2aEkFWb2029eJ24WUQnA9xI03dyDx4VlwIyR1O4vMHgsOy2R3dDTAb3mEFTu94qdqnXraK2piWxOiUTSCYfTJ3aMQZpBH4073NTzeLmxXB3uG0LMjnRj+ZBiJ84oisIN1w8B12FcboUFC7u/pqe8d0C8XjIIjDr+BnxLDfXYycHC8QlYMbkjjg6ZWCHFFXncWJFkYwGkpHbogL6SjKIiCsePB1Vl37Jlkc0pkUg6Ybe7vTE74bmxNHEQqhvLrVlYFCOEIap6jMPuOw5m2bGLcUZL4lrXY40UOwnAtddOBsd2AF5/J7rdsN2qr7bOBTpnhX+uWXVmUYwxwX+1PJadkAoKQuSNQDtyVNyOdGVJJPrS0Y1lCkOERByzE0sXFvjcWAZD8KKCMmanC4n9idRHGDYsl4ljRBr0p4sV7PZuLugBq2rgUDtkmWFGoX7z2nDxJaKx6ekJHpgMHYOTQxQ7XstOhDE70KmSMkixI5Hojd3u7iB2Qv94c2uWndBjduIsdszBLTbemB1p2fEixU6CcMtN/cHdTLvNxOIvo1dw5yPNqnN2ib5NP1dwmDZcFJHC+FACfuOMw2vZyQrtAmMPY3agUwd0HA6GzJwJisKRrVtpqqyMfF6JRAKAw0FEMTs+N1aIm6LHjRXr6skeN1YQFxZ0cGNJy44XKXYShMsvH4fBJVxZz73QA1dJNywShY35ns7Gly80q84sihO6to4HOyISPKRMLOh56jl06YCemptLyZQpgLTuSCR6YHf4YnZMYexDPstOuG6sGFtOQrXsyJidLkixkyDk5qZy8vHNACz43NipnIJeNDpgda04Pr1Yv3ntuPiGagBmoOPEUSRsy46hQ4CyGmGJAIPB1zpCxu1IJLpjt6soJvH3GY7Y8cTsGELt4+fWLCxxs+yEKHas1mivKGmQYieBuPO2YnC30tZuZcmX+tfcWXZI9MIakQGD0/WbdzU1tOGikBTGJHB7iI74LDthxuwAuNsjv3GguB1ZXFAi6TE2m4piijwbK/SYHU10xNyyo91XWnbCRoqdBOK880aQYtwFwN+e0b/gzpeinA+zi/Sdd7nmwjqFfmEV8oon4cfsdKjF05O4HY9lRxM7g089FYPZTMO+fdTt2RP5vBKJhHa7G0XxuLHCD1AOPfU8TpYduyiE2q3YsYlxUuz4kGIngTCbjXzvNPFLuuiLFN1dWSuOiNfpOpbAcaGyAqGiTkZnFRVFHF7LTohiRzGCQTMJ9yRux2PZ0TqgW9LTGXiCeE+6siSSntFmV1EMwipuDquoYJgxO16xE2M3kUfsWILf16mJHZN0Y3mRYifB+PUvBoC7FZs9hY8X6peD7nDDGi1e50Qdxc426qnHTjomJoXSPTxB8LixQrbsQM+rKAPkFcKAUnG8eTXQoU+WFDsSSY9od6gdLDvhuLG0ujShxuzEy40VrmVHih0vUuwkGCecUEJOehkAf/6bfq6sjfXQ5hJdzkeH8fneHV9rVp3jKcCcRL9ODpqAMMWOUQt06onYAZ91x0+QsqpGr+yARNLbabeDQcvGCmc/ityyE6+YHWnZCZfk+XTqIyiKwiXni8yAb9Zm6lZgcJ2oWciUPDDoGFazGuEbOxEdKxRGGRe2Dk1AwxE7HstODwoLgq/ejha3M/DEEzGlpNBy6BBHtm7t2dwSSR+m1aF6U8/Dc2OFadlxaxaWeLmxrClBh3ksO6aU4OP6ElLsJCD3/moIuJtwuqy88mazLnNurBevk3J0mQ6AWmzs1NxBUxO8F1ZHPFYdBQNG0roZ3YFoWHZUFZPVyuBTTgFgj8zKkkgiprVdRVE8MTvhWHaSROzYtExQS3AR42wX44xS7HiRYicBKS3NZmCR6Nb5t2d6+MGq4RE7E3N0mQ6AtYhu3SPJIo/kMZd6xI6JzPAKIHrETk9aRoDWAd0MdYfh4F7AF7ezV8btSCQR09bBshNeUcEkETt2j9jpxo2liR3pxvIhxU6Cct2Vot7Dhq25tLT0PI5jk8i0ZqKOZXDWaC6saeTrN2kMcHiDkzPDu1CPlhEgTNCjtA7oWtzOsNNPB2Dv0qW4Xa6ezS+R9FHaHWDQsrHCq7OTZGKnu5gdj9iRlh0vUuwkKHf/fAiKux4VC088XdejuZocovknwCidgpNVVL5DpHdNSTqx4wlODlfs6OTGgi5xOyVTpmDNyqK9vp6qdet6Pr9E0gdpc+CL2QkrQDlcsaNtqIYYiwmPGyslNegwR5soj2FKDT6uLyHFToKSlWVl3EjRyOrfLzp6NNceLewnzwI5OiUPHKSVw7RjQmF8EqWcAzgQP5C4ip2jMrIMJpNoDIpMQZdIIqXdoXotO+EVFUwSy45Nq/FlDS5iXNKy0wUpdhKYO34q3CZ7KwqoOhS5a2O3JnaGZ+ixKoHHqjOOHFJCLbGeIDi9MTth/kB0teycKF63fevtd1PqcWVJsSORRES7A19RwbBidsTfoIEQnwbjbdnpJkDZY9kxS8uOFyl2EpgbrhuISakGjDw0rzriefZqYmeYjmJnA8K1Npk8/SaNET43VhzFzuARkJ0nUkl3bAB89Xb2ffGFt7eNRCIJnXanr85OdC07HrETL8tON9lYHjeWtOx4kWIngTEaDZw0tR6AN98PsdiVHyq1v8v+Oor8TZrYmZhkLixIEDeWosD4zn2y+o0fT1phIY7WVipWrer5PSSSPka7ExSjx7IT+seby2vZCVG8eMVOjC0nHrGTErxkhqNVZIya03Xs+JzkSLGT4Nx3dy6oKjUNhazfGFm37Urt76NEp7/LGtqppA0Dwo2VbDi9Yidcy442Xg+xA74gZS1uRzEYKJ09G5BxOxJJJNhddIjZCd+NZQzVjeXpj2eMsdhp18pedCd2pBurC1LsJDhzTi8kI+UgAL995EhEc+gtdjZRD0ApmaSHWl49gXAgxErEMTtOfQo9ei07G1d43/L2yZLFBSWSsLG5OsbshPbxpuJG9XY9DzVmR9tUY23ZaQ8tQNlr2UkLo2hqL0eKnSTgnDniF3zh0nQiaZ10REscKNTJvbwVUbQnGa064LPsmAjTxBsty87+ndAgAr49cTvl33zj3bAkEklo2FxgCNON5dJax0AYYsdj2Yl1gHKolh0pdrogxU4S8PD9xaA6abPn8sFH9WFfX6/FuubqlHa+QxM7o9GxQmEMidyN5YnZ0cmyk5MPg0aIY60Det6IEWQNHIjb4WD/V1/pcx+JpI9gcyleN1aoYsfjwoIw3Fgey44xxmKiTXvQSg3+oOZoEeNkzI4PKXaSgFEjMyjOrwDgD4+H3wm9QSvTo0eNHTcqO7QKxGOSVOz43FhhbgQmnS070DVuR1G8KegybkciCQ+bO3yx47HsKJhQQi2j4WkGHGux067tPd1Yduya2LFIseNFip0k4erLhP9q9fp8HI7QfVluFRo1sZMdYlZlMA7QQgtOrBgYGq5YSBCcEcfseMROk36LmdC5kjL4XFkybkciCQ+HqnizsSwhW3aE2DGG098vbjE7mshKlW6scJFiJ0m47+4BKGorLjWdvz8Tes0dmws80ihVh1ji3VqNmlIyMSbhr4+KihOxEcQ9Zgc6t43QArKGahlZlWvX0t7QoN+9JJJejh2fZSdUseOKROx49oBYW3ZaNRd6auAHNZfDgcsmvidLho7F1ZKc5Pu06qPk5JgZPewQAP/8T+jtI2xu33GKDv/bHrEzPNwaNQmCi3bAk5oa5kblcWPplY0FoiGo2QL1NXBgDwDZgwaRN3IkqtvNvi++0O9eEkkvx+H2BShbQnRJ+aonhxFs7HVjxdi67YnZSQssYjzxOiDFTkek2Ekibv+J+GPcta8fh4+EJnhsHbpMmHX4396T5GLH48ICA8ZwNjfoYNlpJqK0OH9YrDBmijjukILujduRriyJJGScKBFkY4n6ZSEHJ0MCWHYCiyxPvI7BbMZo0SkrpRcgxU4S8ZMfF2NS6kCx8OCjh0K6xhPeYzaIor09xSN2hiWt2PG4sFJRwig6BvjEDqrPZ68HRwUpg4zbkUgiwaEYIg5QDrl6MnQQOzG07Djs4NQecoNYduxNYo+WVp3OSLGTRBiNCtOnijYNb7wbmolWB33jpQ0nh7SnoKHhBvcmCC6v2Ilg/R2f4vR0ZfkJUh46axYA1Zs20VIdeV80iaQv0dGyYw3bshOipVd1+dpFxFLstHRIjAgSs2PTxI41MzkfSKOFFDtJxv135wBwpL6IDRu7LzrnETtuHbwuBzShkI2Z7HBMvglER8tO2CiGDrV2dMzI8lh2tq8TjUGB9MJCiiZPBqBsyRL97iWR9GJcBgWDUfjurSHG7HjEjilUsePqsO8aY/jQ53FhWaxgDpxa67XsSLHTCSl2kow5p+eRkXIIFAP3//5wt+M9ris9Ikz2acX4BiepVQeIPBPLg1HbQPQqLAgwoBRyCoSZett33relK0siCQ+XAQxGsduFno0VpmXH+7evxLaCcqv2gJUWXMTYGkUdNGnZ6YwUO0nIuXPEB/bCZd1/YJs1seNWweUOPrY7KjShMChJ6+sAuBCxNsZILDvQISNLR8uOosCkE8Wxn3o7e6VlRyIJCbVD2E24YifkbKyO8Tp6BEKGiseNld6N2JGWHb9IsZOEPHx/kdY+ooB33q8JOrZjbZ12ncRO/0iFQgLQIzcWdM7I0pMJXYOUh8yYgWI0UrtrFw379+t7P4mkN9JBr4TuxhIPQCHvCZ4HHVOMxUSLVj0/I3jleptWmyslOzkr3EcLKXaSkJEj0igprATgj38NbmFI7fD33urs2X0PesVO8lbl7LFlx+PG0tOyA52LC2pYs7IYMG0aIFtHSCQhkaI90TkVDCGmZzjD3RM8DzrGOImd9KygwzxuLEtW8HF9DSl2kpRrLxevazYWYLcHNtkYFLBq/8utroDDQqJS2xSSWex4LDth19jx4Hma0zNAGWC8EDUc2AO1vlisoTJuRyIJGSVVi050hf7R5nsACnFPiJdlp9kjdoLf11N13SrFTiek2ElS7ru7BIU23GoGj/8jeM2dLC1wv8EedFhQ7Lip1epRFCexG8uXeRGhYDNFybKTmQOlY8Tx5lXet71BykuWoOpVyFAi6aUoVvE3YnCGL3ZC3hM8Dzqxtuw0a61jQnVj5eREeUHJhRQ7SUpmpolxI4TIefaF4P6pXC1LvK4HYueIJhIsGMhCh46iccIZ7lPc0RijZNkBmKgFKW/wVVIedNJJGK1WmioqqNmxQ/97SiS9CEOqsHIbw7DshO3GcmoWFlOMLScesZOZE3RYe309IMXO0Uixk8TM/an44yw7UERlVWAlo4fYqdbETj9Swq88nED40kwjzcaKkmUH/BYXNKemMuikkwAZtyORdIdRi9kxu0MLToZIApQ9YifGlp2mevEqLTsRIcVOEnPDdf0wG0T7iN89UhVwXJ4mdmp1sOwURmoRSRDCrqlxNEbtaS4aYscbpLwK3L44LFlvRyIJDYMmdixqOJYdT4ZmiG4sj9hJUDeW17Ijs7E6IcVOEmMwKJx6Qj0Ab38Q2LVUpD2wHGqP/F6eeJ3ccPrHJCA9FjvRClAGGDERUlLFprbP57LyNAXdu3QpqruH9QMkkl6MUXNjpYSYdg4+N1bIhUadmugwxVhMNIpWQWTlBh3WVifGpeQGH9fXkGInyfndPXkA1DYWs3qt/w/gYu1zvaoHvSvrEGahvCRtE+Gh52LHY9lp1GlFHec2wdjjxHGHejv9p07FkpFBW00NhzZs0P++EkkvwOlUMaaIlNM0QzhuLFEkMPSYnQQXO7W1AKRKsdMJKXaSnBmnZJOVVgWKwu8e8V9g0Ct2emDZqesllh239n30OEA5Gm4s8AUpb/QFKRvNZobMmAHAHunKkkj8UlvnwGAVYifTZOpmtI+wW8jES+w0aWInM7CIUVWVdmnZ8YsUO72AC84WKmbx8izcfjp+lmgPLAe67xsakHocAEnbANSDz7IT4ffhtew06LSio/ATpAy+ejuydYRE4p/qGgdGTezkBGmU2RE3rvDLUXj+9s1xsuwEycZytLTgdors3NS8vBgsKnmQYqcX8PD9xaA6sTnzeP2tI13OD9YeWMp7IHaaNbGTzGnnAK6eWnY8YicaMTvgC1LeuQHafP9hw7S4nX3LluFyOKJzb4kkiamscWI0CbGTHaJlx6m5sCAMy46jXrsgxpaTRuGeIic/4JDWGmHdN1qtmNOSt/hrNJBipxcwZHAKg4pF+4g//b2l63ntb7iiDRwRxrc2amIns5eIHUOk7rhoxuwAFA2EghJwuWDrWt/bkyaRmpeHvbmZg2vWROfeEkkSc7DWjdGsubGU0GJ2nN54nRQMhOj6ctaLV3NOmCvsAe1t4gsgK7DFpk0TO2n5+SixbFKaBEix00u44RrxX7l+az9aj+oLUZQCFoPofF4RoXWnuZeIHV/MToRixxuzEyU3lqL4rDsd4nYUg4Ghs2cDMgVdIvHH4SY3RpNw4aSEKXbCqqju0NxJsYzZ8biwDIag7SI8lh3pwuqKFDu9hLvvLEahBZU0Hvtr55o7BgWGatad3RE2625BbCLpoT79JCAqKi4tqyxiy47HT+9uB3eU3EneIOXOcTulMm5HIgnI4Ua3142VGmLquQOxIZoIsWaO6u5g2YmhoKjXwhOy84XgCUDrETEuraAgFqtKKqTY6SWkpRmZPFY0kPzPK119VSO1v+VdEYSauHBjR8wZ6iaSiKg4Qfs+emzZgejH7RwVpOypt7P/q69wtPWgjoBE0gs50gxGs3goSwvxocypiR0zGaHdxNkIaEkgsYzZadAybXOCixiv2CksjPaKkg4pdnoRd90uzDfllSXs2985z3yE9hm9M4LP5zZ8brHUJLbsuPGVkDZEmo1lMINBS2+LVtzOuKni6e3QAag+6H07f9QoMvv3x2WzceCbb6Jzb4kkSalrVb2WnVDFjs+yE6LYcWhBwoZUMMawmrzHstOd2DksHnil2OmKFDu9iCsvK8BqqgXFxP0Pd3ZleSw7O3ogdgwomJO6L1ZHsdOD2KNop5+nZcDwCeK4g3VHURSvK0vW25FIOlNvA5Nm2QnVAu1EbIjmkGvsaLEz5hhnYtVpYic3RMuOdGN1QYqdXoTBoDD7ZPEB/P6Czk8dY7XP560RfD47NNePBUNSNwH1WHaEZOvB9+EJTHRESewATAoQt+NpHSGbgkoknWi0K94A5dAtOx6xE2LMjl1zJ5kDp39Hhbpq8Zob3GLTUi3GpffrF+0VJR1S7PQyHrq3AFSVxtZivvzK92E8Tvt83tMCbc7w5nR2EDvJjFvLKOuRVQd8Yidalh3wFRfskJEFeDOyKlavxtYYJTeaRJKEtLgM3pidUBMpPGIn5ABlh0fsxNhyUifcU+QGFzFS7AQmuT+9JF2YNjWT3Czhwnrg0Vrv+0UpkGsR6efhurI8wcmmJP910U/seAoLRlFseIKUt6wBp0+d5gwZQu7w4aguF/u+/DJ695dIkowWt4LJHG7MTpiWHYfmTrLE2LJTG6Jl59AhQIodfyTVp9e8efNQFIW5c+d631NVlQceeID+/fuTmprKrFmz2Lx5c/wWmQBcer74UP9yZY63fYSiwHjNILGxPrz5XFr2gSmJXVjgc2PpZtmJphurdCxkZEFbC+zu/PvscWXJejuhI/eO3o/NCAajeDDrdW6sEMVOsxQ7AUkasbN69WqeffZZJk2a1On9xx57jMcff5wnn3yS1atXU1xczJw5c2hqilJacBLw0P3FoNpxuHP5z4uHve9PzhGv6+vDm8+tiZ3kljrg1moFRZyJ5SEWbiyDAcZNE8dHp6BrQcplMm4nJOTe0TdwdqgLGLrYEdZZC1mh3cRr2YlxtlONlnBSUBxwiKOtDVuD2JMyS0pisaqkIinETnNzM1dffTXPPfccuR06uaqqyhNPPMG9997LxRdfzIQJE5g/fz6tra28+uqrcVxxfCkusjBsoPjjeOJpXz2WY7Qf3fq68ObztBZN5uBk6OjG6mH6fCzEDvitpAwwdNYsAA6tX+/NvpD4R+4dfQd3urDqqDYDxhD3Krsmdsyhih279vAY65idGmGxIT+w2PG4sIxWK9bsGDcpTQKSQuzceuutnHvuuZxxxhmd3i8rK6OqqoozzzzT+57VamXmzJl8/fXXAeez2Ww0NjZ2+upt3PQj4arZsqsfjY3CojFZ2+vX1YHatTl6QNReYtlRk03seIKUN3QWOxlFRfSbIFLTy2Q15aDouXf0hX0jqcnQNjVb6IVPHYi/YTMhioN4WHbsNmiqF8f5RQGHNVeJB9yM4mLZF8sPCS92Xn/9db799lvmzZvX5VyV9p9bVNT5F6CoqMh7zh/z5s0jOzvb+zVo0CB9F50A3HlbEQaaUUnlkT+Jn8WEbDAqcNgmmoKGiseiE4Y+Skg8biylpzE7ngaA0RY7nvTzvdugqfO9vHE70pUVEL33jr6wbyQzhkwRnGx0hCZ23Di9vbFCdmN5LDuxFDtHtN9HswWyAtf3aaoUzaAzigNbf/oyCS12ysvLueOOO3j55ZdJSQlcrfJoFauqalBle88999DQ0OD9Ki8v123NiYLFYmDqJPGH+dLr4r1UkxA8AGtqQp/LYxJ2J7ncUb0xO3pZdup7Nk935PWD/kOFGW7z6k6nvHE7MkjZL9HYO/rCvpHMGDO1EhmO8OJ1xONPqAHKmjvJEtjCojtHhIghv1hkmgSg6aCotp41YEAsVpV0JLTYWbt2LdXV1Rx33HGYTCZMJhPLli3j73//OyaTyftUdvSTWHV1dZcnto5YrVaysrI6ffVGfv1z8X1VHilh5y7R7nyalkSwpjbQVV3xiB1X0osd8eSn9LS/lylHvEbbsgMdmoJ2dmUNmTEDxWCgdudOGuSHbheisXf0lX0jWTFmaGnn7tDEjt3rwsoMbU9QXWD3uLFimO3kETuFwYOOPWIno3//aK8oKUlosXP66aezceNG1q1b5/2aOnUqV199NevWrWPYsGEUFxezcOFC7zV2u51ly5Zx0kknxXHlicFF388n1XIYFCP3PiRSF6dqjXpXRWDZSXax49bLsuNxYznCjPSOhABByik5OfSfOhWQrix/yL2j72HKEH/fWYbwxI4l5HidWjyNhGMaoHxY649X0I3YqagAIFOKHb8kdFfHzMxMJmiBmB7S09PJz8/3vj937lweffRRRo4cyciRI3n00UdJS0vjqquuiseSE47vzWrhvc8K+XiRyMs8QfsbXVUjCgwaQohjM2ua2NM2IlnxWXZ66sbKEa8xteysFO6sDmbsoaedRsWqVexdvJhjrrsu+mtJIuTe0bdoaHBiShdip8gaWmkJO+JhxUKIfa5sntiZAghRUOlCtRAx9AvunvKInayBA6O9oqQkoS07oXD33Xczd+5cbrnlFqZOnUpFRQWfffYZmZkh+mB7OQ/fXwiqm5b2fiz4rI4J2ZBuggZH6H2yrJqJ19ah+3kyorsby1Hfs3lCYcyxIjCx/ghUlHU61bHejhpOep0EkHtHb2LnARvmVJFtOTA9tG7kduoBsJAT2k3smtixxjgA2CN2CoOLHY87W4od/yS0ZccfS5cu7fRvRVF44IEHeOCBB+KynkRnwvh0CnMrOFw/gEf+1MDZZ+YyLQ+WVsM3R2B8TvdzeHpiOVFxoYZcwyLR0E3seNxY7lZw28HQwyKFwbBYYfQxsGmVcGUNHOY9NfjkkzFaLDQeOEDtrl3kjxwZvXX0AuTe0XvZVeHANEqInX7m0LItwxY7HsuOJU5ipyiwiFFVlcYDBwApdgKR9JYdSfdceYn4kF/xbR5Op8p0zZX1dYj16KwdxEEyW3d8YqeHv/amDoGpsbDueFxZR9XbMaelMXD6dEBmZUn6NrsOuTBZhNjJVKIsdqwxzMQCqBYiJpgbq72+HkeLSKOX2Vj+kWKnD/C7e0pAbcelZvH0s1WcopWIWH44+HUerBi8vyithNkyPYFQtZijHosdxegTPNFOPwef2DmqbQTIejsSCcC+GhWzJnayQmwHY0OkpFrJC+0mNi1Q2BrDAGBVhSot27J4cMBhDfv3A5BWUIA5LS3guL6MFDt9gLw8M6OGivoQTz1n56RCUQ15ZxNUhVBcUEEhVfN4SrGj4Q1Sru/5XN3hycjavk5UU+2AJ25n75IlqO7kDiCXSCKlqknFbPWInVAtO2EGKNu1FPBYip3GOmgXZUOCubE8Yid7yJBYrCopkWKnj3DbTVYAduwtxtXkYGKOeD9U646nsV5bUruxPGKnhzE70CFIOQbp5wNKRbdjhx22fdf51LRpmNPTaT1yhEMbN0Z/LRJJAnK4Da8bK1SxY9PEjjVUsdPusezEsMmmx6qTWwjWwIHXDfv2AZA9OLD1p68jxU4f4ac3FmFUGkCx8tC8SmZoNbG+qA7t+nRN7DQnsWXHWyNDjwBrs7ZBxkLsKIrPunOUK8tosTBkxgxAurIkfZc6p8EXsxOC2FFRsSGKjSW0G6tSiJhgLiyA+r17ASl2giHFTh/BZFKYfpzwUb/2jpFZmthZcii06z1PS01aM81kxNfQVIdfe4/YiYUbCwI2BQXZOkIiabG6vSWoskMQO05acCNcwlbyu7+BqoJNCxS2xjDb6eBe8dp/aNBhHrGTU1oa1eUkM1Ls9CHuuzsHgMN1JeTXiMj9TQ1wuL37az1ipxF7tJYXdVQ9LTumGFp2IGDbCPCJnX3LluFyJK8YlUgixaH1xXK3GTGG8LHmCU42kY6REOryOGrBrcXLpcTBstOd2CkTNbhypdgJiBQ7fYjvnZFLRsohUAz89Q+HvU1Bl4bgysr0ip1k/jD1WHZ0dGM5YyR2xk8T7qyDe6Gmszmu+JhjSMnNxd7czME1a2KzHokkgXBnaw8ybaGVjgvfhaVZdcyFYLCGu7zI8Vh2SoIHHnstO0OHRnU5yYwUO32Mc+eI9KuFyzI4TSsXsbgqyAUa2Vo6Z0MSW3bw9vZKspgdgMxsKB0rjjd2jttRDAZKZ88GZNyOpG9iyBGJE6b2UMWOKDJmJcQeV+1aoHDKoLDX1iMq9ojXAYEtNu319bTVCktV7rBhAcf1daTY6WM8fH8/UF202QtI3dsIwKIQxE6uJnbqklrs6Eis3VgQUr2dvVLsSPogxhyROJHmCC0Tq10TOymhip02kdodU7Gjqh3ETmARU7t7NwDpRUVYMjJisbKkRIqdPsbIEWmUFIp6EZ/9qw6jAruaYV9L8OtyNLFTn8RiR9XVsqOZvx21PZ8rVAJ0QAdf3M7+r77C0RZC8SSJpBdhyRZiJzfEtPN2RM2NkC07Ns2ykxrDbKfGOmgWD6TBYnbqNLGTN3x4DBaVvEix0we59nLxun5tPtNyhQDozrqTi/BT12ILPrCv4I3ZiaXY8Vh2VoGrc72j/NGjyezfH5fNRvnXX8duTRJJnGlrc2POEg9hA1JCawJqi9SyY42hZeeAEDEUFENq4KrItbt2AZArxU5QpNjpg9z7y2IU2nCTQfq+ZgA+rQx+TYEmdmqk2BF4LTsxdGMNHw+p6dDaDGVbO51SFKVTF3SJpK+wfmcblnQhdsbmhtYqwWPZSaEwtJu0a1lRqTGsULxfiBgGBW/wW7tzJwD5o0ZFe0VJjRQ7fZCsLBPjRogUrC3vCv/VoipwBek2kK+JnUYc2JO4irJA7X5Id8TDjWU0woTjxbGfejtDPa0jpNiR9CHW7LJjtgqx098SWqaUL2anX2g3afOInaHhLi9y9gsRw+ARQYfV7NgBSLHTHVLs9FHm3pIKQOXqPLJMKnV2WBPkczsTMxbt1+VIklp3dEk59+ARO65mcMcwHX9C93E7FatXY2tsjN2aJJI4sr3ShSVFiJ3cEJqAunF6U89Dsuy47WCrEMcpMbTslIdm2fGInbyRwcf1daTY6aPc8MNCzIY6UC3kHxIBrZ8EcWUpKBRqxbeqCaEKYULiETs6WHZM2b75YhqkHDgjK2fIEHKHD0d1udj3xRexW5NEEkf21IIlRTyAeWILgyGsOioKZizkdH+D9nJABUMKWEK0BOnBfiFigll22mpraT0irFT5UuwERYqdPorBoDDjxAYADi0VT0UfHwx+TT+v2EnWbB8hTlQ9xI5i7NAMNA4ZWbs3+zI1OuBJQZdxO5K+wsF2N+YUYV3ND0nsiKKcqRSG1jqmTUv/Th2GtydFtFFV2LtdHA8ZHXDYkW3bAMgaNEimnXeDFDt9mAd+I1wxrWtFKeXVNcFbRxQhXF+HktSy49vYdBA7EJ+4nYJikYaqqrB5dZfTMkhZ0teos4pgQ9WlhNQEtE0TOykUhXaDNtGKgdQYFuyrOwJN9UJcDQ5ssTm8VSQqFIwZE6OFJS9S7PRhTjkpi+z0KmhUyKyzoRI8K6vYK3aS07KjeC07QSKxw8Erdmr0mS9UgsXtaJWUD61fT8vhw7FclUQSF2xaqwhXsxlDCHF5PstOiGKnVbPspMWw79Q+zapTPBhSUgMO81h2CsaOjcWqkhopdvo4F54jfN0tq8WG8VEQV5ZH7FQmqdihN1h2ACZ5moJ2jdtJ79ePfhMnArB36dIYLkoiiQ9qnsgOVZpDKyjYhigqlkpxaDdo0+rdpMawjo2ntERpcIvN4c2bASiUYqdbpNjp4zx0XxGoDtwbhZD55CA4Axg++iNqWBykNVbL0xWPG0vVK3XenC9eY23Z6dgBXe0q3LxxO59/HstVSSRxwZQvqientkVJ7LRqWVFpwVPAdWXPFvFaOi7oMI/Y6TdhQrRXlPRIsdPHGTwohUElVbAXjG0u6h3w9RH/Y/trlp1q2nDq5QqKKTq7sSxxEjtjjgWzBeoOQ0VZl9PeuB0pdiR9AHO+Fpysdp92DtDqFTsl3Q9W1Q5iJw6WnWGBLTa2piYa9ovKzoXjx8diVUmNFDsSfnyNAVRwbRAi4IMD/sflYcWKATdQlYSuLJ9lR6+YnTiJHYsVRh8jjv3E7QydORPFaKR21y7vZiiR9EZsNjfWXOGKL03tvlWEG1eHmJ0QLDv2alFLCwVSYxiz47XsBBY7HqtORkkJqbm5sVhVUiPFjoRf/bwEhRbYJMzAH1b4H6egMIB0AMrppnNoAqJgBKLgxrLHWOxAB1dW17gda1YW/adOBWRWlqR3s2JzK5YMIXamFGZ2O76dw6i4UDCTQn73N2jVat2kDgVDaNWZe0xTPVRpjUdHBHZPHdqwAYCiSZNisKjkR4odCSkpBo4Zdxi2Ai6VHU2wPUAB3kGa2DmQhHE7hmiJnVhbdqBz3I4fZL0dSV/g6212rGmiFMZga+CsJQ9tiCe5NIq9Dz9BadGyotJi2Ipht7DYUDQQMnMCDpNiJzyk2JEA8MufpUM7sF0EvL4fwJU1SAtSlpYdwKJ1TI6L2NHSz7d9B7audY86xu2ofoKYJZLewMaDLqypwrJTEEJBwVZEumkq/UO7gceykx5DsbNzo3gdMTHoMCl2wkOKHQkAl19agNVUC5vEr8QHAVxZHsvOPppjtTTdUDABojeOLngtOwEiuqPJgFLILQSnQwieoxh00kkYrVaaDh709s6RSHobu5tVzFYRoOxpZxMMj9hJC1XseC07gasY684uj9gJ7MJS3W4OrV8PSLETKlLsSADRPuL0UxtBPCzw9WE45CcGeQiiJPn+JLTsGDSxo58bS7Ps2Gv8poBHFUUJ2ifLnJrKoJNOAqQrS9J7OZIqHlxc7UYyQqie3Op1Yw0I7QYtWlZUegwrFG9fJ149SQh+qCsrw9bYiNFqlQUFQyQisXPaaafx4IMPdnm/rq6O0zTzuST5eOi+AqhTYZ8ou+cvUHmwZtmpx04D9tgusIfobtnxuLFUu5axEWM8xQU3BIjbSbAU9GD7xnnnnReHFUmSnfZ88eDibggt7bxFEzvpDOx+sNsGrVpBwfQYCQq3G3ZqT5yjJgccVvnttwAUTZyI0RxafaG+TkRiZ+nSpTz55JNceOGFtLT4nvDtdjvLli3TbXGS2HLcsRnkZVd6rTvv+onbScVEkWYu3ptkriyfZUcnsWNME52QAexxaM3gsexs+MbvaU+Q8t4lS1Dd8a+LFGzf+Oqrr+K4MkmyohSKv2VzU/diR8XdwbITgthp2Qm4wZgJ1hBq8uhBRRm0NovyEkEagFZ9J1zXxcceG5t19QIidmMtWrSIqqoqTjzxRPbu3avjkiTx5LILnCBcwSyqUmlydB1TikjxLEsysaNoZm7dLDvgc2XFI0h5/DThzqraD4e7NjXrP3UqlsxM2mprqdL8+/FG7hsSPTH3E9blHHv3YqedI7ixoWAMrS9Wi1brJmNc7LqdbxMWG0ZMBJMp4LCDa9YAUDJlSixW1SuIWOyUlJSwbNkyJk2axLRp01gq+/D0Ch68rxgq7XAI7G6Fj/30yhqmxe2U0RTj1fUMn2XHj4KLFEuheLXHIUg5PdMXxOgnbsdoNjNkxgwgceJ25L4h0QuHQyWlUGRijbSmdTu+BVFgM43+3r0gKM1aCnhGDKsTb9XEztjjAg5RVdUrdvpPmxaLVfUKIhI7iqZyrVYrr7zyCnfccQdnnXUWTz/9tK6Lk8SefoUWhg2q8lp33invOmaYZtnZnXRix2PZ0VPseCw7cRA70MGVlfhxO3LfkOjJqi2tpGSKLIrpJd0XFGxBbGbpDArtBh6xkx5LsbNWvI4NbLGpLyujva4Oo8VC0cTg6ekSHxGJnaPrdtx333288sor/OUvf9FlUZL48pMfmWCdOP6oQqXtKK/PMK8bqwm3Xh3EY0BUxI43IysOMTsQctzOvi++wOXQ8fuOALlvSPTk8402rOmixtSItPRux4cvdjaJ11hZdlTV58YaE1jsVKxeDYiUc6MltMBsSYRip6ysjMLCwk7vXXLJJaxcuZL//Oc/uixMEj/m3lqMUt4EtdDiUvisqvP5QaRjxkArLiqTqEeWAbEx6GvZ0f4O4m3Z2bIGnF1jkYomTiStoABHSwsVq1bFeHGdCbZvPPXUU3FalSRZWX3ASUqa2H9K6L56cgv7AEhnSPeTu9qgdac4zoxRHZuKMqivEU1+RwW+54EVwoo74MQTY7OuXkJEYmfIkCFek3RHxo8fz3XXXdfjRUnii8Vi4PhJNV5X1ttH9ZI0YaBUi9vZRYC+EgmIz7KjY8q8N2YnTpad0jGQkQ3trbB7U5fTisHA0Nmzgfi7soLtG1dddVUcViRJZvYqThQDuB0KeSFUT27WxE5GKGKnZQvgFpZbSwgNQ/Vgk/YwMvoYIXgCUKGJnYFS7ISFLCoo8cs9v8j0urLeK1exH1WHbyRZQLKJHY9lR0exE283lsHgax0RKG5H9smS9EIac4Ql01lnxUDwbCkHzdgQGZPpDO5+8iat/kbGxNhlYnnEzvjjAw5x2mzeGjtS7ISHFDsSv1xwXj6pBw5DAzS5FD4/1Pn8CE3s7ExCsaPixq1bfyyPGytOYge6j9vRgpTLv/4aR2vyNXCVSPzhLhJix1gfulXHSgFmzSodlCbNrB0rFxb4MirHB86wqvruO1x2O2kFBeQOGxajhfUOpNiRBOSsWS1eV9ZbR7myRmliZweNqEkSpGzEZxp2Y9NnUnOc3VgAEzTLjp/0c4C8ESPIGjQIt8PBflm8T9JLsPQXFtrc9lDEThkAmZSGNnmT1m8uM0ZF++w2XybWpOkBh+1fvhyAQSef7NclLAmMFDuSgDz820L4VlTefavMjaNDEd7hZGJEoQ47h+nadTsRMXQQOy69xE68Y3bA58baux0aarucVhQloVLQJZKe4nCopPYTwckTQsjE8oidjFDEjqpC0zpxnHVMhCsMk23fCcGTUwCDRwQcVq49rAw+5ZTYrKsXIcWOJCDjx6ZTWFsJjdCsGvi8Q1aWFaM3SHkbDXFaYXgoGDoEKessdpz14I5Tr7CcfBg8Uhxv9G/d8cbtSLEj6QUsWttCSpZwyZ42MKfb8U3hiJ22MnA2gmKJXU8sjwt60vSAMUKqqnots4NOPjk26+pFSLEjCcrVF7u9gcpv7OvsrhpNNgDbk0TsABi1vl4uvYKUzXmgGMVxPKooewjSAR18cTuV335Le319jBYlkUSHj9e1k5YpxM7IlOCWHRWVJvYAIbqxGrVaNxkTwBCjOjbfCfdUMBfWkW3baD18GFNqqmwTEQFS7EiCcv+vi+FbIQze3N05K2usJna2JpHYMWgpqi69XG+KoUNGVrU+c0aCpwP6Rv8ZWVkDBpA/ejSq281e2axXkuR822DHaHahuqGE4K0ibNTioAEwkMHQ7idvFK0YyJ7a43WGhKrCOk3sTDk14LC9WmuVQdOnY7J2H6ck6YwUO5Kg5OWZGeU6CI3QajB0ysoaQw4gLDuupAlSFpYd3dxYAJZ+4jURMrI2roQAHc5l3I6kt3AoU2Ri2eusmLv5GGtiNwDpDMQYQj0eGrVA4azA/al0Zf9OqK0Wnc6DZGLt0x5ShsycGZt19TKk2JF0y89uSgEtOWH+Dt8H6VAySMFIKy72J0kHdM9m59Sz8rNH7NgOBR8XTUZMhJRUaKoXgcp+kHE7kt6CvURUQVdqUrod6xE7mYSQqq2qsRc7334pXsdPE4LH77JUKXZ6iBQ7km65+f8VYVwnxMy7+8GmubKMKIzRXFlbqI/T6sIjqpadeLqxzGYYq5ndA7iyhs6aBYrC4S1baK6q8jtGIkkGLAOEaz2vpXux08guALIY2f3ErbvAWQcGqygoGAvWLhWvx80KOOTI1q00V1VhSklh4AknxGRZvQ0pdiTdYjQqnJRzGOrBbjLwWaXv3DjNlbUpacSO6KGjr2WnSLzGU+wATNaCGwOInbT8fIqPOQaQ1ZQlyUu7zU1qiQhOnhxC2nkTosdVJoFTur00alWMM4+NTXCyqsKapeJ46qyAw/YsWgTA4FNPxZTSvcCTdEWKHUlI3H93jteV9c/1vkaaEzSxk2yWHd0ClCExLDvQoZKyf7EDPlfWHunKkiQpH37TTFpOCwDnluYFHeukjRYOACFadhq0bMbsGFlPDuyBQwfAZA6aieVxPXv+fiXhI8WOJCTmnJ5L6mZRsO7TI0batAbbHsvOflpo0LPnVJQwaZYdVzRiduxxjNkBn9jZvQlamvwO6RikrKrJEVQukXTkgw3tpKZraeeW4K0fmtgFqFgpwEpu95PXe8RO4P5UurJas7BOOB5S/WeVuRwObybWMCl2IkaKHUnIfH9UE9SCy2zg44PivWwsDEaYkjcngXUnKm4sq8eNFWexU1gCJUNENtaWNX6HDDn1VAwmEw379lFfVhbjBUokPWej24ZiAGebifxusqsaEMH62YzqfmJXGzRpNXZyTurpMkNjpXBPccIZAYdUrFyJrbGRtIICWV+nB0ixIwmZR37bD9aKbKw/f+0L8J2oPTFtpC4u6wqH6Fh2NLETz2wsD924siwZGd5uydKVJUlG6guFG91xKAWlm27njewAIIvR3U/cuBZUJ1iKIWVIj9fZLW43rNL+Bk+cE3DYrk8+AWDYnDkoBvmRHSnyJycJmeHDUinYI2rJrLSbadJCdyYkkdgxagXInOjY/btjzE68XUOTgndAB5mCLklujIOFuzytrvtA3bAsO/Vfi9ecwC0bdGX7OqivgbQMGB/Ybbb7008BGP6970V/Tb0YKXYkYfHjWQ6oBtVk4L9lwsrjsexsp4F2XMEujzumqIgdzbKj2kWPrHgysUMl5QDCyxO3s3fJEhm3I0kqXC6V1IHib3eUErxysoNmWigHQrTs1GtVjGPlwvrmM/E6dZYoHeGH5kOHOLhGuKSHn3lmbNbVS5FiRxIW9/2yBNYIk84fvxRPWP1JpQArTtSEz8ryiB2XnmLHmAImUW8o7nE7Y44FswXqDkOF/5icgSeeiDktjZbqaqo3bYrxAiWSyPn8u1bSC0TNr0tKC4KObWQ7oJJKcffByaob6kWTTXICt2zQla+Fe4qTzw44ZNeCBQCUHHccmSUlsVhVr0WKHUlYZGQYGVkjUqy3W6zU2kBBYRIiBXQDtfFcXreYtGBqXS07IPz8EP+4HYtVCB4IWG/HaLEw+FSxoct6O5Jk4rVVzaRmiL/d47Kzg46tZysA2YTQubxlKzhqwZAGWTEIAm5uhPWauDrprIDDdvzvfwCMOu+86K+plyPFjiRs7rnKDAcAo8JzG4SVZ7L25LQu4cWOx43Vou/EnowsW2XwcbHA48paHyRuR/bJkiQh37ltKAo4ms3kdZuJJcROTihip05r2ZBzIhj8u5R0ZdXn4HTC4JEw0H8bC5fdzu7PhKtr5LnnRn9NvRwpdiRhc93VhRjXiqerv60WMTrHaJadLTRgT+C4HZ9lR2ex47HsxNuNBZ3jdgLgCVLet2wZbqczFquSSHpMQ7FwnTsrU4OOU1GpZwsQomWnbql4zZ3Rk+WFzhfCYhPMhVW2ZAn2piYyiovpf1yM+nT1YqTYkYSNwaAwXTkCQGWWlYpWGEQ6eVhx4E7oejtREztWj9hJgJ5TnkqsO9ZBu/8U++JjjiElJwdbYyMH166N3dokkh5gGioqn2fXBRc7rRzETj0K5u4zsVQVapeK49zZOqyyG9xuWP6ROJ5xfsBh2957D4DRF1wgU851QP4EJRHxhzuyYTdgUPjjl+0oKF7rzncJ7Mrq6MZS0TETKZFq7ZQMhoISYSbf6l/IGIxGhs4WG7uM25EkA82tbjIGioeUE9Ozgo6tRwTeZzMKA930uGrZJiyyhpTYVE7euhZqDkF6Jhzn35Kkut1sf/99AMZceGH019QHkGJHEhEnT88mZWMDAPN3ipoUx2piJ5HjdkyI8vIqbn0LC3osO4kQs6MoodXbkXE7kiTi+YUNZOSJNihXjioMOrZOEzs5TOh+4tol4jV7usisjDZLPxCvJ54pMif9ULFqFc2VlVgyM70PJZKeIcWOJGIuKGoEFzTmWdlWrzKFfEA0BW0jMeNAjKSgYAR0dmVZtLTQRHBjgc+VFUJT0PKvvsLZrmNjVIkkCry3vwWTxYnbaWCEOXhPrDo2ApAbktjRWjbkx6jv1JJ3xevsCwMO2fzWWwCMPv98TNbggdiS0JBiRxIxf/51P9gmCgve81EL/UmjmFRcqGxI0GrKCorXuuOgWb+JE8myAx3aRnwTsLhgwZgxZJSU4Gxvp/zrr2O4OIkkfPbniODk9so0TEE+uuw00MI+AHKZGHxS1eWz7OQF7k+lG/t2wu7NYDLBqf4zrFRVZet//wvA2Esvjf6a+ghS7EgiZuAAK/m7hMvq43orqorXuvMtNfFcWlDMZALgwH9n8Iiweiw7h8UGGm/GHgdGIxyphKpyv0MURfF2UZZ9siSJjloqrI/WQ8GDkz1WnXSGYCF4LR4avxVVz01ZkBWDjKel74nXqbMhy3+hw4OrV9Owfz/m9HRGnBW4Bo8kPBJe7FRUVHDNNdeQn59PWloaxxxzDGs7ZI+oqsoDDzxA//79SU1NZdasWWzevDmOK+5b/ORYO9jBnmtmeYWL4zSxszahxY6w7Dj1FDuWQsSfk1v0yIo3qWkwarI4DpKCPtTTOqIXBinLvaP34HKppJcKt/NEgruwalkPhGDVAajRWjbkzgaDqUdrDIlFwmITzIW16fXXAVFI0JwaXNhJQiehxU5dXR0nn3wyZrOZBQsWsGXLFv7yl7+Qk5PjHfPYY4/x+OOP8+STT7J69WqKi4uZM2cOTU06fpBJAnL/3GLYIOJz7nq/1RukvJsmarEFuzRuRMWyoxgTq7AghBS347HsVKxeja2xMRarigly7+hdvLSogcxCkRDx43H9go6tZR0A+Rzb/cRHRJNNCmJgQTm4DzatAoMBTrvY7xC3y8XmN94AYMKVV0Z/TX2IhBY7f/zjHxk0aBDPP/88xx9/PEOHDuX0009n+PDhgHgye+KJJ7j33nu5+OKLmTBhAvPnz6e1tZVXX301zqvvG6SkGBheLaw4a0xpZLmtjESkhSaqK8vkFTs6xuyAL0g5UcTOxO4zsrIHDyZvxAhUl4t9X3wRo4VFH7l39C5e3dWMWQtOnpQW2DVlp5EmdgOQy+TgkzoboUH728iPQUdxj1VnygwoKPY7ZP+XX9J08CApOTnShaUzCS12PvjgA6ZOncoPfvAD+vXrx7HHHstzzz3nPV9WVkZVVRVndugGa7VamTlzJl8HCbi02Ww0NjZ2+pJEzkMXGqEF3JlGXt1g87qy1nAkzivzj9kboKzz/7s1wcSOx7Kz7VuwB7ayeVxZvSluJxp7h9w34sfeXBGv03YweHByHRsAlXQGkaLtQwGpXQyqE9JGQlqpjqsNwMI3xeucHwQcslET2mMvuURmYelMQoudPXv28MwzzzBy5Eg+/fRTbr75Zn72s5/x4osvAlBVJdJ8i4qKOl1XVFTkPeePefPmkZ2d7f0aNGhQ9L6JPsBVlxZgXCdq1jywyMFURDfiNdToW7hPJ8ya5UlXNxYkntgZOAxyC8Fhh+3rAg7zuLJ6U72daOwdct+IIyOE2EmtTAs6rIZvAcgLxYV1WKtiXBC4ZYNulO/2ubBOv8TvEGd7O5vfFIJo4lVXRX9NfYyEFjtut5spU6bw6KOPcuyxx/KTn/yEG2+8kWeeeabTOEVROv1bVdUu73XknnvuoaGhwftVXu4/W0USOsc76wHYk5fGCGcOVgzUYGOP3q4iHbBoYseuu2Wnv3i1HdR33khRlJBcWZ6iZdUbN9JSnQDB1ToQjb1D7hvxobHZRWapeDCZbg5eOblWEzv5dNO5XFXhyMfiuCAGTTY/eU28Hn865Bf5HbL9ww+xNTSQNWgQQ2fNiv6a+hgJLXZKSkoYN25cp/fGjh3L/v37ASguFn7Po5/EqquruzyxdcRqtZKVldXpS9Iz/n5zJtSqkGLgLwvbva0jViegK8tn2YmWGytBxA50qKQcOEg5vbCQoskivqFsyZJYrCrqRGPvkPtGfPjHgjoy8sTf6i0TSwKOa+cIzewDlO4tO03rxN+pMR3yZuq3WH+oKizQ4sDODmyx2aBZHSdde63shRUFEvonevLJJ7N9+/ZO7+3YsYMhQ4YAUFpaSnFxMQsXLvSet9vtLFu2jJNOOimma+3rTD02g5QNworz9AaFaZoraxWH47ksv/jEToO+EyeaZQdCsuxA72sdIfeO3sOHtS0YjCr2FjODzIHdWB4XVhYjvNbbgBz+ULzmnQGGKMfGbF8HZVvBYoXZF/kd0lxVxc4FCwCYfO210V1PHyWhxc6dd97JihUrePTRR9m1axevvvoqzz77LLfeeisgTNBz587l0Ucf5d1332XTpk1cf/31pKWlcZX0ecacC/KF2KkpSWVEuxA7G6lLuNYRnkJjvd6NBTB+mogTqNoP1YHXVdrL4nbk3tF7ODJIxAM69magEDg84QirAchnWveTVosmmxQG7jquGx/OF68zvw+Z/jPJ1r/4IqrLxcATT6RgzJjor6kPktBiZ9q0abz77ru89tprTJgwgYcffpgnnniCq6++2jvm7rvvZu7cudxyyy1MnTqViooKPvvsMzIzM+O48r7J33+eDwfcYFKY95qT/qTiROXbBGsM6hE70bPsVCVGFWUQnZWHa/2BghQXHDJjBgaTibo9e6jfuzc2a4sicu/oPaSMEsUEB9SmBxyj4qaGNQAUdid22suh6VtAgcLz9FqmfxwOnwvr/Ov8DlFVle/+7/8AOPb//b/orqcPk9BiB+C8885j48aNtLe3s3XrVm688cZO5xVF4YEHHqCyspL29naWLVvGhAkhNH+T6E6/Qgv5O4WA+OBICscjOhMnmivLrIkdF+249Cx8aOlHQlVR9uAtLhjYlWXNzGTA8ccDvScFXe4dyc/Sdc1kDxB7ynXDAnc6b2QXduoxkkoO44NPWq11Hc+Z7isEGi2+/gTqDkNeP5juv5bP/uXLqdmxA3N6OuMvuyy66+nDJLzYkSQXt0yygxvaBqTQr0YEKa/kcEKloJtIR0GUhrfrad0xmHybZ3uFfvP2lBDEDvQ+V5Yk+fnLynosqXbcTgPnDCgIOO4IqwBRNdmAOfik1VrX8cIL9FpmYN7/j3g9+2rR/NMPa//1LwDGX345VmlVjBpS7Eh05bc/7Qc7RYzOU6+YsWDgEO3sTaAUdAWlQ9xOvb6TWweIV1sCiZ3JmtjZulbU3AmAV+wsXowaoFO6RBJLtue3AtC6PwMLxoDjDiNctAWcEHxCew3ULRXHRf7r3ejGkSr4QguEvujHfoe0HD7MlrfeAmDqzTdHdz19HCl2JLpiMikMq6oDYIWaxTGqsO6sSDBXVvTFTgIFKQ8eCdl5YGuHHesDDht44omYUlNpOXSIw1u2xHCBEol/jGOE2Mk+GDhex04D9WwFoJATg094+AMRT5c5GdKG67ZOv3w4H1wuYVkd7t+1tu6FF3DZ7ZQcdxwDpoUQWC2JGCl2JLrz+/NNYAdXoRnrgRwgEcVODhAFsZOiiZ1EcmN1LC64PrAry2S1MviUUwDpypLEn237bOQMrQfgovy8gONEFpabDIaRSvAmoRx6W7z2i7JVR1XhPRF0zEX+g45Vt9vrwpr6059Gdz0SKXYk+nPlebkYt4jy7m++L3zQm6inCUc8l9WJqImdRHRjgU/sBMnIAhm3I0kcHlh0hJSMdtwuhRvGBi4mWI0Q8N1adRx1UPOZOC66VK9l+mfVYti/U2RDnuk/6Hjnxx9Tt3s3KTk5TLjiiuiuRyLFjiQ6HG8Xgb/bTQUMUTNwoyZUNWWLVuHZTp2+E3vETvsBfeftKaEGKWvFBfcuXYrbmVj1kSR9i+8ytXid8kxS8R/c68bBEVYCUMTJwSesfhdUB2RMhIyxuq61C29pbUnOvRbSMvwOWfn3vwMi3dySHthNJ9EHKXYkUeHpGzOgWYUsI+ouER/zNYmTjm0lFwCb3mInJUEtOxOOF+6sg3tF4GQASqZMISUnB1tjI5Xffhu79UkkR2EcJ+rrZJYHFgK1bMBJCxZyyaabYnxVb4jX4sv1WqJ/qg/C0vfE8aX+g44Pb9nCnoULUQwGjtcKXUqiixQ7kqhwzPh0UjeLzWrpl8KKsoojuHDHc1lefG4svcXOQPGaaJadjCxfkGQQ647BaPQ2Iewt9XYkyceGPW3kDBN/mz8oyA84rpqvAOHCUoJ9nNkPQ632+xxtsfPucyIw+ZiTYeREv0M8Vp3RF1xAztCh0V2PBJBiRxJFLsgXYqfcUEymaqYJBxv1jpGJEGu03ViuJnDq3I6ip3hcWd3E7Qz1uLIWL472iiQSv9y/5AjWNBsup4EfB4jXUXFziC8BKOLU4BNWvSGysLKmQtoIvZfrw2H3ubAu82+xaamuZv180ULixLlzo7cWSSek2JFEjadvz4fDblSLEedO4cr6JkFcWZZoubFMmWDS+t8kUkYW+MROkIwsgGFakPL+5ctxtrdHe1USSRe29RMPSq17MgPW12lgGzaOYCSNfI4LPmHly+K15Bo9l9mVz96EmkNQ2B/O8B8Evfrpp3G2tzPg+OMZfGo3Ik2iG1LsSKJGbq6J/F3CurFhg0gJTRSx47Ps1KLq7Vqzaq4sW4K5sjwZWVvXiJ49ASgYO5aMkhKc7e2UfxNcGEkk0cA6XhQhLToYuKLwIb4AhAvLiCXwZC07oWElKEYojmLWk6rCa8I9xWW3gLlrJWdHayurn3oKgOl33YWiBG5sKtEXKXYkUeX2yeJDtcpZglFVKKeV/QlQTdlj2VFx49C7+3mixu0MHQ1ZudDeFrS4oKIo3qwsmYIuiTVvfllPziBhcb1tpP/eVSoqVZrYKeKU4BN6rDp5Z0S3F9b6r2HzarBY4eKb/A757j//ofXIEXKGDmXsRRdFby2SLkixI4kq999QAGVOXG4zjrIsAL5KAOuOAZO3IaiNGn0nT1SxYzDABK2cvqy3I0lQ/rqrFqPZha3JwlkB+mE1soM2KjGSEry+juqGgyI+hv7+u47rxvw/idfzfgh5XZuWuux2vnrsMQBOuvtuDAF6ZUmigxQ7kqhiMCiMqBY1d/bsFk9ViSB2AKyILI923cXOIPHaXq7vvHoQZr2ditWrsTUmWKC1pFdTO0rU13Fsz0bBv5uniiWAcGGZSA08Wd0yaN8Hpizod6HeS/Wxdzss07qpX/sLv0M2vvoqjeXlpBcVceyPfhS9tUj8IsWOJOr88fsmcEF1c38AtlBPLbY4r8oXt2OjVueJPZadBBQ7k0MTOzlDhpA7fDiqy8XeZctisDCJBBqaXWSPEy6sae3ZfscIF5b4nSxmVvAJK14Qr8VXgDGIKOopLz8uYnZmfl+4i4/C7XKx/A9/AGD6L36BKSUlemuR+EWKHUnUufj0bIzbbNjbUrBXpKOSGAUGUxAmcv3dWJplJ9EClAHGa8UFK8pE1kgQpCtLEmt+8d4h0nNbUN0KD58w2O+YerbQRhVGUikM1uXcUQ+HREdx+l+v+1q9HK6ED14Qxz+8y++QzW+8Qc327aTk5sru5nFCih1JTJjuEq6sA+XFACxPALHjcWNFTewkomUnMxuGjRPH3Vh3hkmxI4kxyzOEy7R5byb5Zv8ZVpWI38ciTsFIEAtJ5avgboP08ZDdTd+snvDy46K+zrGnwJSuqeRul4tlDz0EwEl33YU1M3CGmSR6SLEjiQnP3ZQJrSpHjogCYd9yhFbi23vJJ3Z07tnlETvOBnA26Tu3Hkw+Sbx2I3aGzp4NQPWmTTQfCm4Fkkj0wHqM+HvJ15IZjsaNyxuvU8IZgSdSVah4ThwPvFFYM6NBQ62viOANv/E7ZNPrr1OzfTupeXkcf9tt0VmHpFuk2JHEhDHDUknb1kJrYzq2Iyk4UFnJ4biuyePGatd7HaYMMOWI40S07oRYXDC9sJCiyZMBKJPVlCVR5rlFteQMEvFzvx4zwO+YGtZipx4LOcELCTauhaZ1oFiiW0jw1b9BWwuMPgZOPqvLabfTyReaVWf6XXdhzfIv4iTRR4odScy4uF8roHDooMeVFV9rgTVaMTsAKVq8QSKLnW6KC0KHuB0pdiRR5unqGgxGlbaaVGYNyPE7poJPAShmNoYAlZUBOKBZW4ouBUvg3lo9oqleiB2AH9/r13q07oUXqNmxg7SCAmnViTNS7EhixtO35EONmyOVQuys4DD2ODYG7RigrOLSeXJP3M5+fefVgyGjIDOn2+KCION2JLHDPkkUGzVs9p9y7qCZapYDMIDvBZ7IUQeVr4njQbfovk4vrzwBzQ0wYgKcfnGX0872dpY9+CAAp/zmNzJWJ85IsSOJGZkZRvrtaaSxJht7o4VWXHwbDatKiFjJQ8GAilv/Hlley04Cih2Dwdc6opu4nSEzZmAwmagvK6OurCwGi5P0RT5f30TeKLEX/DCna0E+gCqW4cZOBkPIYlTgyQ7OF4HJGRMh56RoLBca64TYAbjpd+Jv6ihWP/MMjQcOkDVwINN++tPorEMSMlLsSGLKnVNdgMLhSlFg8Auq4rYWBWOHwoI6x+14LDtt+/SdVy9CLC5oychgwAkivVdadyTR4rfrqzFZnNiaLdw0qb/fMRV8AkB/vhew2CCqG8qfFseDfhq9wOSX/hLUqtNeX8+Xv/89ADN/9ztZVycBkGJHElPuvjIPZZ+TwweEK+trqnHF0ZVlRTxF6i52UoeI10SM2YGQiwuCrLcjiT51E0QWlmNjDgY/QqaZfdSzCTDQnzmBJzryCbTuBFM2lFwbncXWHPJZdX76kF+rzpfz5tFWW0vB2LEcc/310VmHJCyk2JHEFINBYXRNAw3VuTjaTDTgYIPeLqQwSPWKHZ3r/iSyGwtEjyxFgYN74Uhw65q3KejixaiqGoPFSfoSq3a0kDdeuLAuNPrvhXWABYBoD+GJtfPLfq3r+IAfi6zIaPCfeSIDa/w0mH1hl9P1+/ax8m8icHnOY4/JHlgJghQ7kpjzl4stqE6FIwc9rqz4ZWVFzbLTMRtLjZ/lKiAZWTB8vDjupinowBNPxJSaSkt1NYc3b47B4iR9ibtWHMJsdWBvMfPr4wd1Oe/GyUE+A2AgZweeqGUb1HwKKDDo1ugstnK/r67ObY/6dZMtvvdeXDYbQ2fPZuS550ZnHZKwkWJHEnPOOSkT0w4bh8uF2FnOIdzEx2KQSj8gCpYda39QjKA6wFap79x6EWLcjslqZcipojLsHunKkujMkQmiarJtYy5GPy6sar7CTh1W8oJ3ON/3V/Fa+H1IGxaNpcJT94lqydNmwwmndzld/s03bHzlFVAU5vzpTyjRihmShI0UO5K4cKrSTF1VAU6biSPY2EJ9XNaR4hU7Olt2DCawaoXR2hM8SLmb4oIg43Yk0WH5lmbyJ4gK5hcr/t1T5Yhu4gM4GwMBXEK2apGFBTDUf9fxHrPtO/j4ZXE8909drDqq280nP/sZAMf86Ef0Py5I0UNJzJFiRxIXnrspE7VFoeagcCMti1NWVirCutQWDVdaihak3JagcTsRFBfcu3Qpbmd823xIeg+//K5SZGE1WfnVCV1dWC1UUMO3gMJAzgs8UfnT4LZB1jTIOUX/haoq/PWX4vXsq2BcVyGzbv58Dq5ZgyUzk9MffVT/NUh6hBQ7krgwfKCVjO0tHNYag37JIdQ4uLI8lh0bNbj17tXlzchKUMvOkFGQlRtSccHiY44hJTcXe1MTFatXx2iBkt5Ok9YLy7k+x68Lq5wPASjgeNIo9j+JqxXKnxLHQ++KTrr58gWw6nMwW+C2R7qcbm9o4PN77gFg5m9/S0ZRkf5rkPQIKXYkcePy/u3UVhbgchg5RDvbaIj5GizkYMAMqFEIUvZYdhJU7BgMIcftGIxGSrXGoNKVJdGD17+pI2+0cGHdkNFVHLhop4KPARjM9wNPVPF/4DgCqaXQr2vNmx7jcMDjPxfHV/4M+g/tMmTJ/ffTcugQ+aNHc4LmypIkFlLsSOLG33+Sh7u6oysr9llZCgZSouXKSh0qXtv36juvnnjjdr7udqjskyXRk3kHqjGa3LQeSeMnx5R0OX+Qz3HQRColFHKC/0ncDtj7Z3E89JciVk5v3nwK9m6HvH7w/+7rcrry229Z/ZSwLJ3z1FMYLRb91yDpMVLsSOJGWqqBkn2NHN4vzNPLqIqLK8sTt9Oud9xQaoJbdiBkyw74xE7511/jaGuL5qokvRyXS0U5oR4Ay/rcLhWRVVT28y4Ag7kAJVDTz6rXRC0rSxH0/5H+C609DP98QBzf+ghkZndep9vNR7fcgup2M+GKK7y95CSJhxQ7krjyq+kqNQcLcDkNVNHGDhpjvoaoBSmnDBWvbXtFYGMiMuF44c6q3AfVB4MOzR81iswBA3DZbJR/9VWMFijpjdz/4SFyBolior8f1TUwuY4NNLEbAxYGBKqto7qgbJ44HjIXjFFoyfDkb0RbiDHHwgVdxdSaf/2LipUrsWRmcuZf/qL//SW6IcWOJK7ccUku6h7V68paGoesrFQt8LFNd8uOVljQ3QqO+DU8DUp6JgyfII67se4oiuJ9cpX1diQ94d20GhQFGnZnM3NQTpfze/kvAP05EwtZ/ic59F9RSNCUG53u5htWwLv/Fse/+gcYO1uXGisqWPSrXwFw2iOPkNnff08vSWIgxY4k7oyrb+TwPuGzj4cryyd2dLbsGKyiuCAI606iMlnrDC37ZEliwMEaB9knisDkEbvyu5xvpYJqhOVwKJf6n0R1w+6HxfGQO8EUQBBFissFf9CqMH//ejjm5C5DFtx2G/amJgaccALTbomC2JLoihQ7krjzj8ut1BzIx+U0UBkHV1bULDvgC1JOZLETQdxO5dq1tNXFr6eZJHm5fkE5qVltOG0mnp1V2uX8Xt4GVAo4ngyG+J/k0DvQslk0/Bx8u/6LfPtfsPVbyMiGO/7Y5fTWd95h23vvYTCZOP+55zAYA8QUSRIGKXYkcWf2lAxMW5zUVIiaN7F2ZXnETjuHcOPSd3Jv3E6ZvvPqibe44FpRCj8IWQMGkD96NKrbzd6lS6O/Nkmvo2JyPQAt3+WRYzV3OmengQqt6Wdgq44Ldj8gjgffAeYcfRdYfRD+IWrmcNsjIgurA601NXz0058CcNLdd1M0caK+95dEBSl2JAnBbHOzNytrqRpbV5aVfAyYUXHr3yPLa9lJYLEzeATkFIDdJkrid4N0ZUki5T9f1lAwTtSzusHUtUhgOR/gop1MRpDPVP+TVL2hWXVyhAtLb/50BzQ3iuD9S2/ucnrB7bfTUl1N4bhxzPztb/W/vyQqSLEjSQj+fXMONbsKcDmNVCltbI+hK0vB0MGVpXPTzlTNTJ/ItXYUJax6O8Ok2JFEyOMNhzAYVZoPZnDb1M4BvS5s7OMdAEq5oks6OgBuJ+z+nTge+kv9rTrLPoRF/xXByPc92yUoeeu777LptddQjEYueOEFTFarvveXRA0pdiQJwcB+ZjK2tlFTIbKylugtOrohFREg3Urw9OvwJ9bETiJbdsAXpByC2Bk6axYoCke2baOxoiK665L0GmoanaSfIgKTC9Z3DUyu4BPs1JNCEcXM8j/JwfnQugvMBTBY50rFzY2+oORrfwGjJ3c63XL4MB/dLCw9J999NwOmTdP3/pKoIsWOJGG4dqiN6n3CwvK5K7aurDRN7ETNstO2V2SQJCphBCmn5uVRMmUKIKspS0Lnyg/3k5bTitNu5PlTh3U658bJHl4DoJTLMfgrIuhq81l1Su8BU4a+C3zil1BVDgOHwU2/63RKVVU+vPFGWqqr6TdhAjN/97sAk0gSFSl2JAnDX2/Mp3ZjPk6HkRpjO1uoj9m9UxEmdd0tOymDAAO428EWn87uITF+qjDZV1eIDb8bvF3QpdiRhEjl1FoAWlYXUJzR2f1zkEW0cwgLuQzkHP8T7H8SbBWQMlj/ujorP4e3nxXHv/s/SE3rdPq7//yH7e+/j9Fi4aKXX5buqyREih1JwmA2K/Tf20zNgdhnZaVFS+wYzJrgIbFdWanpMEoz24dg3elYXFBN1OrQkoTh9wsOkT9SuLDuzBjQ6ZyKiz28AkApl2HEj5Bw1EHZo+J4+EP6VktubYaH/p84vuwWmDqr0+na3bv55I47AJj9+99TPHkykuRDih1JQvG7WQaq9wuX0qeOStwxcmVFTewApGom+7Y9+s+tJ5NCj9sZfMopGC0WGsvLqd21K8oLkyQ7r6ZUoxigYXcO107unMpdyVJaOYCZLAYF6m6+51Fw1kPGBOh/jb6L++sv4eBeKBnSpaaOy+HgnauvxtHSwpCZM5n+85/re29JzJBiR5JQ/L9zs6lfkY3TbqLJbGcjsSlc5wlQdtKMXe9MsLRkCVIOPW7HnJbGwOlivMzKkgRj+bYm8k4S1ckn7SrodE7FxW5eBERdHRNpXa6ndQ/s/7s4HvlHUHQs4Ld8Afz3n+L4gf9AWuc4oCW//S0VK1eSkpPDhfPny+KBSYwUO5KEY1JjM4fLRXPOxTHKyjKRihWxEbeic4ZRslh2PBlZ276D9u67mst6O5JQuG1rBWark7a6VJ49o3NgciVLaGE/ZrIYwsX+J9j5a1DtkD8HCgI0BY2E+hp48Mfi+Ko74PjTOp3es2gRX/1RWHrO//e/yRkSoJqzJCmQYkeScDxzdSrVZSIr6xNbJS5ik8UUNVeWV+wkuGWnZAgUFIPTIaopd4O33s7ixajuBM40k8SNumYnlpmiiGDKikIsRt9HTmerzg8wke5ngq/g0FuAAUb9RdSE0gNVhXm3wJFKKB0Dt8/rdLqlupp3r70WVJXjfvITxl1yiT73lcQNKXYkCccJ49Jo+yINR7sZu9XJd9TG5L5piMDJVg7oO7FH7LTu1ndevQmzuGD/adOwZGbSVltL1bp10V2bJCm59H97Sc9rwWkz8eKJna06FSykhfLAVh3VBdtFYDADboBMHdsyfPgifPamyEB8+CVISfWecrtcvH3VVTRXVVE4fjzf++tf9buvJG5IsSNJSL6X2sbhcmHdWeiKjSvLJ3Z0dmOlaZu8rQJc7frOrTdhdEA3ms0MmTEDEFlZEklHXC6V2pNFBlbbikIG5/oyqNzY2cULAAzjKv+xOhXPQ+Na0dF8xCP6LWzfTl/xwJ8+JMoudGDZgw9S9vnnmNPS+MGbb2JOTfUziSTZkGJHkpD8+6c5HNomxM4iRxX2GLiy0hkIQIvelh1zARgzxXEit40AX0bWhm+Eqb8bhp1xBiDjdiRdufbt/eQMqsftUvjz4M7xLuX8j3YOYaWAwVzY9WJHPezUmnEOfxCs/bqOiQSHHX5zFbS1iBTz63/V6fSuTz/li9//HoDznn2WwnHj9LmvJO5IsSNJSApyTBiWm7G1WnGnuFjNkajfM2qWHUXxWXcS3ZU1dgqYzFBzCA50H1DtCVLe/+WXuOzBO6ZL+hYbJ4pYnYbvCphVmuN930kbu3kZgOFc67+uzu7fgeMIpI+FQbfqt6in7oMtayA7D37/UqfeV/X79vHO1VeLOJ2bb2bS1Vfrd19J3JFiR5Kw3DTaQbXWCf3Dtuj3YPKIHQeN2GnQd/LU4eI10cWONQXGHieOQ3Bl9ZswgfR+/XC0tnJgxYooL06SLNz5fgUFY8UDyi10LiK4lzexU0ca/f1XS25cJ6olA4z5uyjMqQdf/A/m/0kc//bfUDTQe8rR1sabF19MW00NJccdx1kyTqfXIcWOJGF55Lo8qr8TKegrjYdpxxXV+5lIJQXRiFT/uB1N7LQluNiBsOJ2FEWh9DSRsivjdiQeFg4RdXXqNuVz09Ri7/s2ainjdQBGcSMGTJ0vVN2w9aeAG4ovh/wz9FnQwX1w/w/F8ZU/g9Mu8t1SVfnfTTdR+e23pBUUcPk772BK0bFCsyQhkGJHkrAYjQoF30FbUypY3HxNddTvmeaN2+m+P1RYJItlB8LKyAJZb0fSmYc/qaJgknBhXVnfv9O5XczHRTvZjKWImV0vrvg/aFghYtxGPa7Pghx2+PXl0FgH46fBnX/qdHrVP/7BhpdfRjEaufTNN8kePFif+0oSCil2JAnNo2eZqN4nqhu/VquzAPFDOqKPle5iJ22EeG1NgtYKHsvOzg3Q0tTtcI/YqVi5EltT9+MlvZvX86tQDCr1O3L51Sk+F1YzeznA/wAYzc0oHFUzx3YIdmgBwyMegpTOQili/vpL2LgSMnPgsTfBbPGe2rNoEZ9qLSDO/POfKZ09W597ShIOKXYkCc0Vp2Vx5CtR2XhnVh3NOKJ6v+iJHY8bq0zUD0lk+vWH4sHgdsPm1d0Ozy0tJae0FLfTyb4vvojBAiWJyh8WVlFwnHBhnXWgxPu+iso2nkbFTT9OIY9JXS/efic46yDzGBh0mz4LWvAqvKa1mnhoPvQf6j1Vs2MHb/3gB6guF5OuvZYTtGafkt6JFDuShGf8AZXm+gwUk8pSd3Q7oUdN7KQMAsUsyt6365zaHg0mh94UFGQKukTwUm4VBoNK/a4c5p3mcwcdYSVHWI2CiTHc3PXCwwug6jXAAOP/DQZT1zHhsmODr5v5/7sXZvmajLbV1fHa+efTXl/PwOnTOf/ZZ1H0qs4sSUik2JEkPM/+KJ3qPeIp8fnq6LqyPGKnlQOoegZEK8bkqaQMYYsdGbcj+cPCKgqnCKvOOeU+95UbJ9t4GoChXOLNevTibIatmgAaMheyjuv5Yhrr4K6LRY+36WfCzQ96T7kcDv572WXU7NhB9uDBXP7uuzIguQ8gxY4k4Zk4LIXGxTkA1PRrpBZb1O6VShEGzLhx0MYhfSf3xu3s1HfeaDCpQwf0EPpeeTKyDm3YQEt19APJJYnHywUHRazOzlwemT3I+/4+3qGFcizkMIxrul648x5o3w8pQ2D4Qz1fiNMJ91wJ5btFv7dHX/XW01FVlY9uuYU9ixZhTk/nig8+IKOoqOf3lCQ8UuxIkoKzFJXGI9koBvjErnOjzg4oGEnTrDvN7NN3co/YSYb081GTRb+gpnrYu73b4emFhRRNEnEYZYsXR3lxkkTjrg8PUHCMELkXHvRZbtqpYRfzAZFqbiaj84W1y6Bcq6kz/jkw+WkGGi5/+xV8/an4/X38XcjJ955aPm8e3/373ygGA5e89hrFkyf3/H6SpECKHUlS8M+f5HJou3BlvVAT3ZiXjKhnZCWBZcdshnHTxHEI9XbA58qS9Xb6Hp+NqEJRRF2d3830Fevbwb9w0Uo2YxjAWZ0vcrbA5h+L4wE3Qv6cni/kg/nwspay/tB8GHOs99TGV19l8b33AnDW3//O6PPP7/n9JEmDFDuSpCA7w4jr8wxUNzhKWqigNWr3Skf08WmJlmWnJQnEDvjidtZ9FdJwGaTcN7nhnf3kjz2C6oaftPrcV3Vs5CALAYVx3IFy9MfNrt8IK6d1IIzqXPsmItZ/A7+/SRzfeD/M+YH31N6lS3n/Rz8CYPovfsHxt+rYgkKSFCS02HE6ndx3332UlpaSmprKsGHDeOihh3B3iCFQVZUHHniA/v37k5qayqxZs9i8eXMcVy2JFreOMFJ3SJiko1lzJ0MTO1F1Y6nRb2zaY8KopAwwZMYMDCYT9WVl1JWVRXFh3SP3jthgc7j5bqpwK9d9W8hPjxfVkt042IywsAzkHLIZ0/nCmsWwX0sJH/8cmLN7tpADe+DOC0QBwdkXws0PeE9VrVvH6xdcgMtuZ+wllzDnscd6di9JUpLQYuePf/wj//znP3nyySfZunUrjz32GH/605/4xz/+4R3z2GOP8fjjj/Pkk0+yevVqiouLmTNnDk2yuFmv457Lc6heL4IJP3RWotJ9V+5ISEekzLawX997pAwFxQTudrBFv9dXj/EEKZdthYbabodbMjIYcMIJ4pI4W3fk3hEbzn93DzmD63E5DTyUWup9fy9v0cxezGQzihs7X+RogM3Xi+OBP4GCo9xb4dJUDz87F+oOi0a2j7wMBvHRVrdnD6+cfTa2xkaGzJjBxS+/jGJI6I89SZRI6P/1b775hgsuuIBzzz2XoUOHcumll3LmmWeyZs0aQDyZPfHEE9x7771cfPHFTJgwgfnz59Pa2sqrr74a59VL9MZoVMj+JgW3y4ChXzu7ic6Hkkg/N+CgCTt1+k1sMIHnAyEZXFm5BTBklDjeuDKkSxIlBV3uHdGnqs5O/RmVADR/WcQF4/MAaKWSXbwIwBh+ioWjrDbbfgbt5aKFyqg/92wRDgfcdSmUbYN+A+CJDyFVBDm3VFfz8ve+R3NVFUWTJnHF++/LFPM+TEKLnVNOOYXPP/+cHTt2ALB+/XqWL1/OOeeITrllZWVUVVVx5plneq+xWq3MnDmTr78OXB/EZrPR2NjY6UuSHPz5rDRqKkRF5af26+xm0jBiJQ0RDN3MXn0nTxspXpMhSBk61NsJMW6nQ5CyGkLKerSIxt4h943OnL90D+l5LTjazLw0Tvxeq6hs4Qnc2MjjGPpzZueLqv4LlS8CBpgwH0wZXScOFVUVMTqrPhcC5+//E9W/gfaGBl45+2xqd+0iZ+hQrl6wgJScnMjvJUl6Elrs/OpXv+LKK69kzJgxmM1mjj32WObOncuVV14JQFWVqKZbdFSdhKKiIu85f8ybN4/s7Gzv16BBgwKOlSQW503P4MgK0Zl8TdZh3FFyZUUvbkezlCSb2AkxbmfgiSdiTkuj9fBhqjdtiuLCghONvUPuGz4WbWnAcpZwxSpLShhflAZAJYs4wioUzIzjzs79r9rLYYvm0ir9FeSe3LNFPP1b+OAF4bL64xsw+hgA7C0tvHruuaKLeWEh13z6KZn9deqzJUlaElrsvPHGG7z88su8+uqrfPvtt8yfP58///nPzJ8/v9O4o8t8q6oatPT3PffcQ0NDg/ervDz6DSYl+jF2hxWn3YQpx84Gl45upg6kMxSIpmVnh77zRguP2Nm4UhRr6wajxcKQGTOA+KagR2PvkPuGj7k1e7GkOmg5ks7HpwsBb6eerYiaOSP4IRl06B6uumDjNeCsh6xpMPxBP7OGwVv/hH//Xhzf+0849VwAnO3tvHHhhZR/9RUpOTlcu3Ah+aNG9exekl5BQoudX/7yl/z617/miiuuYOLEiVx77bXceeedzJs3D4DiYhH5f/STWHV1dZcnto5YrVaysrI6fUmSh3//KIfDe8X/7x92RSfrJzNaYic9ySw7pWMhIxvaWmDXxtAuSYC4nWjsHXLfEDz0WSX5J4uf24RVA8i0ij5WW/kHDhrJZDilXNH5orI/QN0XYMyASa+CwRz5Apa8D3/QUsd/8ju4WFiLXA4Hb195pbc68lUffyyLBkq8JLTYaW1txXBU5LzRaPSmj5aWllJcXMzChQu95+12O8uWLeOkk06K6VolsWP4AAuNX+QCUDGoDgf6x4ZkdBA7umZked1Yu8HdvaUk7hgMMOlEcRxmvZ29S5fickS3S30g5N4RHZwuN28PK8dgUKnblsd/zhH93g6xnEoWAwYm8EsMdGjkWbccdv9OHI99yleCIRLWLINfXy5amFz4YyF2ALfTyTtXX822997DaLVy5QcfMGj69MjvI+l1JLTYOf/883nkkUf46KOP2Lt3L++++y6PP/44F110ESBM0HPnzuXRRx/l3XffZdOmTVx//fWkpaVx1VVXxXn1kmhydrsVW6sVU5qTRc0697DCk35uwEGjvhlZKQPBkAKqA9qjE2CtO5PCi9spmjSJtIICHC0tVKxaFcWFBUbuHdHh7Ld3kzeiFrdL4fZGEddmp8FbU6eUy8hmtO8C+xHYcIVwY5VcDSXXRn7zrd/C3PPBboMZ5wv3laLgdjp599pr2fLWWxjMZi57+21vrzaJxIuawDQ2Nqp33HGHOnjwYDUlJUUdNmyYeu+996o2m807xu12q7/73e/U4uJi1Wq1qjNmzFA3btwY1n0aGhpUQG1oaND7W5BEidZ2lzr8uy3qLHWBOmfriqjcY5l6rbpAnaUeVtfoO/FXE1X1U1S1+mN9540W3yxU1WNQ1XOGhnzJmz/4gfoAqEsffDCk8Xr/DcZi7+hr+8bG8hb1xMYl6ix1gXrsovXe99epD6kL1Fnql+p1qlP1/XxVt0tV154jfte/HKWqjsbIb162TVVnFYjfwx/PVNX2NlVVVdXldKrvXHON+gCoD5lM6rb334/8HpKkJNS/Q0VV1eiksyQRjY2NZGdn09DQ0Gf98MnI0L9VUHrHRtwOAx+bTyO9o+lcB77jtxziS8ZwK0O5VL+J110K1W/D6CdgyB36zRstmhthZq5wHXxa4U3vDcaaf/2Lj26+mSEzZnD9smXdjk/Gv8FkXHNPmPj5RgpOr6C9MYXXHdMZkm+limWs4wEUDJzIU50rJZc9Bjt/JSyZJ6yEzEmR3fjgPvjxqVBVLooGPrsEMrJwu1x88OMfs37+fAwmE5e++SZjNcudpO8Q6t9hQruxJJJgzB2cRmtDOgazmxcP7td9/gxEAcAm9ug7sSdIuaX7buIJQUYWjJgojtcHrl/VEU/cTvk332BvaYnWyiQx4oHPDpI3S7SFKFk2gCH5Vtqp6eC+uqqz0KldCjvvEcdj/ha50KmugJtPF0Jn6Gh48hMhdDTX1fr581GMRi557TUpdCRBkWJHkrTMvSiX6o3/v737Do+qSh84/p1JZtJ7SAIEAqF3QlCaCihNqSIWsMAKlmVREBvoTykuWHZhRRFhlaKu9CJFlCJdOoQSAgQISeiQ3ieTmfP74yaBSAIzyZRMcj7PkyfJzb1n3nOf5Oade885rzJzZnFO2esqlZcXyuDLLCw848u9cExDjoMkO2D2ejt+4eH4hIVh1OtJ3L3bioFJ1patM7CuWQJqJ2VQ8qr+DREIovkCPRl404iGvHT7gLyryjgdjMoYndqvlNn2PaXchNd7wKULULs+zN0K/jUw5Oez8rnniF6yRLmjs2wZzYdY8M6rVCXJZEdyaN77lBVYncIzSEFn0baL7uwoM7IsOOPLozDZcZQ7O3DHSsqm3dlRqVTFU9Dtud6OVHGPbTyHT510DHon3s8NR4WKRH4hiYOo0dCaD1BTOJXcqIcTz0D+DfBsDc2VQcRmS0tWEp2LZyA4FP67DYJDKdDpWD5kCKdXrcJJq+WZ1atp/tRTlu2wVCXJZEdyaF8+5kP6LR9Uaph+2rJ3YNypjRoNBvLI4ZrlGi5KdnRXoCDLcu1aU1Gyc/oI6PJMOqSodMTFrVutFZVkZcuPpuD8xGUA8rfUYmhEIFkkcJZ5ADTm1eJlGgCIfRvS/gRnH2i7CpzczX/R9BQY3QvOnYTAEJi3DWrVIz87m6UDBhC7fj3Orq48t24dTfr3t0AvpepAJjuSQ+vezoPkg0r5iD89b1m0bTVOd6y3Y8FxOxo/0CgxO8xKyrXrK/94CvRKwmOCoum/148dIycpyZrRSVZgMAg+0cahcSkg87oXWx9rgoF8jjMVIzoCaE8Yg28fcGUhJBZWlW/5Y/nW00lPUe7onD4KfjVg7h8Q1ojc1FT+16sXFzZvVhYM/PVXGvbubZmOStWCTHYkh9c01gNhVOFaJ5sLesveKfGiAWCNQcoO9ihLpbq93o6Jiwt6hoQQ1LIlABe3b7dWZJKV9Fl9nsCWSQijioFn6uHp4sxZ5pJJHFp8acUEVEX/QtIOQMzrytcNJkPQAPNfMC0ZXnsMzkSBfxB8tx0aNCfrxg1+6NaNS3v34urry0tbt8p1dCSzyWRHcngLXggk5UoAAB+csGxSUjRIOZMLFm3X4ZIdMHvcDtwuHREnH2U5lC2n08jpq9T+St9Rk4+61eYme0lkDQCteB9XlL85dNfg+GAQ+RA0CMI/Mv8Fi8bonD0GAcHK9PIGLUhLSGDhQw9x48QJPIKDGbFzJ6EdO1qmk1K1IpMdyeHVrqEhY48/AJfqpVi0vIP1kp3Cabo5ZyzbrjXdmeyYuDxX0RR0e9bJksxjMAjG58Whdc8nO9md39o3JZcbnORzAMIYQg0KEw5DLhx7EnRXwaO58vhKZea/laTr8Eq3vyQ6zblx4gTzO3Ui5fx5fMLCeHnPHoJbl3MKu1TtyWRHqhL65nhi0DvhEpDHztRki7Vb9Bgrh6sUkGOxdouTnWwHSnaatQONFlJvKdOBTRD2yCOonJxIvXCBtPh468YnWUSfNecJjLiJMMIjh+sR5K3mOJ8UTjNvTBMKp5ILAadGQvoBcPaDtr+As5d5L3b9Eox8BM5HQ2BNJdEJb0b8jh0sfPhhsq5do0aLFry8Zw/+DStQU0uq9mSyI1UJ/3mpBrcuBAHwzwuWqzmlxRcXAgELj9spTnbOgrB8IVOr0LpA8/bK1yY+ynLx9qb2gw8Ccgq6I/jleCo5fZUFOtN31OLfvesSy3ekcQpnPGjLZNRolZ3jPoHrS0DlrMy88mhk3otdugAvPwyJ56BmGCzYDeHNOLV8Of/r3RtdRgZ1H36Yv+3ejXdoqIV7KlU3MtmRqgStRoXxT2Wp8LxmaRRYcF2c24OULfgoy7UeqLRgzIM8y6/+bDVtuyifj5s2SBnkoyxHUWAw8rHmAlo3PVk3PdnyYDNusId4lgPKOB13aio7X192RyXzOeDf3bwXuxCj3NG5lgB1GymJTp0G7J81i5XPPYchP59mgwfz4ubNuPn5WbCXUnUlkx2pyngn1I/8XC0aDz0L4q5YrF3vwmQng/MWaxO1M7gXvhPOOm25dq2tjXkzsuD2IOWLf/yBLMVXeT28LpaA5kkYDSoGnKqPm+cNTvIZoIzTCeZhZcfUPyF6uPJ12FsQauYKySf2K7Wubl2Fhi1h/i6MNWrx25tvsmncOBCC9qNHM2T5cpxdXS3XQalak8mOVGW80tuXm9FK+YhFmZZbBNALZaxApiWTHXDMQcqtOymf42IgM82kQ0I7dsTZzY3smze5GR1tvdikcvv39uto+imzr3I3hzKxuz9RfEwB2fjSkia8quyYHQvHBoBRBzUGQuN/mfdCezcp08vTU6BVB/huB/luXix78kkOfq2s0fPYZ5/xxOzZqJ2cLNlFqZqTyY5UpfgeUgZIOjdPI5sCi7TpXZzsxGHEYJE2AfBspnx2pDs7AcFQp4EyOPXEfpMOcXZxIeyRRwD5KKsyupmhZ0mTOJw0BtIu+rKjR1Oi+TdZXMQF/8JxOhrIvwVHHwd9Cng/CK0Xg8qMhGTTMhjbH/JyoFMvmLuVzNx8Fj3yCLHr1+Pk4sKQ5ct56P33UZWnxIQk3YNMdqQq5atuAeSke+CkMfLREcsMKHanFk64YiSfHC5ZpE0APAqTnWwHSnYA2hSO2ynHoyy53k7l0+PQGbxrZaDXOfNBRmNualZznW2ocKINk5T1dAqyIao/5MaBW32IWG9eKYglX8PEocoK3L2fg1nruR57nu87dODa0aO4BwYyfPt2Wjz9tPU6KlVrMtmRqpROzT1IOqSUYtjjZZkp6CqcigcpW3TcjsMmO0UV0E1fXLBokHLCzp0Y9HprRCWVw7Or4/B/VBnf5vN7Xbq3ieMMcwFowuv40/p2cc/0A6Dxh3a/gUuQaS9gNMJ/3oUv3lTuBj77D5j+M6fXb2BBly5kXLpEQJMmjNy/nzqdOlmrm5Ikkx2p6mlxQXmU5d4oncs6y6yNU/Qoy7LJThNABfpk5RGBoyiakXXyABSY9qgwpE0b3AICyM/K4uqhQ1YMTjLV6qhULveJR6WC5APBLB/owXGmAkZq04cwnlISlJhXIGkjqN0gYsPt1b/vJ18HHzwPP/5b+f6NTxHvfcWu6dNZ/tRT6HNyaNCrFyP37cO/QQOr9VOSQCY7UhU0/5lg0q/7olLBuEOWqYTuhTJzKgMLFu50cge3esrXjjRuJ7w5ePpAbjacO2HSISq1uriekVxvx/6ydQam+sSidc8n65YHaxuFcZQP0ZOJD81pwVuoUMG5iXD1B2VsTpsV4Gvi3ZfMNPhHH9i0FJyd4ZMf0Q8dy+rnn2f7R0o5iQfffJNhv/4qp5ZLNiGTHanKqeHnTObewvIR4SkWadO7MNnJ5LxFy1HcfpQVY7k2rU2tvj0rqzxT0OW4HbvrvOM0fuGpGPROPHs6nBT/L8gmARcCiWCqsnDgxX9BvFIigubfQ42+pjV+OQ6Gd4LDO8DDC77+jbRWj7CgSxeily5F7exMv3nzeHzWLNTOzlbroyTdSSY7UpU0SOeL0aDCvVY2u25UPOHxoh4qnNGTSS43LBBhIY/mymdHHbdjRlHQonE7l/btIz872xpRSSZ4Zk0cfr0uA+C8sQ59H1nDLQ6gxoV2fKIMSL78Xzj3nnJAo8+h9gjTGj+2F17sABfPQFBtmL+Lizlq/hsZyfWoKNwDA3lxyxYiX33VOp2TpDLIZEeqkj57pgYp8UqZh4/PVXyFYjVavKgPQAYWrFTuWZjsZDnQnR0oV7LjFx6OT1gYRr2exN27rRSYdC+LDtziSp+Lyjidg0EsGniWBFYB0JqJ+NAUri2BmNeVA+pPhPrvmdb4b0vgtUchLQmatUP8eIB9v27jp549yU1Opma7drx65Aj1unWzTuck6R5ksiNVSU5OKsReXwDyW6VitMCjJ28aA5DBuQq3Vaz4zo6DJTutOiiPs64nwo3LJh2iUqmK7+7IKei2dy01n69Dz6F105N53YvlzfI4zVcANGIkIXSFWxsg+iVAQOjfoeG0+zdsNMK8KfDBMGVQcvdB5H/1G6vfepfNb7+NMBpp89JL/G3PHnzq1rVuJyWpDDLZkaqsiWEBFOQ74+KjY+6pipeP8LbGIOWihQV1V0Gfarl2rc3dExq3Ub6W6+1UegaDoOfZU3jXzqBA58wbt7Rc8pqGwEgtehHO85C0GY49BaIAQoZBs9lwv8X9crPh/Wdh7mTl++HvkjRqGt937U70kiWonZ15/OuvGbhoERo3N6v3U5LKIpMdqcp6/hFfbp1S1txZlHO9wu0V3dlJJ9Zyg5SdvcGlsKKzw43bKZyCfmKfyYcUzci6cfw42bccaLq9g3to/VlqdLyBENBwhw91W32BgRz8aUtL3kaVvB2ODQSRD0FPQstFoLrPv4erCTCiC2xdCc4a+Ph7okPa8d8HH+RWTAyeNWvy0rZtPDhmjFwRWbI7mexIVVpAlFIJ3aV1KjmGipWP8KIBKpzQk04eNy0RnsKzhfLZUcftmHFnxzM4mKBWrQCI377dGlFJf/H6+gS0/RMA0G/zZ2TvOehIwpN6RPAJ6tQDyurIxjwI7Autl4Jac+9Go/bACw9A7HHwD8IwZzMbtx1j1dCh6LOzqde9O68dPUrYww/boIeSdH8y2ZGqtG+7h5CX5Yqzi4H39sVXqC0ntHgWDlJOt8og5VOWa9MWihYXPBulPM4wkXyUZTtLjiRz4tE41E6CjFM+zHx0CVnE40IAkXyGJu0EHH0CjDkQ0AvarAS1tuwGhYAVc+HVRyH1FjRpS+r0VSwc8z6HZs8G4KEPPuDFzZvxDAmxUS8l6f5ksiNVaa3ru5F8WHmUtc+/4uUjfIoHKVtw3E7xIGUHS3ZC6ijTiw0GOGX6qshFg5RlUVDrOnM9lxm1z+DioSMnyY2ZDX4lVXUMJ9yI5DPcUs/Bkd5gyAK/7tB2DTi5lt2gLg+mjITpf1dqXPV8mpgBbzOvdz+uHDyIq68vQ9ev57Fp0+T6OVKlI5MdqcprE688yvJsksalrNwKteWNslS+Ze/sFD3GcrBkR6W6fXfHjEdZYY88gtrZmdS4OFIvWmaFa6mkPL2RZ5JO4RWSSX6uM+8a9pDr+icqNLTjE7xTr8HRPkqi4/8otNtw78Ke1xLhbw/B2oWgVqP/+z/ZkOHPiudfRJeeTminTrx27BiN+/WzXSclyQwy2ZGqvO+H1CLzljdqJ8GYAxX75+pTmOxkWHKQctGdHd1V0KdZpk1bKcd6Oy5eXtTu0AGQd3espcPOUwS0TMJoUDEkMRrP4K2AijZ8QEBKFhx9HAzZ4N/j/hXMD/wBwyLh9BHwDSDp3e+Y/81yjsybB0CXCRMYsXMnvmFhtumcJJWDTHakKs/H04ns/Ur9nauNKja924twVGjQk0EuVy0RHmh8bs/Iyoq2TJu2UjQj6/heZb0VE8n1dqyn++qz+PdQllpoH3OBZk3WAtCcsYQk65UxOoZsZYxOxLqyEx2jEb77J4zuBWlJiKYRHHn8bea9PIYbJ07gERTEC5s20ePTT3HS3GdAsyTZmUx2pGrhWaM/wgiedTPZmlj+8hFqNHijVGi27KOslspnR3uU1bgNuLorhR8vmj51vrhO1rZtCDOSJOnehv9yEePAeADCzybQs9UKABoygro3VXC0nzIYOfBxaLsWnMpY+yY1Cd7oC3M+AqORnJ5DWZZVmw3vf0BBbi7hPXrw+vHjNOjVy0Y9k6SKkcmOVC181C+I1IQAAKZcMG3F37L40BSAdM5UOK5iRcmOow1S1mig5YPK12Y8ygrt0AGNhwc5t25x4+RJKwVXvUzfdo0Lj19A7SQITbzC042XA1CPp2lwTQvHBxeuozP43oORj++DoRGw93dwdePCwPF8+9N2zm7YgJNWS68ZM3hh0yY520pyKDLZkaoFJycVqgM+AOjbplRovI1Vk51MB3uMBeUapOyk1VKva1dAjtuxhA3RqayLjEXjUkDNpKs8X2cJqIyE0pcmV1xQnXwehAFqvgCtl4Ha5e5GhID//QdGPQI3LlMQ2pBNTYfwvykzybp+ncBmzRh14ACdxo9HpZb/OiTHIn9jpWpjcoNgCvROuPnl8eXh8pePuJ3sxGLEYJngimdkOeBdjjbmJzsg19uxlKjEbCYHxuDmk0utrCu85L8UVAZq8hgt4o2oTo1CqXX1GrT8AdSlTAtPTYJxA2DGeCgo4GrrHvz3vDP7F/0EwAP/+AevHj5MSNu2Nu2bJFmKTHakamPQAz4kF5aP+J++/Csge1AHZzwwoiMLC02d9mwOqECfBLoblmnTVtp0UqahXzoPyabHXpTsJOzahSE/31rRVWnXUvP5W0E0XiGZ1NJd5nm3ZaDWEyweonVsBqrY95Udw96BZt+WXgLi8A54tg3s2oDBWcuOhk8wf/EObp05g2dICEM3bOCJ2bPRuN9jxpYkVXIy2ZGqleCTypo7bhEp5BnKd1dGhbp4CrrFHmU5uYO7MvDZ4WZkeflCg8I7U2bUyQpu1Qr3GjXQZ2dz5fBh68RWheXpjfRKPIlfeCq1Cy4zzHkFaic9NURH2sZcRRX/L2XHRp9Dk3/dXdSzoADmfKyshnzrKrcC6rMgryE7V27EWFBA86ef5u/R0TTu29f2nZMkC5PJjlSt/PfR2uiyXdC4FvDGjvhyt3P7UZYFi3cWz8iqHo+yVGp1cWHQ+B07rBBU1VVgMPLA/pMEtrlFLeNlnmUlTk75BBna0e74GVRXFgBqaP491H/v7gauxsOr3eG7TzAaBXtrPMC8PVe5Gh2Dq58fgxcvZsiyZbgHBNi6a5JkFTLZkaqVRrVdSD0SCMDhoPKXj/ChGQBpFh2krBTIdMhkpxyDlOH2ejsJMtkxS/s/Ygh8+Bp1SeBZ4wo0zjqC9C2IOHIA1c1fQKVV6lyFjrz74I0/K4+tovZwS+XOgryGbNlyCINOR8M+fRgdHU2roUNlpXKpSpEFTKRq54ErvlziCt7NU7mYlkt93zLWGrmHomQni3gKyMUZ89u4S1Gy44gzsopWUj59RKmh5HKPGkt3KBq3c+WQ6bW1qrsH1sfg1/8yYcQz2LAarbOeWrlNaHX0D1TZZ8DZF9r+Av5dSx6YmQbTR8PvSzAK+NOpLjujr2PIP4+Ltze9Zs4k4uWXZZIjVUnyzo5U7cwbXJusJE/UToLR++PL1YYrAbgSBBgtt7igV2Gyk30KhIMttBcaDgHBoM+HGNPH3/jVr49feLhcWNBED685g2f/ROoTx1OG1Wid9NTNrE+rg+uURMclFB7cc3eic3gnPNMafl/CjXw136fWYtvRRAz5+TR64glGnzpFu5EjZaIjVVky2ZGqHTcXNTn7/QG42az85SN8C+/upBNjkbhwa6isf2LIhtw4y7RpKypV+aegFz7Kku6tx+pYnAbG05BzDDauRuOkp2FSCM0OrkSlu6aM+eqw7/YyBqDcZZv5DrzanYKrl9iW7cd/Y9VcS7yKq68vg374gaEbNuAdGmq/jkmSDchkR6qWhmsCEQK8wzLYGFu+sTs+KAU80yyV7KidbxcFzXTAcTtFj7LMHbdT+ChLKtsTq89RMOgizdUxDBK/4Kw20OKSGw2iVqAyZIJfd3hgN7jekbScOgxD28FPM0jIFMy94sPuc6kYCwpoMnAgo2NiaPPSS/JujlQtyGRHqpbe6x1EWoJyd+eTS+VbYND3jmTHYhXQvVornx15kPKJvcpqvCYqmpEllW7A6vNkD4yjrTqKfmIDThiIPKunzunfUAkD1BoBkb+Dxlc5QJ8P306C4R3JO3ea9bfcWHQekpPT8axZk2dWreLZNWvwqlnTnt2SJJuSA5Slasv5oA/US0FEpCIQqDDvHa43jVHhTD6p5HIDdyxQK6h4kPKJirdla83aKQOT05Ih/izUb2rSYe6BgQS3bg0nHLDPVvb06gukD7xAB6cDPMp2nAwGOkSn4n2zcBB7w39C/Q9ur6Fz7iR8PBxxOoqYdPj9litZ2bkARL72Gj0++wxXX1/7dEaS7Eje2ZGqrU+b18RQ4ISbfy7T/zT/7o4TWrxpCEAaFppBVXxnxwH/8Wu00PwB5WszH2WFde16/52qmafWXODmwPN0c9rBo2zHNTePhw/FK4mO2gVaLYHwD5VER6+HeVNhWCQpx6P4OVHDynjIys4jsGlTRuzaRb+5c2WiI1VbMtmRqq2eLb1JPqWsubNSdatcbfhaetyOZ2Gyk3MeDDmWadOWIh5SPh83L9mp162b5WNxYINWnyd5QCxPOG2kE/vxTUvnoQOncc28BJoaEPkH1HxO2fn0UXjhAQrmTGLnZT1zYtVcSNXjpNXSddIkXjt2jLCHH7ZvhyTJzuRjLKlaqxPjja7NDTzapZCtN+ChcTLreF9akMBq0jhlmYBcgkEbBPk3lbIRPg9apl1bKRq3E7XHrMPqdu5shWAcU//V58geGMuTTutoQiy1rtygVcw5VKJASYYj1oFbGOTr4LtPYOFnxKUZ+PWqmpRcI2AkvGdPnvjmGwIaNbJ3dySpUpB3dqRq7bsedQrLR+j5+x/xZh/vizLNN5PzFJBrmaCK7u444rid1p2Uz4nnIMX0YquyyKTi8dXn0A2K4TmnZTQRZ2ly9iKtT51WEp2gQfDgn0qic2wvDG1HxpxprLpg4KcLkJJrxLNmTYYsW8YLmzbJREeS7iCTHalaq1NDS9oRpf7PidopZh/vShAuBCIsurhgG+Vz5nHLtGdLPv63i4Ie32vfWBxM1zVncB4UxYvq/9FAH8cDR05RPyFB+WH9D6HNKsg1wKf/oGBEF/bsi2H2WRXRaUqdsQ5jxzLmzBlaPPOMnE4uSX8hkx2p2nvoph8APs1TOH3LvHEyKlTFd3cs9iiraJCyIyY7UO46WdVZx3WnCX7yIC+pf6J+Zjyd9x8jICUJ1O7Qeik0+ifsWAdPNefc93P49gz8cQ30BkGdLl145fBh+nz5JS7e3vbuiiRVSjLZkaq92QNDi8tHvHEowezj/VCqlVsu2WmrfM46YdZ6NZVGOVdSrq4iN56i6YCdPM/PNLoeR6cDx3DLzQa3+tBhL6gfgrcHk/KPJ1ly4CqL4yBFB54hITz500/8bfduakZE2LsbklSpyQHKUrWn1ajQHfDHs28WqS3NLx9x550dgRFVRd9DeDQFlQYK0iEvURmj4UiK7uyYWRS0uikwGInccYpHnvidx40baXbuPPUTLis/DOgJzX6CX5ah++pDdl/MYv8tMAhQOzvTYdw4un70kbyTI0kmksmOJAGve9RguUjEu24GK6OTGdIywORjvWmIGhf0ZJDNJTypYHKi1oJnc+UxVuZxx0t2QsMhMASSritFQYumo0vF0nMMPHzyGIMeW0V33Q7aHI/BPy1d+WG9dyF3IMa/9eHYvmNsuwbZBcqPwnv2pM+sWdRo1sx+wUuSA5KPsSQJGN2tBmkXlfIRX1y/ataxajT40ASAVEstLuhZNEj5mGXas6UKFAWtDhKTdXSPP8jLHb6jb8pvdN53GP+0dISTF4T/AMsziB/yEN+tP8b6S0qi49+oEc+tW8cLmzbJREeSykEmO5JUyPWoDwDqyBSza13dHrdjoWTHu63y2eEHKZu33k5Vdyg+i+ezdjGm2Vf0id/CA0eO45KvB/cWqFI/JOXFt1j+73n8cB6u54KLtze9Zs5kdHQ0Tfr3l7OsJKmc5GMsSSo0s01tJugTcfPL5aMdl/lntzomH+tbmOykYqECno58ZwduJzvH94LRCGr5vmrZ0WR+rvcHb3stoPOxwwTdSlZ+oHucnPk32bVtAoeSwSiUqeSRr79O9ylTcA8MtG/gklQFyGRHkgp1buRJSlQANSJuskGbxD8xPdkpurOTwxV0pOCCf8WCKVprJzcO9Omg8alYe7bWJAJc3SA9RSkKGl69H71M3XqVhC5reE+3iMh9J3HL0yFyNBj+fIADi39j93XQGZV9G/TqSa8ZMwlq2dK+QUtSFSLfbknSHcJjlaTCs10KGboCk4/T4IUn9QELTUHXBoBrYbLlkEVBNdCyg/J1NX+UNXztBfK7zuHd6zPpfOgIbjk6jIcCODnBmdmz9rL1qpLoBLdozgubN/PCps0y0ZEkC5PJjiTdYf7jYcXlI0ZtiTfrWD9aARZ8lFW03o6jP8qqxoOU+6w/Tpc+U3jz5Lc0PReHOk5wYaoH309LZs3ZXNL14B1Ug4GLFvHq8RM06NnT3iFLUpUkH2NJ0h1qeDuTviOAoG5Xia1v3po7frTkEussm+zcWg8ZUZZpz9baVN9BygUGI332b2dC58k8tP8grtfyufwTbNsFF7OyAdC6ufLQh/9Hx/Hj0bi52TliSaraZLIjSX/RM8Of41zFp2kKUVeyiKjtadJxfihlHjKIpYBcnKngPzCvwlVxHfXOTptOyjT0Sxcg+QYEBNs7IptITNYxIW0x39aYSsO98SSthLXr4Eya8nMnJzXtX3mFh6d+gkeNGnaNVZKqC/kYS5L+Ykbf2mTdVMpHjItKNPk4N4JxJRiBkTRiKh5IcdmIaDDmV7w9W/PyhYaFY0+qyaOs304l83PBBL698SZB38Wz7hX49kcl0VGpoO3gAYy5EEefb+fKREeSbMiuyc6uXbvo378/tWrVQqVS8csvv5T4uRCCyZMnU6tWLdzc3OjWrRunTpUc/KnT6XjjjTcIDAzEw8ODAQMGcPnyZRv2QqpqnJxU6A8qxUGz2qSZdeztcTsWGFTsVg+cfUHoIcsCyZM9tC1cPTnKso+yKuO145PtsTh7DWb0D7PY93wWX8+AYzdAAE26dOD1EycZuGotvmEOtiK2JFUBdk12srOzadOmDbNnzy7151988QUzZ85k9uzZHDp0iJCQEHr27ElmZmbxPuPGjWPNmjUsXbqUPXv2kJWVRb9+/TAYDLbqhlQFjQ8IRhjBu04GPx69afJx/oWPsiwybkelumOQsoOO2ykqFXHcsnd2Ktu1480/VvDi1Y7QexffTBQciFfqWIU1CeflXTt5bs9+OcNKkuxJVBKAWLNmTfH3RqNRhISEiM8++6x4W15envDx8RFz584VQgiRlpYmNBqNWLp0afE+V65cEWq1Wvz+++8mv3Z6eroARHp6esU7IlUZrc8dEN3Eb6LdlhMmH5Mp4sVvopvYJHoJg8iveBBn3hJiE0KcfqPibdnDlXgh2iJEe2chcrLL3K0if4P2unYUxTxr8RCxNRIxXY2YjPLxXZ1gcX7VCmE0Gs3ujyRJpjP12lFpx+xcvHiR69ev06tXr+JtLi4udO3alb179wJw5MgR9Hp9iX1q1apFy5Yti/eRpPLyPqasuaNpn0KBwWjSMR7URYMPRvJJ52zFgygapOyoM7Jq1oXgUCgogFMHbfKStr52pL6wkj1HIN8IwYGeDJ0/j5EJ12gweIgs7yBJlUSlnY11/fp1AIKDS87gCA4OJiEhoXgfrVaLn5/fXfsUHV8anU6HTqcr/j49Xak2nJGRYZHYparhs2Y+vJOch0aTzdh1p/n0MdNWVNbShDT2ksh+nKhbwSgaQzaQFwXpaaCqtO9PytasA1y9DHu3QuN2pe5S9LcnhHk1yUpjrWtHWdeNdCOEeKro9u77NHnzfVRqdYnHZZIkWY+p145Km+wU+es7IyHEfd8t3W+fTz/9lClTpty1vU4d08sDSNXLHmBOuY56xUIRZAN+992rUhs7Tfm4h+TkZHx8LFMaw9LXjrKuG/8ByBIw6TPlQ5Ikm8vMzLzntaPSJjshISGA8g6sZs2axdtv3rxZ/I4tJCSE/Px8UlNTS7xDu3nzJp07dy6z7YkTJzJ+/Pji79PS0ggLCyMxMdFiF1pry8jIoE6dOly6dAlvb297h2MSGbNtOGLM6enp1K1bF3//CtYUw3rXjqpw3bA0R/xds6Tq3n+w/zkQQpCZmUmtWrXuuV+lTXbq169PSEgIW7ZsISJCGbeQn5/Pzp07+fzzzwGIjIxEo9GwZcsWnnnmGQCuXbtGdHQ0X3zxRZltu7i44OLictd2Hx8fh/uF9fb2ljHbgIzZNtQWqI5urWtHVbpuWJoj/q5ZUnXvP9j3HJjyZsOuyU5WVhbnz58v/v7ixYscO3YMf39/6taty7hx45g+fTqNGjWiUaNGTJ8+HXd3d4YNGwYoHRw5ciRvv/02AQEB+Pv7884779CqVSt69Ohhr25JkmRl8tohSZJZrD0t7F62b98uUNbcKvExfPhwIYQyhXTSpEkiJCREuLi4iEceeUScPHmyRBu5ublizJgxwt/fX7i5uYl+/fqJxMREs+JwxKnnMmbbkDHbhrkxV4ZrhyOeZ0ur7ueguvdfCMc5B5VmnR17ysvLE5MmTRJ5eXn2DsVkMmbbkDHbhozZMVX3c1Dd+y+E45wDlRAWmOspSZIkSZJUSTngoh2SJEmSJEmmk8mOJEmSJElVmkx2JEmSJEmq0mSyI0mSJElSlVbtk51p06bRuXNn3N3d8fX1LXWfxMRE+vfvj4eHB4GBgbz55pvk5+fbNtB7OHr0KD179sTX15eAgABeffVVsrKy7B3WPcXGxjJw4EACAwPx9vamS5cubN++3d5hlWnHjh2oVKpSPw4dOmTv8O7r119/pUOHDri5uREYGMjgwYPtHdI91atX767zPGHCBJvHMWfOHOrXr4+rqyuRkZHs3r37nvvv3LmTyMhIXF1dCQ8PZ+7cuTaK1HrMOQerV6+mZ8+e1KhRA29vbzp16sSmTZtsGK3lmfs7UOTPP//E2dmZtm3bWjdAGzD3HOh0Oj788EPCwsJwcXGhQYMGLFiwwEbRlsHe08Hs7eOPPxYzZ84U48ePFz4+Pnf9vKCgQLRs2VJ0795dHD16VGzZskXUqlVLjBkzxvbBluLKlSvCz89PvP766+LMmTPi4MGDonPnzuKpp56yd2j31LBhQ/HEE0+I48ePi9jYWDF69Gjh7u4url27Zu/QSqXT6cS1a9dKfIwaNUrUq1dPGI1Ge4d3TytXrhR+fn7i22+/FWfPnhVnzpwRK1assHdY9xQWFiamTp1a4nxnZmbaNIalS5cKjUYjvvvuOxETEyPGjh0rPDw8REJCQqn7x8XFCXd3dzF27FgRExMjvvvuO6HRaMTKlSttGrclmXsOxo4dKz7//HNx8OBBERsbKyZOnCg0Go04evSojSO3DHP7XyQtLU2Eh4eLXr16iTZt2tgmWCspzzkYMGCA6NChg9iyZYu4ePGiOHDggPjzzz9tGPXdqn2yU2ThwoWlJjsbN24UarVaXLlypXjbkiVLhIuLS6VYRGnevHkiKChIGAyG4m1RUVECEOfOnbNjZGW7deuWAMSuXbuKt2VkZAhAbN261Y6RmS4/P18EBQWJqVOn2juUe9Lr9aJ27dri+++/t3coZgkLCxP/+c9/7BrDgw8+KF5//fUS25o2bSomTJhQ6v7vvfeeaNq0aYltr732mujYsaPVYrQ2c89BaZo3by6mTJli6dBsorz9f/bZZ8X//d//iUmTJjl8smPuOfjtt9+Ej4+PSE5OtkV4Jqv2j7HuZ9++fbRs2bJEkbHevXuj0+k4cuSIHSNT6HQ6tFptiZpCbm5uAOzZs8deYd1TQEAAzZo148cffyQ7O5uCggLmzZtHcHAwkZGR9g7PJOvWrSMpKYkRI0bYO5R7Onr0KFeuXEGtVhMREUHNmjV5/PHHOXXqlL1Du6/PP/+cgIAA2rZty7Rp02z66Dg/P58jR47Qq1evEtt79erF3r17Sz1m3759d+3fu3dvDh8+jF6vt1qs1lKec/BXRqORzMxMixR4tbXy9n/hwoVcuHCBSZMmWTtEqyvPOVi3bh3t27fniy++oHbt2jRu3Jh33nmH3NxcW4RcpkpbCLSyuH79enGl5CJ+fn5otVquX79up6hue/TRRxk/fjz/+te/GDt2LNnZ2XzwwQeAUtiwMlKpVGzZsoWBAwfi5eWFWq0mODiY33//vcxxU5XN/Pnz6d27N3Xq1LF3KPcUFxcHwOTJk5k5cyb16tVjxowZdO3aldjY2Er7T2js2LG0a9cOPz8/Dh48yMSJE7l48SLff/+9TV4/KSkJg8Fw199+cHBwmX/3pV0rgoODKSgoICkpqUQFdkdQnnPwVzNmzCA7O7u42KojKU//z507x4QJE9i9ezfOzo7/77U85yAuLo49e/bg6urKmjVrSEpKYvTo0aSkpNh13E6VvLMzefLkMgeTFn0cPnzY5PZUKtVd24QQpW63FFP70KJFC3744QdmzJiBu7s7ISEhhIeHExwcjJOTk9Xiq0jMQghGjx5NUFAQu3fv5uDBgwwcOJB+/frZPEErz+/K5cuX2bRpEyNHjrRprHcyNW6j0QjAhx9+yFNPPUVkZCQLFy5EpVKxYsWKShkzwFtvvUXXrl1p3bo1o0aNYu7cucyfP5/k5GSbxvzXv/H7/d2Xtn9p2x2JueegyJIlS5g8eTLLli0jKCjIWuFZnan9NxgMDBs2jClTptC4cWNbhWcT5vwOGI1GVCoVP//8Mw8++CBPPPEEM2fOZNGiRXa9u+P4qWcpxowZw3PPPXfPferVq2dSWyEhIRw4cKDEttTUVPR6/V3ZriWZ04dhw4YxbNgwbty4gYeHByqVipkzZ1K/fn2rxVcaU2Petm0bGzZsIDU1FW9vb0AZ7b9lyxZ++OEHm866Kc/vysKFCwkICGDAgAFWjOzeTI07MzMTgObNmxdvd3FxITw8nMTERKvG+FcV+bvs2LEjAOfPnycgIMDSod0lMDAQJyenu9693rx5s8y/+5CQkFL3d3Z2tknMllaec1Bk2bJljBw5khUrVjhsFXlz+5+Zmcnhw4eJiopizJgxgPKPXwiBs7Mzmzdv5tFHH7VJ7JZSnt+BmjVrUrt2bXx8fIq3NWvWDCEEly9fplGjRlaNuSxVMtkJDAwkMDDQIm116tSJadOmce3ateLb0Js3b8bFxcWq40vK04eiX74FCxbg6upKz549rRFamUyNOScnB6DEOKOi74vuRNiKuedZCMHChQt56aWX0Gg0Vozs3kyNOzIyEhcXF86ePctDDz0EgF6vJz4+nrCwMGuHWUJF/i6joqIAbPYoSKvVEhkZyZYtW3jyySeLtxc9fi1Np06dWL9+fYltmzdvpn379nb9XSmv8pwDUO7ovPzyyyxZsoS+ffvaIlSrMLf/3t7enDx5ssS2OXPmsG3bNlauXGnzN5+WUJ7fgS5durBixQqysrLw9PQElKVG1Go1oaGhNom7VPYaGV1ZJCQkiKioKDFlyhTh6ekpoqKiRFRUVPE016Kp54899pg4evSo2Lp1qwgNDa00U8+FEOLrr78WR44cEWfPnhWzZ88Wbm5uYtasWfYOq0y3bt0SAQEBYvDgweLYsWPi7Nmz4p133hEajUYcO3bM3uHd09atWwUgYmJi7B2KycaOHStq164tNm3aJM6cOSNGjhwpgoKCREpKir1DK9XevXvFzJkzRVRUlIiLixPLli0TtWrVEgMGDLBpHEVTbufPny9iYmLEuHHjhIeHh4iPjxdCCDFhwgTx4osvFu9fNPX8rbfeEjExMWL+/PlVZuq5qedg8eLFwtnZWXzzzTcllg1IS0uzVxcqxNz+/1VVmI1l7jnIzMwUoaGhYsiQIeLUqVNi586dolGjRmLUqFH26oIQQk49F8OHDxfAXR/bt28v3ichIUH07dtXuLm5CX9/fzFmzJhKVc7+xRdfFP7+/kKr1YrWrVuLH3/80d4h3dehQ4dEr169hL+/v/Dy8hIdO3YUGzdutHdY9zV06FDRuXNne4dhlvz8fPH222+LoKAg4eXlJXr06CGio6PtHVaZjhw5Ijp06CB8fHyEq6uraNKkiZg0aZLIzs62eSzffPONCAsLE1qtVrRr107s3Lmz+GfDhw8XXbt2LbH/jh07REREhNBqtaJevXri22+/tXHElmfOOejatWup19Phw4fbPnALMfd34E5VIdkRwvxzcPr0adGjRw/h5uYmQkNDxfjx40VOTo6Noy5JJUThCDpJkiRJkqQqqErOxpIkSZIkSSoikx1JkiRJkqo0mexIkiRJklSlyWRHkiRJkqQqTSY7kiRJkiRVaTLZkSRJkiSpSpPJjiRJkiRJVZpMdiRJkqQqYf78+fTq1cveYRSbPXu2XWvoSbfJZEdyeMnJyQQFBREfH2/WcfJCJElVh06n4+OPP+ajjz6ySHu5ubm4u7tz5syZcrfxyiuvcOjQIfbs2WORmKTyk8mOVCmoVKp7fowYMaLMYz/99FP69+9/V8XsVatW0a1bN3x8fPD09KR169ZMnTqVlJQUQF6IJKkqWbVqFZ6enjz88MMWaW/Lli3UqVOHpk2bmn2sEIKCggJcXFwYNmwYX3/9tUVikspPJjtSpXDt2rXijy+//BJvb+8S22bNmlXqcbm5ucyfP59Ro0aV2P7hhx/y7LPP8sADD/Dbb78RHR3NjBkzOH78OD/99BOAvBBJUiU0b948ateujdFoLLF9wIABDB8+vMzjli5deted2hEjRjBo0CCmT59OcHAwvr6+TJkyhYKCAt599138/f0JDQ1lwYIFd7W3du1aBgwYQHx8PGq1msOHD5f4+ddff01YWBhCCHbs2IFKpWLTpk20b98eFxcXdu/eXRz3L7/8Qm5ubnlPiWQJdq3MJUmlWLhwofDx8TFp31WrVonAwMAS2w4cOCAA8eWXX5Z6TGpqavHXO3bsEFqt1u5F6iRJUiQnJwutViu2bt1avC0lJUVotVqxadOmMo/z9fUVS5cuLbFt+PDhwsvLS/zjH/8QZ86cEfPnzxeA6N27t5g2bZqIjY0Vn3zyidBoNCIxMbH4OIPBIIKCgsTu3buFEEL07NlTjB49ukTbERER4uOPPxZCCLF9+3YBiNatW4vNmzeL8+fPi6SkJCGEEFlZWUKlUokdO3ZU7MRIFSLv7EgObdeuXbRv377Etp9//hlPT09Gjx5d6jG+vr7FX7dv3x69Xs/BgwetGaYkSSby9/enT58+LF68uHjbihUr8Pf357HHHiv1mLS0NNLS0qhVq1ap7X311Vc0adKEl19+mSZNmpCTk8MHH3xAo0aNmDhxIlqtlj///LP4mP3792M0GuncuTMAo0aNYsmSJeh0OgCOHz/OsWPH+Nvf/lbitaZOnUrPnj1p0KABAQEBAHh4eODr62v2mELJsmSyIzm0+Pj4uy5w586dIzw8HI1Gc9/j5YVIkiqf559/nlWrVhUnFz///DPPPfccTk5Ope5f9IjI1dX1rp+1aNECtfr2v7rg4GBatWpV/L2TkxMBAQHcvHmzeNvatWvp169f8XGDBg3C2dmZNWvWALBgwQK6d+9+1zjBv77xKuLm5kZOTs79ui1ZkUx2JIeWm5t71wVOCIFKpTK5DXkhkqTKpX///hiNRn799VcuXbrE7t27eeGFF8rcPyAgAJVKRWpq6l0/++ubHpVKVeq2O8cIrVu3joEDBxZ/r9VqefHFF1m4cCH5+fksXryYl19++a7X8vDwKDW+lJQUatSoUWb8kvXJZEdyaIGBgXdd4Bo3bsyFCxfQ6/UmtSEvRJJUubi5uTF48GB+/vlnlixZQuPGjYmMjCxzf61WS/PmzYmJianwa587d474+Pi71usZNWoUW7duZc6cOej1egYPHmxSexcuXCAvL4+IiIgKxyaVn0x2JIcWERFx1wVu2LBhZGVlMWfOnFKPSUtLK/5aXogkqXJ6/vnn+fXXX1mwYME97+oU6d27t0WWkVi7di09evTA3d29xPZmzZrRsWNH3n//fYYOHYqbm5tJ7e3evZvw8HAaNGhQ4dik8pPJjuTQevfuzalTp0rc3enQoQPvvfceb7/9Nu+99x779u0jISGBP/74g6effpoffviheF95IZKkyunRRx/F39+fs2fPMmzYsPvu/8orr7Bx40bS09Mr9Lpr164t8QjrTiNHjiQ/P7/UR1hlWbJkCa+88kqFYpIqTiWEEPYOQpLutGjRIsaNG1fiDsy9dOrUiREjRvDaa6+V2L58+XK++eYboqKiMBqNNGjQgCFDhvDGG28Uz8jq3bs33bt3Z8KECRbuhSRJtvbMM88QERHBxIkTy3V8UlISNWvW5NKlS4SEhNz182nTprF06VJOnjxpUnvR0dE89thjxMbG4uPjU66YJMuQyY7k8DZu3Mg777xDdHR0iVkX9yMvRJJUtSQkJLBu3TreeOONch0fGxvLpk2b7jo+KyuL06dP079/fz755BOT79Rs3rwZIQS9e/cuVzyS5chkR6oSZs2axeDBg6lTp47Jx8gLkSRJphgxYgRLlixh0KBBLF68uMwp8FLlJZMdSZIkSZKqNDlAWZIkSZKkKk0mO5IkSZIkVWky2ZEkSZIkqUqTyY4kSZIkSVWaTHYkSZIkSarSZLIjSZIkSVKVJpMdSZIkSZKqNJnsSJIkSZJUpclkR5IkSZKkKu3/AWtP2AVoRGKUAAAAAElFTkSuQmCC", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "Caption. (left) Temperature T as s function of depth z, for different\n", "times (colors, increasing from blue to red). (right) velocity v as a\n", "function of depth z for different times (colors, increasing from blue to red).\n" ] } ], "source": [ "# Simulation 2\n", "# This glacier is warmed from the top\n", "\n", "# parameters that can be varied\n", "theta = 5.0; # slope of glacier in deg\n", "grad = 30.0 / 1000.0 # geothermal gradient in deg C per meter\n", "T0 = -10.0 # initial surface temperature in degC\n", "Ts0 = 3.0; # sudden increae of temperature of this amount in degC\n", "Nz = 101;\n", "# times in years; the interior of gda_cvec() is list of times\n", "mytimes = gda_cvec( 0.001, 1.0, 5.0, 10.0, 50.0, 100.0, 500.0, 1000.0 );\n", "Tminplot = -10.0; # minimum temperature on plots\n", "Tmaxplot = -5.0; # maximum temperature on plots\n", "vmaxplot = 0.7; # maximum velocity on plot in meters per year\n", "# end parameters that can be varied\n", "\n", "k = 2.22; # thermal conductivity of ice in W/(m·K)\n", "rho = 917.0; # densitty of ice in kg/m3\n", "g = 9.81; # acceleration of gravity in m/s2\n", "cp = 2090.0; # heat capacity of ice in J/kg-K\n", "\n", "# constant A n dv / sz = A tau**3\n", "def AofT(T):\n", " if( (np.min(T)<(-50.0)) or (np.min(T)>0.0) ):\n", " print(\"Error: temperature out of allowable range of -50 to 0\" );\n", " xxxx\n", " NT, i = np.shape(T);\n", " logA = np.zeros((NT,1));\n", " logA0 = -25.0 + 0.88/(5.18/4.0);\n", " C1 = (1.23/(5.18/4.0)) / 10.0;\n", " C2 = (2.75/(5.18/4.0)) / 40.0;\n", " T0 = -10.0; # C\n", " for i in range(NT):\n", " Ti = T[i,0];\n", " if( Ti > (-10.0) ):\n", " logA[i,0] = logA0 + C1 * (Ti-T0);\n", " else:\n", " logA[i,0] = logA0 + C2 * (Ti-T0);\n", " return np.power(10.0*np.ones((NT,1)),logA);\n", "\n", "# seconds in year\n", "sinyr = 60*60*24*365.25;\n", "mytimes = sinyr*sinyr;\n", "\n", "# times; the interior of gda_cvec is in years\n", "mytimes = sinyr*gda_cvec( 0.001, 1.0, 5.0, 10.0, 50.0, 100.0, 500.0, 1000.0 );\n", "Nt, i = np.shape(mytimes);\n", "\n", "# z-axis\n", "zmin = 0.0;\n", "zmax = 100.0;\n", "Dz = (zmax-zmin)/(Nz-1);\n", "z = gda_cvec( np.linspace(zmin,zmax,Nz) );\n", "\n", "# tables of results\n", "Tlist = np.zeros((Nz,Nt));\n", "vlist = np.zeros((Nz,Nt));\n", "\n", "for itime in range(Nt):\n", " mytime = mytimes[itime,0];\n", "\n", " # static temperature\n", "\n", " T = T0*np.ones((Nz,1))+grad*z;\n", "\n", " # step function increase in temperature\n", " kappa = k/(rho*cp);\n", " Ts = Ts0 * (np.ones((Nz,1))-sp.erf( z / sqrt( 4.0 * kappa * mytime ) ) );\n", "\n", " T = T + Ts;\n", " \n", " # flow constant\n", " A = AofT(T);\n", " logA = np.log10(A);\n", "\n", " # force of gravity parallel to sloping surface\n", " f = rho*g*sin(pi*theta/180.0)*np.ones((Nz,1));\n", "\n", " # d tau / d z = - f\n", " dtaudz = -f;\n", " tau = gda_cvec( Dz*np.cumsum(dtaudz) );\n", "\n", " # free surface boundary condition tau(z=0)=0;\n", " tau = tau - tau[0,0];\n", " taumax = np.max(np.abs(tau));\n", "\n", " # dvdz = A tau^3, and boundary condition v(0)=0\n", " dvdz = np.multiply(A,np.power(tau,3));\n", " v = gda_cvec( Dz*np.cumsum(dvdz) );\n", " v = v-v[Nz-1,0];\n", "\n", " Tlist[0:Nz,itime:itime+1] = T;\n", " vlist[0:Nz,itime:itime+1] = v;\n", "\n", "vmax = np.max(sinyr*vlist);\n", "Tmin = np.min(Tlist);\n", "Tmax = np.max(Tlist);\n", "\n", "jet = plt.get_cmap('jet') \n", "cNorm = colors.Normalize(vmin=0, vmax=Nt-1);\n", "scalarMap = cm.ScalarMappable(norm=cNorm, cmap=jet);\n", "\n", "fig1 = plt.figure();\n", "\n", "ax1 = plt.subplot(1,2,1);\n", "plt.axis( [Tminplot, Tmaxplot, zmin, zmax] );\n", "ax1.invert_yaxis();\n", "plt.xlabel(\"T (C)\");\n", "plt.ylabel(\"z\");\n", "plt.title(\"T(z)\");\n", "for itime in range(Nt):\n", " colorVal = scalarMap.to_rgba(itime);\n", " plt.plot(Tlist[0:Nz,itime:itime+1],z,'-',color=colorVal);\n", "\n", "ax1 = plt.subplot(1,2,2);\n", "plt.axis( [0, vmaxplot, zmin, zmax] );\n", "ax1.invert_yaxis();\n", "plt.xlabel(\"v (m/yr)\");\n", "plt.ylabel(\"z\");\n", "plt.title(\"v(z)\");\n", "for itime in range(Nt):\n", " colorVal = scalarMap.to_rgba(itime);\n", " plt.plot(sinyr*vlist[0:Nz,itime:itime+1],z,'-',color=colorVal);\n", "plt.show();\n", "print(\"Caption. (left) Temperature T as s function of depth z, for different\");\n", "print(\"times (colors, increasing from blue to red). (right) velocity v as a\");\n", "print(\"function of depth z for different times (colors, increasing from blue to red).\");\n" ] }, { "cell_type": "code", "execution_count": 20, "id": "4d9bfcc5-31fc-4ecd-9f0f-db693553f388", "metadata": { "tags": [] }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkYAAAHFCAYAAAAXETaHAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAAC920lEQVR4nOydd3ic1ZX/P+/0Ue/FlizLvXeDbTA2BhvTDYQOAZKQsBACKcuGTbI/kmxgl01hEwIJZEMLLfSOMWAbcLdx70W2ZFuyrN5GU9/fH/ed0Yy6ZEkj2efzPHreO/e9750jw1x955xzz9V0XdcRBEEQBEEQMEXbAEEQBEEQhP6CCCNBEARBEAQDEUaCIAiCIAgGIowEQRAEQRAMRBgJgiAIgiAYiDASBEEQBEEwEGEkCIIgCIJgIMJIEARBEATBQISRIAiCIAiCgQgjod+gaVqnflasWBF65ssvv8Rut3PkyJFOv4/X62X48OE89thjPf9LCILQ7/nWt77F4sWLu/TMZ599RlxcHMeOHeslq4T+giZHggj9hbVr10a8/vWvf83y5cv5/PPPI/rHjRtHQkICuq4zY8YMZs+ezeOPP96l93ruuef44Q9/yP79+0lNTT1l2wVBGBhs3ryZGTNmsG7dOmbMmNGlZxcsWEBubi7PPfdcL1kn9AdEGAn9lttvv53XX3+durq6Vu9/9NFHXHLJJezZs4fRo0d3aW6Px0N2djY//vGP+fd///eeMFcQhAHA9ddfT2FhIWvWrOnys2+88QbXX389BQUF5Obm9oJ1Qn9AQmnCgOXJJ59k5syZEaLo2WefbTMEN3/+/NA4m83G9ddfz1NPPYV8NxCEgc3bb7+Npml89tlnLe49+eSTaJrGtm3bOHHiBG+99Ra33nprxJj58+e3uW48++yzoXGXX345cXFxPP300739KwlRRISRMCDxeDx8+umnnH/++RH9l156KWvWrIn4+f3vfw/A+PHjI8bOnz+fI0eOsGPHjj6zWxCEnueyyy4jIyODZ555psW9Z599lmnTpjFp0iQ++eQTvF5vi3XjiSeeaLFuXHjhhZjN5ogvXjabjTlz5vDBBx/0+u8kRA9LtA0QhO6wZcsWXC4X06ZNi+hPT08nPT099Hrv3r385je/4fzzz+cPf/hDxNjgs6tWrWLixIm9b7QgCL2CxWLhlltu4cknn6S6uprExEQAdu/ezfr16/nTn/4EwJo1a3A6nYwZMybi+XHjxkW8/u1vf8unn37KU089xezZsyPuTZs2jUceeYT6+npiY2N78bcSooV4jIQByfHjxwHIyMhoc0xJSQmLFy8mOzubt956C5vNFnE/+KzsMhGEgc+3vvUtXC4Xr776aqjvmWeewW63c9NNNwFq3UhPT0fTtDbnefnll3nggQf4+c9/zp133tnifkZGBoFAgJKSkp7/JYR+gQgjYUDicrkAcDgcrd6vra3lkksuwev18tFHH4W+QYYTfDY4lyAIA5fx48czc+bMUDjN7/fzj3/8gyuvvJKUlBRAfdbbWjMAli9fzu233843v/lNfv3rX7c6RtaN0x8RRsKAJC0tDYCKiooW97xeL9dccw0HDx7kww8/JCcnp9U5gs8G5xIEYWBzxx13sHbtWnbv3s3HH39McXExd9xxR+h+Wlpaq2sGwLZt21iyZAnz5s1rN7la1o3THxFGwoBk7NixABw8eLDFvW9/+9usWLGCN998k0mTJrU5x6FDh4CW+QWCIAxMbrzxRhwOB88++yzPPvssgwcPZtGiRaH7Y8aMoby8nOrq6ojnCgsLufjiixk2bBhvvPEGVqu1zfc4dOgQqampZGZm9trvIUQXSb4WBiQ5OTkMGzaMtWvX8oMf/CDU/z//8z+88MIL3HvvvcTGxkYUjUxISIgQQWvXrsVsNnPeeef1qe2CIPQOSUlJXHXVVTz77LNUVVXxk5/8BJOp6fv//Pnz0XWddevWRQimiy++mKqqKh5//HF27twZMefw4cMjNnSsXbuWefPmtZunJAxwdEHop9x22216bGxsm/d/8Ytf6MnJyXpjY2PEM0CrP/PmzYt4fu7cufrll1/eW+YLghAFPvnkk9Bnft++fRH3/H6/PnToUP3uu++O6G9rzQD0Z555JjTuwIEDOqC/8cYbffGrCFFCKl8LA5bjx4+Tn5/P888/z/XXX9+lZw8ePMjIkSNZunQpCxcu7CULBUHob/zud7/jN7/5DceOHcPpdHbp2V/84hc8//zzHDx4EItFAi6nKyKMhAHNv/3bv/HRRx+xZcuWCJd5R9xxxx0cPXqUZcuW9aJ1giD0NxobGxk7diz33HMPP/nJTzr9XFVVFcOGDeNPf/oTN998cy9aKEQbSb4WBjQ///nPueaaa7pUi8jn8zF8+HD+/Oc/96JlgiD0RxwOBy+88AJ2u71LzxUUFPDggw+GaiIJpy/iMRIEQRAEQTA4bTxGTzzxBPn5+TgcDqZPn86XX34ZbZMEQRgAyNohCEI4p4UwevXVV7n//vv52c9+xubNm5k7dy4XX3wxhYWF0TZNEIR+jKwdgiA057QIpZ199tlMmzaNJ598MtQ3duxYlixZwiOPPBJFywRB6M/I2iEIQnMG/H5Dj8fDpk2b+OlPfxrRv2jRIlavXt3qM263G7fbHXodCASoqKggNTVVinYJQhTQdZ3a2loGDRrUpd2Fp0JX1w5ZNwSh/9Eba8eAF0ZlZWX4/f4W5dkzMzPbPP34kUce4Ze//GVfmCcIQhcoKipq82y7nqara4esG4LQf+nJtWPAC6Mgzb+x6bre5re4Bx98kB/96Eeh19XV1QwZMoSioiISEhJ61c4eZdur8PZ3wWKHu9ZCyrDI+95dULEY9GqwXQTJL4HWyf/k37wKvvgcHv0zXHfLKZuq42cdv6OYTdhIYB7/SRynftZQY0Mjj2QPxYGLcb/6K1fed8Mpz9mc37CKbZRyAUP5LlO7PY/XC2efDQcPwo9+BP/v/3V9jokHodALnw6BmTGR9x55H/7rQ5iZD5/+a7fNjAo1NTXk5uYSHx/f5+/d2bXjtFk3hF5nyhQYXPAI5/JffD3y24z46e95ZG4JnD2agNlE8geV3JoIj2cDr98Bu97k74tvZulZC3m5ahmmxhfZETeSvLh3iWdQtH+dfk1vrB0DXhilpaVhNptbfMMrLS1t85A/u93eag2LhISEgbXAnfMd2PdPOPgpLP83uP1jiFjQZ0H8+1C+EFgK+k8g4f+ajWmD4SPhq8/hZAn00L/JAn7Och6kioNs4w8s4FFsxJ3SnB//+U2ScNGgxXH9v96OzWHrEVvD+SYzeJAVrOYkt2EhnZiOH2qFP/1JiaKMDCWKuvPP6o8FfJCcCAlhRXvdXvj7esAGP768x/6T9Tl9GZLq6tpx2qwbQq9jMoEFOw7AarZhj0kgIb4eTBAwaRCXgC3e+JzGWMEOzlgb1oQYEgI2TFaIizeTEBdPPPL/VmfoybVjwO9Ks9lsTJ8+vUUF42XLljFnzpwoWdVHaBpc8YTyGB34BLa90nKM7VxIfhUwg+sZqP1Z5+bOy1fXI4d6zFwLDs7l5zhJo5ajrOG/CeA7pTk3PPuiaow7r1dEEcB40plAOj503mJvt+aoroZgFOZXv+q+cPEaWyWszdaAV9ZDaQ3kJMPV07o395nGGb12CILQJgNeGAH86Ec/4m9/+xt///vf2b17Nz/84Q8pLCzkrrvuirZpvU/aSJhniJ0PfwiuypZjHFdA4lOqXf8I1D/R8bz5I9T10P6esdPASSrn8gvMOChlK1v5v27P5fV4Me1fA8BZt/V8CC2c6xgLwDIKqMHdweiWPPoolJfD2LHw7W93345GQxg5woSRrsP/Gn/b714A1gHvB+47zui1QxCEVjktltDrr7+e8vJyfvWrX1FcXMyECRP48MMPycvLi7ZpfcN5D8C2l+DkHlj6ICz5S8sxMd8C/zGo+w+o+T6Ys8FxVdtzjhitrgf2qr+8PeimTCKfs/kRq3mEA3xAAnkMZ3GX51n2zPvE6PU0ag4uvefaHrOvNSaTwTCSOEQVH3KQGxjX6WeLi+EPf1Dthx+GUzl70hVQV2fYV5rVB2BzITiscOd53Z/7TOSMXzsEQWjBaeExArj77rs5fPgwbrebTZs2cd55Z9BfCIsdrvyram/4KxxZ1fq4uJ9DzHcBHSpvBM9Xbc85dLgSQzXVcLK0x00ezCwmoA5i3MxfKWV7l+dY/XcVOvQMmYkjxtGj9jVHQ+NqlFh8n/248Xf62V/+ElwumD0brryy+zb4dfAabWeYTv3jp+p68yxI6/vc5QHPGb12CILQgtNGGJ3x5J8H07+l2m9/D3yelmM0DRL+DPYrADdUXAG+NnJmnE4YMlS19+/pDYsZw7Xkch46ftbw39TTNQHWsPULAEZfcXlvmNeCc8ghgxhq8LCcw5165uBB+NvfVPu//uvUHG+usFKsQY/RsUp4Y5Nq33tB9+cWBKHnGPhlk89sRBidTix+FGLSoHQnfPXb1sdoFkh+Gaxng14JFReD/0TrY0ePV9c9O3rFXA2NmdxLMiPwUMNqHsbfyfyd3et2kuguIYDG5T+8uVfsa44ZE5czEoD3OIBOx6vfL38Jfj8sXgyn6oioNZxUJpo8Rn9dAf4AnDcKJg85tfkFQRAEEUanFzGpcKmRzLL8V1B+oPVxWgwkvwfm4eAvgMrLIVDfctzYCeq6u3eEEYAZO3N4EBsJVHGIjfy5U4LjkydUGK0mLp/s/L6r83Eh+TixUEQNWzrwcO3ZAy8am+Z+9atTf+9aI78ozqQ8T24v/HWl6vu+eIsEQRB6BBFGpxuTb4bhF4LPDe/c1bZP15wOKR+ClgreDVB1I+jN8mbGGMKolzxGQWJIZzYPoGGikBUc4L0OnznymUqsSZrRt/kgsVhZwFAA3qP9HXsPPQSBgMormjnz1N87KIzijU/tG5vUFv1BSbCk+3UnBUEQhDBEGJ1uaBpc+SRYHHDwM9jyj7bHWkZByruAA9zvQc2PI++Pn6SuO7aqv/C9SAaTmMQdAGzlGcrY1eZYv8+P7fg2AM668RSymbvJ5ahSBpsopoRWPG3A7t3wz3+qdk+dItFcGP35c3X93nzZoi8IgtBTiDA6HUkdAQv+Q7U//CHUl7U91jYHkp5X7Yb/hfo/Nd0bOQbsdqirhcM9V+ixLUZyBbnMNZKxH6WRqlbHrX77C5x6Ax5snH9L17f5nyqDiGcKmejAUlr/d/nNb5SzbskSmDy5Z963ynDoJZlhS6Hapm8xw3fn9cz8giD0PDpywPBAQ4TR6cq5P4HMCdBQDh/9pP2xzmsh/r9Uu+Z+aHxfta1WGDtRtbdv7jVTg2hozOD7xJNLIxWs47forWyLX/uKsq8+dXSvb9Nvi8Woc+k+pQAvkd60/fvh5ZdV+xe/6Ln3rDbeJtEETxjeomumQ1Ziz72HIAjCmY4Io9MVsxWWPK1Ca5ufU2G19oh9AJzfBgJQdQN4t6j+Scb5Els39aa1ISw4mcNPjcrY29jJyy3GFK9R9ZfSps/uE5ta4ywGkYKDatys5VjEvUceUZHHSy+FaT14PEfQYxSjw4trVfvu83tufkEQBEGE0enNkFlw9j2q/c5d4HW1PVbTIPFJsF0Iej1UXA7+Ypg8Xd3fsrH37TVIIJcZKLt38xon2BK6FwgEsJTsBmDKlYv6zKbmWDBxIeo8uU8pCPUXFcE/jLSun3XyWLrOUmkIo9KT0OCB8YNh7qiefQ9BEIQzHRFGpzsLfwMJg9XW/eX/2f5YzQrJr4F5DASOQuWVMM1IkNm8odcTsMMZwjyGcRGgs47f04g6A27X6h3EBmrxY+K8Gxb2mT2tcYGxO20LJzhJA6CO/vB6Yd48Vem6J6kw/vn3Gjrsrvk9elKLIAiCgAij0x9HAlz+uGp/+SiUdHD0hikJUt4DLUVt48/6H1UFu7ZGnZvWh0zhOySQh5sq1vF7dPys/udSAGpjh5CQ0s0j6nuIbOKYSDo68DmHqaiAp4yzev/t33r+/cp96lp2EmJscGv0IomCIAinLSKMzgTGLYFxV0HAB2/fCYEOzvmyjIDkNwEr+N6A8emqf+Pa3rY0AjN2ZvMAZuyUspU9vEnBl+ocOPvwSX1qS1sEw2mfcZgn/6JTXw+TJqlK1z1NefA/WyPceDYkxvT8ewiC0Nc0rzUn54lEGxFGZwqX/Qns8VC0Dtb/pePx9nmQaBxMO7FQXdev7j372iCBXKZxFwA7eQl/iapfNGT2WX1uS2vMZjAOzJRQz7OrKwD4yU96J8RVEjxB1qXCaIIgDAxaWw4kCt5/EWF0ppA4GBYZW/I/eRCqj3b8TMwdEPtDCFZVXtfBzrZeIo8F5HAugYCPuLoiAKZcPDcqtjTHgYVZDFbtxUfIzobrr++d9ypUaUyMSoDpQ3vnPQRBEM50RBidSZx1FwyZDe5aeO/7nXsm/lE4y9gTvr8Ayvb0nn1toKExnbvR99jQ63zoVjMzLprV53a0xTw9D4DBNxRx9w8C2Gw9/x66Tqjc5S1TJOlaEAShtxBhdCZhMqnaRmYr7H4Hdr7Z8TOaBYa9CcOMv/afXQW6p3ftbAUbcdS9qk62d06Np9TRd+UDOqJ+VQbuE3ZsaR7Ovbv9g2W7y6f7QTeO/fj29F55C0EQBAERRmcemeNhrrFl6r3vQ2N1x8+YkuDcq1R77R6o+UGvmdceRStLAHBMiGcTT4S28EebJ/9s4vjrOQBsTSjqlff4y3p1tfhhUGyvvIUgCP0KcQtHCxFGZyLzfwapI6G2GJY+2LlnzjEOa90INPwV6v/aa+a1RY1RLsCcl42HGjbyOHqUd3AUF8Prr0PxP3MBWMuxFkeEnCo1LvjggGpnmHt0akEQBKEZIozORKwOWGIU3Fn/JBxZ1fEzc4yTSvdoUAPUfB88nXiuJzl5GIDUuOswYaGYDRxmWd/a0Iy//Q18PhgdSCMZB/V42cKJHn2PV9aB267aQ5w9OrUgCL2ArkOLbfe6bMMfKIgwOlMZNh+mf0u13/4u+DrIG8oeBMNHqQ/3tnMAH1R+A/zHe9tSADyNHuI8JwGYPPsiJnArAFv4Ow2c7BMbmuP3w9NPq/bdd2nMNnanNT877VT5+1eAET7LsvTo1IIg9DpaxGYJ3XjRMlAmm/r7CyKMzmQW/w/EpkPpLlUVuyPOu0BdN04AywQIlEDltX2SjL177U7M+PFhYfTMsYziClIZg4+GqIXUli5VZ6OlpMA11xASRus5jr+H7Nl1DNYdAi1OvR4kwkgQBKFXEWF0JhOTApf+r2ov/zWc7ODIj3kXquuXX0DyW6Algnc11Pywd+0E9q7ZCkC9PQ2zxYyGmZn8ABNWTrA5KiG14PEft90GDgeMJ504rFTjZi/lPfIezxjRytwh6potwkgQBKFXEWF0pjPpBhh1Mfg98M732o+Dn3u+KqCzbzecdELSi6q/4QloeL5XzSzauhsAPTkn1BdPDhO4BVAhNVcPiZHOUFIC77+v2nfeqa4WTMxkENAz4TSfH14wio2nZamrCCNB6P90KZ2oxWDJRYo2IozOdDQNrngCrDFQsBI2PdP22KRkmDJDtZd/Ao5LIe7/qdfVd4F3W6+ZWXFIHSnvyM6J6B/FFaQwCh8NfE3f7ZT7xz9UjtHs2TB2bFP/TLIB2EDxKb/HJzvhRA2kx4PHofoGW095WkEQ+pjWCrJK9lD/RYSRAMlD4cJfqfbHP4G6dooULjBOR/1cnXJP3H+AfTHggsprINCJukjdwFWiPDCJQ4ZE9GuYmcH30TBznLUcpffPc9N1ePZZ1b7jjsh7U8nCjMYxaimm7pTe5zkjjHbT2XDcOEA2RzxGgiAIvYoII0Ex+z7IngquSvjg/rbHLbhIXVcuUy4TzQRJ/wDzEPAfgKrbe2Vbql6pijtmjhre4l4iQxnDNQBs5q94TlGQdMSmTbBzp8oruu66yHuxWBlHGgAbT8FrVFkP72xW7evnQIUhjMRjJAiC0LuIMBIUZouqbaSZYNvLsO/j1sdNPxsSEqGyAjZvUH2mVEh6HbCB+22o/0OPm2dpUPlDOeNbCiOAsVxHPINppJIdvNDj7x/O80Y61VVXQWJiy/szjHDaJkq6/R6vbwS3DyYMhnQ1HU4NkuQTKwj9Hl0HrUWukOQODRRkmRWayJkBs43jPt69GzwNLcdYLHD+ItVe9kFTv20mJBg73Gr/DTw9F9Ly+/w4A7UA5LUhjMzYmM49ABzkY8rpYIddN/H54NVXVfvWW1sfMxWVKb2Dk3jxd+t9/rHGeI85cNSn2rlWOTxWEAYauqZF5hMF6xhpzce1fFY+7tFBhJEQyYW/hsRcqCyAz3/Z+piFl6rrJx9E9sd8Dxw3ooo/Xgf+nim8eGx/EWYC6MCQcUPbHJfOBPJYAOh8zRMEuilK2uOzz6C0FNLS4MILWx+TRwLJOPDgZ1c3dsodKYMv9qmF86azocir+iW/SBAEofcRYSREYo+Dyx9X7VW/g+KtLcdccLH6q719MxSHVb7WNEj8K5hHQeAYVN8K+qmfG3Zkp9qR5tJiccQ42h07mTuwEkcVBRzg/VN+7+a89JK6XncdWNvI99HQmEImAJu7EU57aZ26nj8GclKahFGu5BcJgiD0OiKMhJaMvQLGXw0Bv6ptFGjmeUnPgGlnqfayZl4jUzwkvw44wL0U6n97yuaUFhwFwGtL6HCsnUQmcRsAO3mZRipP+f2DuN3w9tuqfeON7Y8NCqNttLPDrw1eWquuN89S16KwUJogCP2frp2VJrlI/Q0RRkLrXPpHsMdD0TpY30p9oMVXqOvH77a8Z50IiX9U7dp/B8+aUzKl8rgSFwFHx8IIIJ+FJDMSHw1s47lTeu9wPvkEampg8GCYM6f9sZPIAOAQldTR+SNTth+FHcfAZoGrp6u+QsNjlCfCSBAGIM3OSqP1s9L0UI9mvG5tlNAXiDASWidxMCx6RLU/eRBqmh0WGxRGX3wK9fUtn3d+Bxw3AH6ougEC3ffcVJcoYaTFdE4YaZiYxvcAOMLnlLG72+8dzuuvq+s114Cpg09OKk4GEUcA2ElZp9/jZSOMdslESIpR7SOGMBoiwkgQBiRdOR5WpFD0EWEktM1Zd0Hu2eCugQ/ui7w3Zjzk5UNjo6pp1JxQvtFw8BdC9Xe6Xd+ooawCAEt8K3vj2yCFUeSzEIDNPIXOqeU6eTzwzjuqfe21nXsm6DXa3slwmq43CaMbz27qKxRhJAgDila367e1/smRIP0OEUZC25jMcOVf1XXH67D3w6Z7mgaLr1TtD95q4/kESHoFsELjm+B6ultmNFaratq2LggjgAncioUYqjjIYT7v1nsHWbkSqqshM7PjMFqQ8aQDsKuTHqP1h+BwGcTa4bLJqq8qALWGphNhJAgDD715KE1rPZTWshaH1toooQ8QYSS0T/ZkmPND1X73bvCEhc0uvUpdl74HXm/rz9tmQPzDql19P3h3ddkEX72qZG2Lj+/Scw6SGMf1AOzgBby0UpepkwSTrq+8suMwWpBgBexDVOHC1+H4fxr1Mi+fDDF21Q6G0dLNECOfVkEYELSafN35p3vQEqE7yFIrdMwFD0HSEKg6Ap//qqn/7HMgLR2qKmHNF20/H/sjsC0CXCrfSG/s0tsHhZE9oWvCCGAklxFHNo1UsofXu/w8qEUuGEa78srOP5dODBnEEEBnbwf1jAKBJmF0/VlN/YeNvO2h4i0ShAFLVw6R1ToxRuhdRBgJHWOLhcv/rNqrfg8l21XbbIaLjCTs999s+3nNBEnPgSkDfNuh9sEuvX3ArTw9ji56jABMWJmEOul1H+/SQNeLTn79NRw7BrGxsGBB154da3iNOgqnrTsERysh3gGLJzb1H5EdaYIw4OhMjlGT6JEco/6GCCOhc4y5zKht5IN37lIuDoArvqGu77+pDpVtC3MWJD6j2vWPgbuVhO020L3KbWKLi+mG4TCIs0lnAgE87ODFLj//oZFatXChOji2K4whFaBDj9HrG9X18ingCBNBhw1hNNTWtfcVBKGf0NkjQVp/uHdsEtpFhJHQeS79X7DFQeFq2PR31Td3ASQmQWkJrO/gfDTHJRBzt2pX3Q6BTh6X4VPCyB7bPWGkoTGJ2wE4wnKqKOjS80FhdOmlXX/voDDaR4VxqElLdB3e2KTa35geeS8kjMRjJAgDhuYbzTStZafWymCRQf0DEUZC50nMgQuNHKOlD0BdKdhscLGRePPuax3PkfA/YB4DgeNQ/d1ObeHXTlEYgdq+n8tcQGcbz3b6ubIyWGdsob/44q6/bx6J2DBTj5dj1LY6ZtNhOFKudqOFh9GgSRjlizAShAGJjtbpOkbhfVLgMXqIMBK6xqx7IXsKuCrh4wdU3+VGOO29N5pCbG2hxUDyizRt4f9Hx+/pV+rA5rR322xQ2/c1LJxgM6Vs69Qzn36qtNukSaridVexYGIEyQDsp6LVMW9+ra4XTwRns5BZQTD5WkJpgjBg6NKRIM37u1nvTeg5RBgJXcNsgSv/onzDm5+DgpUwfyEkJELJcVi3quM5rNMg/iHVrvk++IvaHa4ZxRnNFvMpmR5HFsNYBMB2nkfvRJLjMiMVauHC7r/vSFIA2N/GuW1vGcLo6mmR/ZV+qDZ0poTSBGHgEJF8rXWujpHqj+xt3dck9DYijISuk3s2zFRHbvDOv4BZg0uWqNdvv9q5OWIfAOss0GtUvpHejqfJuGcyn5owAhjH9ZixU8E+jrOu3bG63jPCKOgxOtCKx2hPsfqxmuGSSZH3gt6iTKlhJAgDiuYeI1MrOUZNH+nmOUbiMYo2stwK3WPRwxCbASd3w6rfwRJVSJH3Xgdfx8UM0SyQ9LwKrXk+h4bH2x5qCCOz1XLKZjtIZiSXA7CDf7R7VMj+/VBUpNKo5s7t/nuONIRRAVX4mr1f0Fu0YCwkNkuhKgjmF0kYTRAGFOEeo1Dla73JgwStJV9rkcKoFQ+S0DeIMBK6hzMZLv6tai//NUwcAckpUHoCVq/s3ByWkRD/P6pd81Pw7W91mN7Di8NorsZKLDUUcpS2Q3/Ll6vr7NkQ0/28b7KIw4kFD4EWCdjvblHXJVNbPnfI8BhJ4rUgDCwinUPNQmm0sV1fU2ObxkkoLVqIMBK6z5RbIH8eeF2w7F+bkrDfeLnzc8TcBbYLUFWx7wC9lVpIxgoS8J/aQbBBbMQxCrWTbievoNN6/aUVK9T1/PNP7f1MaOSTBKjjQYKUVKvCjqDqFzUn6DEaJh4jQRhQNA+laU2dkX20Mk5CaVFHhJHQfTQNrngCTBbY/Q7MyFP9778Bbncn5zBB4v+BFg/eVar4Y8tBAATaKyDZRUZyOVbiqKWIIr5qcV/Xm4TR/Pmn/n5BYVQQJow+2KreZ8ZQGJzc8pmgx2iYeIwEYUARroH0ziZfNw+lCVFDhJFwamSMg3N/rNpHn4KsbKiugs8+7vwcljxI+L1q1/4cfPsi7xsLic/TxkG13cBKLKNZAsAuXm3hNdq/H0pKwG6Hs88+9fdrTRi9t1VdW/MWARySHCNBGJBEHgmiRXqM2soxCuUUNT0nOUbRQYSRcOqc/wtIzIXqIzBtiOp7o4tHbzi/bRw02whV347YpaabVNK11+3pIYMVI7jM8Bod5ShrIu6tMlKPZs7s+jEgrZFPIgCHqQag0QvLdqp7l09uOd6vNx0gO1yEkSAMKMJDaToaJlOoM+Qxar4rTeUUNX8twigaiDASTh1bLFz6mGrHGmdbLH0Pams6P4emQeJToMWB9ytoeCJ0SzcrZeBpaOwhgxVWYkI71Hbzz4gdakFhdM45PfNeuSSgAdW4qaKRlXuhwQODkmDKkJbjj/nAC1iBwae+GU8QhD6kRR2j8HttnZWmaZhECPULRBgJPcO4q2DkRZDsg4xYaGxUB8t2BUsexP+Xatf+FHyHVduskmw8LlfP2Wswksux4KSawxxnfah/tXHsW08JIwcWMokF4AjVfGCE0S6Z1HKBhKb8oqE2VSZKEISBQ4s6RmEeo1Bf5ODwp8Pa8uGPBiKMhJ5B0+CyP4HFBnn1qu+1Thz30ZyYfwHbXNDroeYu0HU0qzoKxFPf88LIRhwjuASAPbyOjk5VFezere7PmtVz7zXUCKcVUsPHO1TfJRNbH3tQtuoLwoClRR2jYCcQFDvNd6XphmdJj8hNEmEUDUQYCT1H2kiY+wCMNF5/+TkcP9q1OTQTJD4N2MG9FFwvotlUkk9jbX2PmhtkJFdgwkoF+yhjJxs3qv5hwyA9vefeJ4cEAHY21LD/BFjMcMG41scGE68lv0gQBh7qyMimUJpJa3odDKWFPMFhHiMVSlMhfTlENnqIMBJ6lnkPQm4eZKE+8K+/1PU5LKMh/j9Uu+Z+7HHqKBBPXV3P2RmGg2SGcgEAe3iD9UZE7ayzevZ9cg1htNutijyeMwISnK2PPSSJ14IwYGnuMepU8rVmeIjChJJ4jKKDCCOhZ7HFwCV/gFHG65f/1r3TomP/FSwTQS9n1KjDQO8JI4DRXAWYKGET+04UAD0vjHKIB6DSrpLSF09oe+xBqWEkCAOWyByjzm3Xb72OkQijaCDCSOh5xi2BhQvAjCoItPXrrs+hWSHxb4BGbt4xADx1te0/cwrEkU0OcwBIP/cdAKZP79n3GGwII2LcWJweFrUjjA5J1WtBGLAEAqAFQ2KaSYXSAsHXzUNpxm5YLSih/KFx4jGKDiKMhJ5H0+AbT0C+8aH+yy+7N4/tLIi5B4eKQOGvr+oR89oiWPBx2pVfkJxdzpQpPTt/DFZifSpfKmdYHVNyWx9X7Ydyo96keIwEYeAREUrTmoXSaKuOUXC7vniMoo0II6F3SB8NV12j2h98AA3d9PbE/yeaU21zz4xt/ZDZniKFUZgrx2Kx+bjh5x+SkNALb1KpvEYzptSqxbIVgvlFGWaIN/eCDYIg9Crhydc6hsfIEEYB44PffLt+811puuxKixoijITe4/tPQ6wJXAF4/K7uzWFKpMS1BIAUx/GWx4X0MMdXqPeac+vH+OjkeW9doPxoHAB5I9oWihJGE4SBTYsCj2HCqEWOUfPka8IPyxZhFA1EGAm9R2wSXHqxar/+KlQVdWuaQPyFADRWA9X3dC+Zu5Ose+ssThzKxB5fSyEre3TuWhccPqiEUUJm26UHDsqONEEY0ER6jDSVT9RsV1rz7fpNobRA6LUmf6KjgvyrC73LvUYl68N+eP0H3ZoiNTcbgIZywPMpNL7WQ8a1ZMd2M0v/rAo+HuC9sGJrp85X+6HuhBJGNY62d9jJjjRBGNg0T742h+UYBTT1Z7cpSh6Wi9Qsx0hCadFBhJHQu4ydABPGqy9B77wNBV33wmQNGwxAXZmm1paaH0Kg53eo+Xyq4vXyvy/EFLBTzRFOsr3H5v98D9SXKmFUQtvCSEJpgjBwCUXMwrbrd2ZXWjDHKPQakD/R0aFf/6s/8sgjzJw5k/j4eDIyMliyZAl79+6NGKPrOg899BCDBg3C6XQyf/58du7cGSWLhVb55j3quhd47wcQ8Hfp8cEjje1bAZ2GuqEQOA51v+5REwEOHQK3GwLuOPK08wE4wIc9Nv+KPdBwUiWS1+ChAW+r48RjdOrI2iFEi0Bo932T4Gm3wGMolBZZ+Vr8RdGjXwujlStXcs8997B27VqWLVuGz+dj0aJF1Nc35Wc8+uij/P73v+fxxx9nw4YNZGVlsXDhQmpre6/mjdBFrr4B7HaoAHZsg41/69LjiWmJuFHnpR0pvFd11j8Gvr1tP9QN9uxR1zFjYKSmwmnHWYuL8lOeu8YFXx8BX6OV2IByBZXS0GKcV4dCOQ7klJG1Q4gWLYWR2QilNYXWoDWPkSkyx0jT6Od/ok9b+vW/+scff8ztt9/O+PHjmTx5Ms888wyFhYVs2rQJUN/4HnvsMX72s59x9dVXM2HCBJ577jkaGhp46aVuHEUh9A5JyXDp1aq9B1j2M3BVdmkKt1XtnT+4JxfslwJeqP5BjyZihwujRIaSxjh0AhSw7JTnXrUfAjoMS4csUwwAJ2mZgF3kVeXdHBpkW075bc9YZO0QokUgtKmsabt+ePJ1cLt+WzlGekTytfiMokG/FkbNqa6uBiAlJQWAgoICSkpKWLRoUWiM3W5n3rx5rF69us153G43NTU1ET9CL3Pzt9T1oAlqyuHzrhV99DuTACg9VAQJjwE28HwC7nd6zMRwYQQwHLWj7hBLCdC18F9zVhrOrXmjIQMVTjvRijAK1jDKt2IcPCn0BD2xdsi6IXSG1kJpZhOdyjEK9xiJKIoeA0YY6brOj370I84991wmTFBnKZSUlACQmZkZMTYzMzN0rzUeeeQREhMTQz+5uW2UIBZ6jrkLIGcIuANQAKz9M5zc0+nHTQmpAJQfOQqWERD7E3Wj5ieg90y9of1G/ciRI9V1MHOwkYCLckrYeEpzf2XMPXckZBD0GLUMpQUTr/MljNZj9NTaIeuG0Bn8xncoLSxXqLXK1yGPUViOUcSRIAPnz/Npx4D5l//+97/Ptm3bePnll1vc07RIZa3reou+cB588EGqq6tDP0VF3auvI3QBkwluvEO1C1Mh4IOPftLpx+3pWQBUFx1VHXEPgikb/Aeh/n97xMQDB9R1xAh1NWNlKAsAOMQn3Z630QsbDqv23FGQZgijMlwtxh6SGkY9Tk+tHbJuCJ2huccooJmxhHmM/CYliSzNPEYBkwkzWtjZaQPmz/Npx4D4l7/33nt59913Wb58OTk5OaH+rCz1x7L5N7zS0tIW3wTDsdvtJCQkRPwIfcBNd6iqrwfKoc4Cez+A/Us79WjCILVlv7HU+G9tioP4R1S77j/B37aHsDPU10Pwf6OgMALIR4VaitlEA2XdmntjAXh8kJkAwzMgvRMeo+GyI61H6Mm1Q9YNoTM09xiF6hg1D6UFH2gj+XqA/Hk+LenX//K6rvP973+fN998k88//5z8/PyI+/n5+WRlZbFsWVNyrMfjYeXKlcyZM6evzRU6IjcP5i9U7Zpp6vrBD8Hv6/DR1GF5APirSps6nbeCdSbotVD781My7dAhdU1OVj9BEsghjXFAgMN81q25VxmeqHNGKl3Y5DFqRRgFc4zEY3RKyNohRIvmHiOIzDEKtJljFNyu7w89J0SHfi2M7rnnHv7xj3/w0ksvER8fT0lJCSUlJbhcKgShaRr3338/Dz/8MG+99RY7duzg9ttvJyYmhptuuinK1gutcst31HV9EThS4ORu2PBUh48NHjsMAEv9yaZOzWQkYgOuv4N3W7fNOnxYXZv9/VR9htfoMJ91qxL2moPqOme4uqbiBKCCRvzN5jskNYx6BFk7hGjR3GMUMHUylKYZobSQMJITpKNFvxZGTz75JNXV1cyfP5/s7OzQz6uvvhoa88ADD3D//fdz9913M2PGDI4dO8Ynn3xCfHx8FC0X2mTxFZCaBieKIfFa1ffZf4Crqt3HRswYB0CMrwqvJ6wwom0OOK4FdCMRu3vb948cUde8vJb3cpiDBSf1lFBG1woA6nqTMJpthOiSsGMCAuhU0RgaW+mHSuNLpniMTg1ZO4Ro0SSMjCTqZnWMgsIo9N0nLJRmxtSUY9S//zyf1vTrf3ld11v9uf3220NjNE3joYceori4mMbGRlauXBnaeSL0Q+x2uO6bqr2+GNLHqkPQVvxnu48NmzwCPybMBDiweV/kzfj/Qm3fXwbuj7plVnvCyIKDHM4B6HI47XAZlNaA1QzTjLnNmEjCAUBFWAJ2geEtyjBDbL/+ZPZ/ZO0QokUwlGYKCSMTFjMhxRSsYxTyGBknAQQ0DXNYHSNJvo4e8i8v9D23GuG0ZR/AjH9X7TV/gopDbT5itVlpsKjknwMbdkXetAyDWOOA2toHQO96zaH2hBFAPhcCcJTV+MK8PB2x1vAWTRkCjrDwWDCcVh4ujGSrviAMeFokXwcLPAaaQmbQWvK11izHSEJp0UKEkdD3jBoLZ5+jVpB1h2HEQvB7YOlP233MF692CxVu3d3yZty/g5YMvp3geq7LJh0/rq6DB7d+P5WxxJKFDxfHWdfpeYPb9M8eFtmfbAijyjCRJflFgjDwCQqjoMcooJmVx8gQRj6zEUoL5Rg1eZLMmBBhFH1EGAnR4dY71fWlv8NFj6rtWjteg8I1bT5iy1QF9U7uO9jypikZ4n6m2rX/AXrLHV/tceyYurYljDQ08pgPwBGWd3re9YYTbObQyP4UI5QWLozEYyQIAx+fsclW04xQWjD5OhhKMzxG1raSr0M5RiKMooUIIyE6XHEtJCTCkQLYdxKmGUeGfPijNhOoE4eqLWO1hYdbnzP2HjDnQeBYl4o+6nrHHiOAIYYwKmELjXR81pvPD18XqvZZzTxGSa0Jo7DjQARBGJg09xjpGDlGhuDxNd+VFmgSTBZMoaRtTRNhFC1EGAnRISYGrr1FtZ9/Ci78NVhjoGgt7Hyj1Ueyxo0CIFB2tPU5NQfEGUncdf8NgYpOmVJRAR5DlBh1/1olnkGkMAoIUMRXHc67uxhcHoh3wKhmNQOTWxFGhw2P0VARRoIwYGm+Ky0Q3JVm3PCbmnuMgknakmPUXxBhJESPYDjtw7eh0QRz/1W9XvpT8HlaDB959iQA7PXtVLl23giWiaBXQ92jnTLjxAl1TUpSm+baYwjnAVDElx3O+7WR0D11iDoRJZygx6jaEEa63iSMJJQmCAOXYCgt5DEymbGG7UrzNd+uH2jKMbJE5BhZ+sReoSUijIToMWEyTD9brSSvPAvn/gTisqDiIKz/S4vhE+eratlOvYHjB4+1PqdmhviHVbv+f8HfxrgwSo1i2u2cIhMih3MBE+XsoZ4T7Y7ddFhdpw9teS8RpcCqUAfglvigUVcfyFzxGAnCgKVJGKlvOgGtDWHU5llpQZeTCKNoIcJIiC7f/K66vvC0CqVd8Ev1evmvoLE6YmhyRjL1JnU+1bblm9qe034pWM8BGqHu1x2aEPQYZWR0bK6TFDJQtW468hoFPUbTWikBEPQYBQs8Br1Fgy1gk5MABGHA0lqBx/Dka7/Weh0jf7DAI8EjkiSUFi1EGAnRZcn1EJ8ABQfhy89h+reaij5+0TIU5klQ2dEH121pe05Na/IaNfwf+AraNaHMOBs2Pb1zJucyF4AiVrU5JhCArcbh61OHtLwf9Bi58ePGJ2E0QThNaB5KC2gW5TEyBJDX8BjZWtmubzFq4gNoiOs4WogwEqJLbGxkErbZAoseUa9X/wGqI0Nh9hy1vat4e7Mij82xnwe2RYAP6n7V7tAKI0c7NbVzJg9mNhomqjhIHa3nOxWUQZ0b7BYY3UpCdwwWLMYhkTV4JPFaEE4TQtv1g8LIZMZmIeQx8ppViCwkjAK+0DgLGpquXusSSosaIoyE6HPb99T1g7eg9ASMvQLyzgGvCz5/KGJo2pixANQfaaWWUXPijTCa63nw7W1zWHm5unZWGNlJIJ2JABxtw2sU9BaNH4zaqtsMDY0Ew2tUg5sjIowE4bSgyWNkCJ6gx8i44W+eY9Rsu34w+VqT5OuoIcJIiD7jJ8GMWWrhePkZFQq7yAijbfo7lDZVus6fqXammcqPdDyv7SywXwEEoPaXbQ4LeoxSUjpvcq5xdlpHwmhybttzBIVRNW4OG5vw8kQYCcKAxmt8yTGF5RiFJ1+3FEZBwRQ8RFaEUbQRYST0D4Jeo+efUgk6eXNg7JVqx8ayn4WGTV00C4A4bxl1VXUdzxv/kLo2vgK+Pa0OqapS16Skzps7iFmARiUHaOBki/s7jAjgxJx2TEMlFNXiCXmMRBgJwsCmKZQWDJFZVCjN8Az5LErw2NvIMQqG4NAk4TBaiDAS+gdXXtdUCXvFMtW38DfqhOldb0GROp8sf9JwGjUnJnQ2LV3b8bzWqWBfAuhQ2/oOtWpj81tiYufNdZBEGuMAOEbLY0x2GDUoJ7ZTSTve8BjV6mHCSNZCQRjQNHmMmkJpZhMhxeQzq+xCC6gCZoEmT5JV15oqXyOLQbQQYST0D2Ji4PpvqvZzf1XXzPEw1ehb+lPQdUwmE6545YbZvXJD5+aO/w91bXwZvC0PoO2OMAIYjPJeHW0mjFweOGDURprQCY9RScCNyzgFJVe854IwoGkujExmM5pGUx0jswWbpjIGgqIIlDCy0XQckiYeo6ghwkjoPwTDaR+/C8XG4WUX/BLMNihYAQeUJ8meMwKAo5u2dG7ecK9R/cMtbtfUqGt8fNfMHcxsAMrYjZuaUP+eYgjokBILmQltPx8SRrpKMMqygF0+kYIwoGmeY6RZjA+1vyn52t4sv0j1m7ASfk6kxNWjhSzDQv9hzHiYda76ZvXi/6m+pCFw9t2q/cm/g66TMUntCKsvaHunWQvif66urpfAdyDiVn29usbFdc3cWDJIJB8IUMzGUP/uYnUdN8j4VtgGcYYwKg+olVTyiwRh4NPcY2S2GB9sI5TmtVhbF0ZmCzajCjaApjl63VahdUQYCf2L2+5S1xeebiohO//fwRYHxzfBzjcZc95ZAFgqOrEzLYh1OtgvAQJQ90jEraAwio3turmDULYcZ32ob7fh7Bqb3f6zccY3wiqUx2iICCNBGPA0CSPVMFutETd8ZkuYMPKGnlMeozBhRAcHNwq9hggjoX9x+TWQkgrHimDZh6ovNh3O+ZFqf/pzzrp0DgBx/qq2z0xrjbig1+h58ClRpevQ0GC8zSkIoxNsxm8shEGP0dhBHZhjeIzqg8JI8osEYcDTPJRmChYy8zclX7fmMQpoJmx6U86RJF9HDxFGQv/C4YAb71DtYBI2wLk/AmcKnNxDevkyai2qGuPat1d0fm7bbLBdAPig/ncAeDxKHAE4nV03N5nhOEjBh4sydgCw1yiGPaaVitfhxBoeI7emVlI5PFYQBj5BYWTWVcNqi/QYec1WHMG/vP7gQbMmdJMJm+ExCqBh1mRBiBYijIT+R/Bg2U8/hCIjXOZIhPP+TbU/ewg9Qx0NsndFJ7bshxP3oLo2/A38J2lsbLrl6EZIX8NENtMBKGYj/gDsNw6lbe0okHBijW+EPkMYSShNEAY+HqNYazDHyGKPzDHymS04gh4jQxj5zcb5aXpTFWyTJF9HDRFGQv9j+Eg47wLlynnh6ab+WfdAXCZUFjB2tFo0ynZu79rctgVgnQG4oOF/I4SRrZue66wwYVRUAW4fWM2Ql9b+czHBhc8kHiNBOF3weEAjgMnw/oQ8Rj7DYxSRfG0II5OKo1tDHiMRRtFEhJHQP7ndSML+x9+afNO2WJivqmDPytoJgH68CzvTQG0TizW8RvV/xuOuBcBub38HWXtkMgUNC3UUs7tC5TyNyEAVdWuHYCjNbPIBuggjQTgN8HiaEq+hZSitVY+RSS0WTR4jDbMIo6ghwkjon1x8JWRkqUNlP3qnqX/mdyExh7w0VZUx3n2CytLKrs3tWALm0aBXEaP/DQDrKaxBVmJIQx1uW8xmAEZkdvxcTNhZSDFmL+mtHDYrCMLAwu0Gc5gwsjsNV7QhjDxWG87gX95Ak1gCsAarZWPCJMnXUUOEkdA/sVrhlm+r9rN/aeq32GH+z4mPh5gYDRM6q9/4vGtzayaI+wkACZY/YLF4MZ+iKMliGgC+2K8B5THqCCtmzLr6CObYfJi66bESBKH/0Nxj5AwKo7BQmrOZx8hrnJ9m05uSsc1yiGzUEGEk9F9uvVPFt774DA7sa+qfdgckD2XwILWdbOenrZ9w3y7OW8CUidVUxA1XvoLlFNegoDCKz9iOxeJleHrnnrPoylU1yObtYKQgCAMB5THyhF47HMbiYmRle83WJo+RX/WFPEYRydfiMYoWIoyE/ktuHiy8VLXDt+5bbDD/Fwwydn2VbenkmWnhaA6IvQ+AH9/1O8xmvYMH2ieRoThIwWJ1M3rELoZ1UhhpuloQM6wijAThdCA8lOY3WbHbjD+zYR6j5jlGPpNyWVuN5wKYJMcoiogwEvo3wSTsV54Fl6upf+qtpBjbvuJKt3Rv7pjvEdBjmDJ+K+eetfyUzNTQyNAnAzBp/JZOC6NAQC1+qVZfByMFQRgIhHuMfCY7zqC+MTxGHquNmDY9RsZ5apoJs3iMooYII6F/c8FiyBkClRXw3utN/WYrGVf/KwB6XR2lBwu6PrcphQqXKiZ5162/P2VTY91TAJg0fitDUjv3jC+gFsQkiwgjQTgdCBdGfrMNR1AYGR4jj8VGTMhjFAyvWTABZuNA6YAIo6giwkjo35jNTQUfn3ky4lbWlT8iNl79L7zvr//erelPuu4jENBYOPcD8O05JVPrTyqPUf6Qg5hsNZ16ptGvhFGCRUJpgnA6oISRGwC/yUYw9zrcY9Qix8hiwY4FLSiMMGGWs9Kihggjof9z87fBYoENa2DntqZ+swVfWj4Ano1vg6ehy1N7/CN595Mr1Iv6P56SmcdKUyg8OgSTSeekcTxIR7gMYRRjFo+RIJwORHiMTGEeI68hjCyth9JsmCEoqKTydVQRYST0fzKz4NKrVDt86z7A+IsAKD3WCBv+Slcxm+F//6aSsHE9B4Eu1kQKo6gCdu6ZqOxhWwejVWHvWkMYOUwijAThdKCxESxBgWO2ExP0GLlVn9tmJzYYSvOpPq/ZigML6KoUv18zYxGPUdQQYSQMDG4zkrD/+QLU1oa6J1y8AIBjxyCw8r/B62rt6TYxm2HF6vns2DsJ9AZo+Hu3TSwshx17JgFQSsdHlVQGwGMII6t4jAThtCA8lOYzhQkjj+rzWGzEBv/yBoWRxYIdc0gYqRwjEUbRQoSRMDCYez4MHwX1dfDGS03d112IHxN19VBz/ARs/FuXplWFHTX++sIPVEfD42DUEukqRRWwa+8EdF2jliJcVLQ7/rgX/MZ2fZ8mwkgQTgciPUZhOUaGxyhyV5ohoMxKGOm6SgfwY5bk6ygiwkgYGGga3PY91X7uryoOBSSmJVIbkwvA0aPAl4+Cz9PGJC0JHgXy8ts3gZYC/sPg/rBbJh6rgvr6eDTXUADK2Nnu+GIf+I1daY10T4wJgtC/cLnCPEZmRwuPUaPNQVwLj5EKpenUAyqUJh6j6CHCSBg43HCbOu11+2bY3FTU0T5C7QY7eNQO1Udh8/OdntJmLFo1tU6IMY4gqX+8W+Ydr1LXOM8EgA4TsIt94Auowm5uxGMkCKcDLleYx8jUSo6R1R4WSlOhM4/FhhMLAT0ojEySYxRFRBgJA4eUVFhyvWqHJWEPm3cuANsOxqiOLx4Bf+eEhi3sfEfd+S+ABp5PwLe3S6bpepMwyjJ1ThiViMdIEE47VChNCR6f2U5sUN94Wku+VuNCHiO9DoCAZkVDTpWOFiKMhIFFsBL2my9DldpBds71ameat6oajyUNKg7Bjn92ajpbWBjf7c8H+2XqRcNfWn+gDSrqwWNosRHO8QDUUISb6jafUcJIPEaCcDoRHkqL2JXmafIYxTXzGDUJI+Ux0jVHX5osNEOEkTCwmDELxk9SX8v++QIAY2dPoM6UiJkAGxvVLjVWPgKBQIfTOZ1N7cZGIOZf1IuGZ9UutU5SYuiflFiItyaQgMp7KmN328/4mpKv3eIxEoTTgoaGJo+R1+wMeYz0RtXnsjuJDzqDDGHkttpwYg15jBBhFFVEGAkDC01r2rr/7F9A1zGZTPgHKy/Nio02sCfAiR2w9/0Op7NawWR8ClwuwH4RmIeCXgWuznmdoEkYZSWqaxrKnjJ2tfnMiQiPkQgjQRjoeL3g84EVVTbEZ3ESZwd8PjS/+oxHJF8b5UWCOUaIx6hfIMJIGHhcezPExsK+3bD6CwCyz5oFwMlt2+Dsu9W4lQ+Hdq+1haaBw1iDXC5AM0GMsfut4ck2n2tOS2E0FuhAGPnBryth5JFQmiAMeILnXDflGDmUx8jwFgG4bY6WOUZWqyGMDC+1FtNHFgutIcJIGHjEJ8DVN6n2c6ra9cxrVJ6Rs2wv3pn3gMUBReugYGWH08XGqmt9vdHh/BZgBe968G7tlEmlRs3JzAR1DQqjSg7iN/INmiMeI0E4vWgSRobHKCSMmgrPWu12tKAwCnmMrM08RiKMookII2FgEqxp9P4bUHaSc645Hzd27LhZvWwPTP+Wuv/Ff3U4VVycuoaEkTkDHEtUu+HpTplTapwZmx6vrjFk4iAFHT8VHGgx3qdDeZjHSISRIAx8gmuIzaIaXrMRSjOEkdtqI94attvMG+y3E4MVTVevNS2uz2wWWiLCSBiYTJkOU2eqE6tffharzYorbTQA61/7CM79sQqL7V8Kx7e0O1VQGNXVhXXGfFddXf/oVBL2ScNjFBRGGhqpjAGgnD0txpf7QQf0QDCUJsJIEAY6DcZSYTOrRsDiwGoh5Epy2Z0khO/C96pxQWGECKN+gQgjYeAS9Bo9/1cIBEiZejYAxWtXQ8owmGjUPPryv9udJhhKCzuCDWwLwDwM9GpwvdahKWWGqEoLW8/S2hFGpUZKUbzWJIx02s+HEgShfxMURhZNCRzdYmxJMzxGLpuT+PC/uj4jlGa1GR4jlXOkafF9Yq/QOiKMhIHLVTeofKOCg/Dl50xdovKMrMd3EAgEYO4DatyO16CioM1pEoy8oAhhpJmaKmG7/q9DU8qDwihsPUtBebDK2dtC9Jw0HESpJiWMdMAnwkgQBjTBUJrVFHQdGfVADGHU4IghMfyvrkc94DaEkckQRiYtqQ+sFdpChJEwcImNhetuVe3n/sr5tyzGi4UYvY6NH6+DQVNgxEII+GH1H9qcJtHYSVbdvBaj8zbABJ4vwbevXVMqjAUxJbapL5lhaJhxU0UDJyPGnzQ8RkFhBBJOE4SBTjAcb0UJI5M9fMsrNNhjSAwLpelGKK3R5iBWN2PW1UYNk5bcNwYLrSLCSBjYBMNpH75NrKuWuqQRAKx68T3VP/df1XXj/0FDeatTBIVRTU2zG+bBYF+s2g3PtGtGa8LIjJ0k8tV9Io8YKTM0UJrZRHCDiggjQRjYhDxGhjAyO4PCSL122Z1teoxidW+o22QSYRRNRBgJA5txE2HmbFVV7aW/kzRZ5Rkd/UrVN2L4hZA9RSU5rmu9LlFQGFVVtXLTGQynPQd667WGdL1JGCU322WbwihAhdPCCQqjdIuGFdmZJginA0GPkcXYdm91GAuCIYwaHDEktCaMbA4cRuK1DlhI6gNrhbYQYSQMfIJeoxeeZsoViwAwH92u8ow0Dc79ibq/9nHwNrZ4PNn4clZZ2crcjstAS4VAMbg/bfXtG71N56Qlx0beCwqjCvZH9JcZ49PMYDM+hj4RRoIwoAmF0gJKCNnjIoVRvSOW5GAoTdfBq4SRyRaHyTgOxKtZsMqutKgiwkgY+Fx5HSQmQeFhFo2IwYeF2EANXy/boO5PvA4Sc6DuBGx9qcXj7QojzQZOo5ik69lW377aqN2maaiaJWGkMBKAKg4SCBM+QY9RqhlsBHemdXy2myAI/ZeQMDJKfDjjjW9KDUoANThiSAoKI68LzajMb7HFQ0DF8n2aBRsijKKJCCNh4ON0hpKwY954ntrE4QB89cK76r7ZCrN/oNqrft/imJB2hRFAzO3q2vg2BFoOqjI2oCQ6m85dCxLPYCw48eOhhsJQf3kox4hQKM0rHiNBGNAEd7YGPUbxiZFl9SM8Rt760HM2azzo6mGfyYKVZq5noU8RYSScHgTDaR+/S8a4SQAUfRl2HMjM74ItDkp3woFlEY+mpKhreeu52WCZCpYJgBsaX29xu9oQRgnOlo9qmEhGJYRXhlXADgqjFDNYjY+hJF8LwsAmKIxsfkMYJRuen3CPUfCvrlsNdlttxJgcoCuPkVezYEWOBIkmIoyE04Mx4+Hsc8Dv5/xs9b+15ehWlWcE4EiEGUYi9arIrfvp6epaVtbG3JoGTqMsgOuFFrfrjKPQ4ts4ELtJGB0M9VWEhdKaPEYSShOEgUxtLZjwYjG23admGjs76lWMrdYZT0rQY+RRfS6bk3hsBAJqAfJqVgmlRRkRRsLpwzfVMR4zDqxV9YwCdax/f3XT/Vn3KpGz/2MobTr1Pi1NXcvKWkTZmnDeBGhGTaPDEbdqjXzutoWRCu2Fe4wqW/EYiTAShIFNbS3YaAqRZWYlqYYhjOqdsU3CyPAYuewO4rHj01WtM6/JioVW3M9CnyHCSDh9uOJaSEzCeuwIpoTBAHz5wjtN91OHw5grVXvVY6HuoDDyeJpVvw7HnKOOCQF1floYHQsj5TGqooAAPnw6VBsaKDlCGEkoTRAGMjU1YEOJIL9mIS1FLQqBoDAKzzEKCiObgzisBAIqlh/QnGjypzmqyL++cPrgdML13wRgSoIqm3h81crIMef8UF23vBAq+BgTo34ATkYWqG42/y3q2vhShGup3gilNd+RFiSOLCw4CeCllqNUh+mfJAmlCcJpgxJGRu6QLSFUvsNrfOOqjYlvKYwcMSRgJ6CrUJrfJInX0UaEkXB6ceudAMysLwLAUbIdr6epoixD56qCj75G2PB0qDszU11LS9uZ23EVYAffbvBtDXU3eNQ1tg1hpGEiiWGAyjOqNPRPnAmsmniMBOF0oboa7IYw8ljjQwVffYYw8sfGYw2WunerZOt6u5ME7OiBCgB0OUA26ogwEk4vxk6AmbMZrPnRseDQG1n5SlhhRk2DOfep9ro/g1+JpowM1XXiRDtzmxJVwUcAV1M9pKDHKMbW9qPJhjCq4hBVhv4J7k6RHCNBOD2org7zGFniQx4jvU71aXFhoscQRg2OGBKwga5KgeimxL4zWGgVEUbC6cetd2LSYKhD/e+99qV3Iu9PvAFi06H6KOx6G2jyGLUrjAAcwWKPL4OuhEzQY+S0tv1Yk8coTBgZLnUJpQnC6UF1NdhNSvCEe4wwhJE5PkwYNapTq102lXxNwDjF2pTUR9YKbSHCSDj9uPI6iE9grEkplrINX0XetzpgplH3aO3jAGRlqZfFxR3M7bgEtHgIHAXvGkAdCQLgbMdjFBRG1RymMqDyk4IeI0voSBARRoIwUGlsVBs47BYljNy2hNCaoNUrYWRLbPIG6Y1VgNqploAdzRBGmpbWd0YLrSLCSDj9iI2Fb9zMMMODE1+xl5qKmsgxZ90FJjMc/gJKtpGdrbo7FEaaw8g1AlyvAE3CyNGOxyiBHDQseKmn1tiWmxjyGEmOkSAMdIKHUNstSuB4rXFoRj6RtU6tP46EhNB4f6MKndU7YknCjtmofG0yZfSNwUKbiDASTk9uvZM0M8RpYMHHJ39rFk5LHAzjrlbtNX/qvDACcFyvro3/BN2P2zgQ1m5p+xETVhLIAcCtFSgTQjlGEkoThIFOUBjFWFXDbzMSjHw+bEbla2eYMPIZwsjtiMWBBXNAjTGbMvvEXqFtBpQweuSRR9A0jfvvvz/Up+s6Dz30EIMGDcLpdDJ//nx27twZPSOF/sGkqWhTpjPccGVvefODlmNm36uuW18kL0MtUsePd2Ju+4WgpUCgFDxfNAmjdjxGAEnkAxAwKWGU0MJjJMKot5C1Q+htgsLIaXiMAnYjn6iuqThafGJLj5HuSAK9qVq2xTSo120V2mfACKMNGzbw1FNPMWnSpIj+Rx99lN///vc8/vjjbNiwgaysLBYuXEhtm5X6hDOGW+8MhdPqt61peT/vXMicCF4X4z3PAXDsWCfm1WzgWKLaja/hMYSR1dzmEwAkMhQAs/kIAAmSY9QnyNoh9AXBQ6gdmmpoMYYwqq4CoMHuJD1866pLjTM5kyG4VR+wabl9Ya7QDgNCGNXV1XHzzTfz9NNPkxw8Ch31je+xxx7jZz/7GVdffTUTJkzgueeeo6GhgZdeeqmdGYUzgmtuJC9eldZPdBVStLcw8r6mwax7AMgufAKNACdOgNfbfKJWcFyrro1v4ver3KCOhVGeetRyGID4Ztv1RRj1PLJ2CH1FhdI22PUqACyxxnlnNcqDVBWXREbYGmFyGeMcKWBUvfZoVuxa0/+nQnQYEMLonnvu4dJLL+XCCy+M6C8oKKCkpIRFixaF+ux2O/PmzWP16tXNpwnhdrupqamJ+BFOQ+ITSLzmejLMoAEfP/HPlmMm3wz2BCxV+1k88lN0vZN5RvYFoCVB4ASjUr4EOi+MYizFWDV3SBhZJPm61+jJtUPWDaE9gh4ju7G7zBHcgWZ4jKpjE8kIy0M0N6r/f6zOVPyBEgA8Jht2kvrCXKEd+r0weuWVV/j666955JFHWtwrKVH/M2VmRiarZWZmhu61xiOPPEJiYmLoJzdXXJenLbd8JxROO/jhhy3v2+Ng2m0A3DfrSQCOHu3EvGHhtFmD3wQ6FkYOUrARj6YFGGw/GuYxUg+Kx6hn6em1Q9YNoT1CHiN/FQBxKUoYBQxhVBWf1CSM/D5sjSpka3em4wuo8LrbZMeKHAkSbfq1MCoqKuK+++7jH//4Bw5HGyd0AlpwT6SBrust+sJ58MEHqa6uDv0UFRX1mM1CP+OsOQw2ihTZD60lEGhFfJx1FwAX5LzH4PijFBa2HNIqjmsAOCfnTTQtgLmDT5OGRgJDAMi1FxJvCCmLJF/3OL2xdsi6IbRHuYqG4fBVAZCcoUJiDRXKlVQZl0xm8MuTUcMIIM6ZiS+gvo35THFotP23S+gb+rUw2rRpE6WlpUyfPh2LxYLFYmHlypX88Y9/xGKxhL7tNf+GV1pa2uKbYDh2u52EhISIH+E0RdPIv+tuzIAp4GLDh60kYWeMg6HnYdH8fGfK3+j03zv7haDFkR57jJmDN3QojKApnJZrLyQuWONEcox6nN5YO2TdENqjuTDKykkFoM6IsdUnJGMPrhHGAdZ1jhiSzPH4A2rXh98k/0/1B/q1MLrgggvYvn07W7ZsCf3MmDGDm2++mS1btjBs2DCysrJYtmxZ6BmPx8PKlSuZM2dOFC0X+hOx3/oeQ4xw2obHnmx90Nn/AsCdU57maKGvcxNrDrCrs9OuGf8Gpk580Us0PEZD7EeIbZFjJMKop5C1Q+hrlDDScXhVjlFefjoALkMYeRLDkqqDwsgZRzIOdCPHKGCSxOv+QDsl6aJPfHw8EyZMiOiLjY0lNTU11H///ffz8MMPM3LkSEaOHMnDDz9MTEwMN910UzRMFvoj6RkkZg+DwkN41i1tfcy4q3GZ0hkcf5yMwx8AV3ZubsfV0PgKS8a9zXb3f0MHbvBgKG2wvYg4I9daPEY9j6wdQl9TXg4OqjHp6oM9aqwK4XsMV5I/OTU0NtBQhgmojk0gFScE1CGNujm9b40WWqVfe4w6wwMPPMD999/P3XffzYwZMzh27BiffPIJ8eGH9QlnPLm3fQcAV10ZdSfKWw6w2CgZdDsAc51PdX5i+2I8fhuj0vYTb9nd4fCgMEq3luIwNaq3ll1pUUHWDqEnKSsDp01lYHssMeTnqO36eqVab7TklNDYxnq19bU2Jp5kHJiM7fqaKbsvTRbaYMAJoxUrVvDYY4+FXmuaxkMPPURxcTGNjY2sXLmyxTdFQZjyi58Qo2n4gHU//X+tjglMvxOAczM+Qq840rmJTfFsOq62gg92vt3hcDsJ1PgSMWk6mkklXIrHqG+QtUPoTcKFkcuWjNWIx2iVqs+a0uQxcjWo0FljbBIWTJj9KtxmNuX0ocVCWww4YSQI3cFkteJIU4nPZe+/3uqYQRNH8tnhBZg0Hdeqv3d67i+LVNgt2/F2h2P9Ohx1q8XPb1JZ3pJjJAgDG7cbamvBaVOen0ZbUuietUr1OVKaPEaeeiWMfDEqp8gaUFv3LaahfWCt0BEijIQzhsRL1OGvFZUn4FjLrWdOJ7x+WHmNLFv/DoHOhbbWHL0cgBTbBvC3Xx3SpcMxt6p/4wl5jKSOkSAMZE6eVNdYq2q47U1J1DGVZQDEpzflD/nrVU5RIC4D9EasxjlpNvPIvjBX6AARRsIZw4KfqeM/Sv1w/Le/bXXMHtMSyhtSsLmOwv42ErWbUdmYzbqis9QLdyuH1YbRGICjHuUxcqGEkZyVJggDm9JSdY23qobPkRS6l1ilhFFyelqoT6tT40yxmQT86kuaHxNObXgfWCt0hAgj4YwhZ2QuukN9azvy0vPQSrHHnKEOnt/xTfViw9OdmtekwXt7lNeIxnfaHevS4bgRSqvVJMdIEE4HgsIo1lRmNJTHKFDfgNPtAiAjs0kYmetVeM0am4U7sA+ARrMDm5bYRxYL7SHCSDijMM1QZ2MdraqC1V+0uD9sGPxti9rBxt73oe5Eh3OaTfDu7ivUC/dnoLvaHNsYgGOGx6iOYgL4JcdIEAY4J4xlwqmrUJrFqFlUVmqE1qw2MhPjQuOddUpAOeMG4/XvB8AjVa/7DSKMhDOKs267DoBDXvC98LcW90eMgF1l49lVezYEfLDlHx3OaTHB9hMTqfflAC5wL29zbKMO5d40PAEbOj7qOSGhNEEY4ASFUYxPuY7i0tQOtJMl6nV5cgbWYAXYQIDY+ioA4uPz8AUOAeAzS3HH/oIII+GM4oJvXoxXs9Oow9E3X1NbScIYMUJdn9/5LdXY+H+g6+3OaTEDaBTWX6o62skzcuugY+KkZzAAtRwLhdKkjpEgDExCHiOv8hClZKuwWdUJJYxqUjJCY/2NFVj8qrp+Smweul8dzug3NY0RoosII+GMwmqz0pAzHYBD9R54558R94cbuY9PrroB3eKEk7uhaF27c1qMT1FBjToeBPcHbYopt9Fd7g0Ko6NhHiMdnfZFmCAI/Y+Qx8ijcocGD1W5jPVG8lFjStOOtOrawwDUOmNJsiRAwNjJah7UN8YKHSLCSDjjGLboIgAOeIBXno24l54OCQlQ406gOucbqvPrZ9qdz2YUcjtSuwCwg/8I+Pa0OtZj6J5KQxjVcTy0XR8knCYIA5HiYsAGcS5Vn2jMBKMkxwmjXlF6VmhsdW0BADXxaZjRMPuVqjKZ8/vQYqE9RBgJZxyX/OBmAIr9ULf6Kzh0IHRP02DUKNXeYb9DNba9At62E6qDwqjeGwP2+eqF+8NWxwaFUbVPfTus5XjIYwSSgC0IA5Hjx8HidOHw1gAwctJQAPSTSvRoGU3CqKFWhc5cCcqLZDOqXlvMo/vKXKEDRBgJZxzDJg2nyqm+0R300sJrNNKosbamZB4kDwV3Dex6q8357IYw8vgA+8XqhfujVscGhVGttynHSISRIAxsioshzqFEkM9kJz1X5QvZTiqPkSOrSRh5a1SZDm98Jrrux+FXeY520/i+NFloBxFGwhlJ/NS5AOz3AK9G1jQKeoz27jPB1NvUi6+fbXOuoDByhwsjzxcQqGsxNiiM6gyPUSMV6DRiMrbpSgK2IAwsXC6oroY4mxJB9fZUTCb1pzXWEEYJmZmh8XrNMdVIGIQ7sA+TkVnoNIsw6i+IMBLOSM6+5WoADnghcLQIvmraYh8URvv2AVONYo8HP4PqY63O5bCqa6MXMI8Ecz7gBc+KFmN9hjAK6HHYUKe411EsRR4FYYByLKhz7McBcBlFZKv8kF6uEqvTcpoSqy01qs+akEejfysAjaZYTFpMX5ksdIAII+GMZOEdl9OoOXHrcMwHvPJc6N6YMeq6Zw+QMgzyzgU9AFtfbHWuCGGkaWBfrDrcH7cY6zWEkUWDOJryjKxS5FEQBiRBYZRoUcLIF6tqGBV4YFCZ6nNmNwmjmGoVcotNzMfr3wWAW2oY9StEGAlnJDaHDXfOVAD2e4H33wjVNAp6jE6ehIoKmrxGm59rdRu+06auLo/RYVe73nC3PGvNZ1ytGsQbwih8Z5oII0EYWASFUVxAiSBTghJGhZW1xLuMcHpmNgANeEmqUVWvkxKG4/erjR9+cxZC/0GEkXDGMnyxygfa6bVAQ4MSR0BcHAxWudHs3QtMvA4sdijdBcVbWszjNDxGDUFhZFsAWMB/AHwFEWODoTQzEIdaLMNDaZJjJAgDi6Mql5pYrxJGsekq8brsqFJMDXEJalEBin0VJNdVAeBMHIrmPwKAbhnShxYLHSHCSDhjufQ+tW2/wuejNkBEOG3sWHXdvRtwJMIY4yy0LS+0mCfGrq4hYWSKB9ts1fYsixgblD1mLVwYlUgoTRAGKEVFgAZxbpU7lJmnPtc1hjCqy8wJja2o2Y9J1/FabBCbgcVveJnMo/rWaKFdRBgJZyxDx+dTFTsUUEnYrFoBReobXIQwAphyq7pufQn8vvBpiDVCaSFhBGBbqK7uTyLGBtrwGFkklCYIA5KiIiAGEhqUEMofp7w/nuPKleTLGhwaW1ulQmd1SVmgadh9qlK2zTypDy0WOkKEkXBGkzhjHgAb9QTV8U/lEWohjEYthphUqDsBhz6LmCPoMap3h3Xag8LoM9CbwmPBlkmDWFReQSMVOIw7PgmlCcKAoqgIiIOEBiWE8sYPA8BUrF6bBzUJI2+VCq27Ewfj0auJ8ascJId5Wh9aLHSECCPhjGbOberYj6P1Dfh1lDDSdcaNU/d37TIGmq0w8QbV3hK5Oy3OEEZ14cLIOhO0RNCrwPt1qDvoMTIBNuKxEgtALGqBFI+RIAwsCgvBFluLw1MNwIhpo3EFIL64CIC43LD8ocrDAGjJQ6n3b8SEjh8TFvOIvjZbaAcRRsIZzQW3XkyDFosJH4exwsF98PX6kDA6fBjq643Bk29S111vgachNEe8Q11rG8Mm1sxgO1+1PU0epuCeNg3Q0EJeoxjUjjiPeIwEYcBQXw9lZZBoVyKo0RxH6qA0DnhgyAl19EeMIYx0dOxVapw9aThu/yb1jCVFrRdCv0GEkXBGY7aY8efPBGCNTeX88M8XSE+HtDS1O3/vXmPwkNnqiBBPHex5LzRHyGMULowA7Beoq/vTUFe4MAKIQ1XEdaLOWBKPkSAMHAqV9iHJpnIT6x1qR9o+DwwpVTc1QxhV0EhqpaphFJcyGr9vBwBec3Zfmix0AhFGwhnP6MsuBWBPufLa8NYr4PEw3qjQv2OHMVDTYJLhNQor9hj0GNU0F0Y2Qxh5vgJd3WwujGKNBGwnVYBs1xeEgcQRpYdIMikR5ItTVa/3NurklRg3B6tzGYuoIbOyFABLUj6a/yAAumVYH1osdAYRRsIZzxU/uoUAJqzeSsoS0qCiHD5fyoQJ6v7OnWGDg+G0/R+DS52KnWhU8nd5wBeuayxjwJQNuMGzttX3jjU8RjbxGAnCgKPAKFOW4FXCyJqqQuNHT1Y0FXfMyVN9vjLSqtUuNFJHYPGpsJrZPLHvDBY6hQgj4YwnMy+L6sSRAHwRqxYxXnshJIxCHiOAzPGQOQH8Xtj5JgAJjqbbNa6wsZoWlmf0eavvHQylWQyPkeQYCcLAoaAAsEFig/IOpQ5RO9BqDx8GoDE9C5xOAKoqd6saRjYn/tgkYoyt+nbLzD63W2gfEUaCAKTPVgJm4zEjnPbxu0zOV7tMIoQRwKQb1XXbywBYLU3HgrQIp9kXqKu7dWEUGyGMdPEYCcIA4tAhIAGS6g4DkD0qH10HvVC5kgK5Q0NjPRX7AXCnDKWWAmL9agOHzTKjL00WOoEII0EA5n9XbcU3VR7CPWw0uN1MOqKOCCkshOrqsMGTjG37h5arukZAovpSSFUDkQQ9Rt71EKgP5RYF5U8M6YAJDR8OGsVjJAgDiIICILFJGA2ZNJqjPsg+roSRfWg+oHakmctVcUctdQQu3xo0wKfZ0EySfN3fEGEkCMDsK+dSZ07Gio9VqWMAiP3oRXKMav4RXqOUYTB4JugB2KHEU5KRZ9RCGJnzwZQLeMG7JvSBCyZhm7DiJAWAOOok+VoQBgi6DgcOgCW+MVT1euyciex0w/BjKrHanD8cgDJcpJWpMY7UcXh8GwFotAxWIXehX9EtYbRgwQJ++ctftuivrKxkwYIFp2yUIPQ1JpMJ0+hZAKw4ZLiHvlrO/NFqMdu+vdkDk65X1+2vApDcljDSNLDPV23PCkzGGqiHDQmG0+Kow3Mah9LaWzcuu+yyKFgkCN2nvBxqaiDJZlSzNjnJGT1ECaPjShgxVAmjw1QzqFydpWZOGw0+VTk2YJHCjv2RbgmjFStW8Pjjj7NkyRLqQ9XvwOPxsHLlyh4zThD6konXXAmA6+BWAmedA7rODTaVR7R1a7PBE65T1yNfQvWxkMeosp6W2Oarq3tF6APnD1NGkcLo9PUYtbdurFq1KoqWCULXOaAiY6RYlTCqd2RhMpnY6YZhxw+pm3lqK/5hqhhUpoQRaaOw+g4DYLZM7kuThU7S7VDap59+SklJCbNmzeKwkYEvCAOZy39wA14sxPkr2TnibABmH38JaMVjlJQLQ+Yof/rON0hRJ3tQ0aowUuex4V2PVVfb1sL9QmeKMAJZN4TTh/37AQ2SvUoh6Ulqq/7uWg9DSw6rQfnKI1TkKSG9ugwAT9ogYn2qbbPM7lObhc7RbWGUnZ3NypUrmTRpEjNnzmTFihU9aJYg9D2JaYnUp6s9+h/uqgCLhZSjmxlj3s22bRBoHuWacK267nitfWFkHgamQYCXbH0d0NxjlGFc6097YSTrhnC6sG8fEAfJtSpsFp+Ti1+H+sMFmAMBAjGxkKUSqxvKdmLSdXwxKVTFlBPvUwuF1XpWtMwX2qFbwkgzksXsdjsvvvgi9913H4sXL+aJJ57oUeMEoa/JWbAIgOINq2HBYgBudb5EbW1TldsQE9QBtBSuIs+qcpHKWxNGmga28wAYpH8BECF/zhSPkawbwunEvn1AEqTWqG346aNHctADeYX7ANCGjQRNowEvjpNqDOmjafB9hQkdn+YA0+DoGC+0S7eEka7rEa9//vOf8+KLL/K73/2uR4wShGix+N6bAUisOcDJcw1hFPsSoLNlS7PBiTnq/DRdZ0aDKvZYXtfGxIYwyg6oHDxf2EdIbdkPeox8PfFr9Etk3RBOJ/buBZIgpVaF0vKmjGObG0YVGcJouCoae5hqck6qL06WtHH4vRsAcFuHyo60fkq3hFFBQQHp6ekRfddccw3r1q3j73//e48YJgjRYPw5k6i2Z2MiwNvbKiAmhlzfIc6yrG+ZgA2hcNqYCrVtv21hNBeA9MBaLHgj5I+TNMCEmQA6tT32u/Q32ls3/vznP0fJKkHoOoGA8hiZEzwk16pE6/HnTWNzI4wuMk6dHqHKfhygkiGl6vgPMsdj8qkzhnTLpD63W+gc3RJGeXl5Ibd4OOPHj+e22247ZaMEIZrETFHenT1LP4XFaqfajbaXW3qMAMZdDUBG+RdkmE5Q1pYwsowDLRkLDUwxb8Eb5jwxYcZCEgBm42iQ05H21o2bbropChYJQvcoLASXC5LtBzHpftyagxHTRrGlEcYc2aMGjVTC6CCVDDmhhJE/cyQxXuU9slnPiYrtQsdIgUdBaMbZt1wDgPXIRrxXKI/Q9fZX2ba5lfyf5DwYPBMNnascb1HWlsNHM4FNLYRzLV9GCCMAG2kAmKlu/qQgCP2M3bsBDVIDyjvUEKO26m9uhDGFkcLosLeE7PISAKoy4kjyqs+4CKP+iwgjQWjGRd+5kkbNiVNvYFmBh0BSCtmmEoYeX0lFRSsPTFBC6mrHm5TVqR38rWI7F4BzLV/haTbGYQgjKzU99FsIgtBb7N4NJEBarRJGprQcSnzgLi8no+qkGjR8FA140U7uwazrBJzJVMfsx6570TGBZXz0fgGhXUQYCUIzbA4bntxpAKx5+R1Mlyvhc4P9lXbDaefblhMbqKTa1dbE6hviOZZVeJuppxhjy77tNM4xEoTThZ07gRRIr1IVrJNGjGaTC8YXqPwhhgyFuDgOUMnQErWd1ZQ1Ga/vKwDcllzQHFGwXOgMIowEoRVGXnopAHWbv4Cr1KGx19jeYOtGT8vBaSMhcwJWzcdljvcpbcvpY51BACuZplKyOBhxK9bYmeakrSQlQRD6Czt2AMmQXq2EUe60SWxshPGHDWE0WnmD9lEREkZkT8bs3QaAbp3SxxYLXUGEkSC0wmU/vIUAGkmNx9hlSqMuJpNUUwW+T5e1/oDhNbra8SYn2hJGmoN683QAJpoij8CINzxGMdThPY3PSxOEgY6uw65doCUHSK/aDcD4+TPZ5IIJh4zTpsc0CaP8YiWMvJkjiTUSr63WeX1vuNBpRBgJQivkjMylOl4dAPnxEy9TNkclYY/a9WrrD4y7CoCL7Espr2h+kmwTDRYVTptsWhPRn2AUeTwTql8LwkDmyBGoq4NE5xFsvnr8mJk4byrrXTChoEkY6ejs1csYVqzOUqvKjifFUwWARRKv+zUijAShDdJmLwCg6LOPif+mCqed73qb+vLGloOzJ1NqziNGc2E73IZXCfBa5wAw1RwpjOKNUJoNL/WSgC0I/ZZt2wAnZLiUCKp1ZHPS5uCET2fSQRUqY/xkTtCApeoo8a56dLOVytRj2HUvAcxglcNj+zMijAShDebdqcRQbOkOLDPGcZwcErRaip77uOVgTWNHwhIAso+/1eacAas6NHKcaTsEmgSQjVg82ACo4WQP/QaCIPQ027YBKZBRpYSRKTOf9S7IKT1Kcl0VWCwwcgx7KGP4ceUt0jIm4NPXAuCxjgTNHiXrhc4gwkgQ2uCcq+dRZ07Cio/3n3iNddnXAWB6t/VwWlHWEgBGVr4H/taP9rCasynwD8Wk6eie9RH3XMQBUMuJHvoNBEHoabZtA1Ihs3I7AMmjx7LOBZMOGd6iEaPBbmcP5Qw/rqpi64MmY/OoxGzNOisaZgtdQISRILSByWTCNFp5eLa9/g4nz7kegCG734OGlnlE3sHnUh5IIS5QAYWrW53TYYK1frUw+r1rI+55iAegQTxGgtBv2bwZSIPMCnVG0LA5M1jTAFP3bVYDJk4FYCdljDymdp/WDx5CircMAJttYZ/bLHQNEUaC0A6Trl0CQGDPGjIXT+ewPw+Hvx4++6jF2KxkCx80qm3+7Hm31fmcGqzxKbGle9ZF3PMawshFWQ9ZLwhCT1JTAwcOgCXJRVq1qnA95bJ5bGyEafu+VoMmTqUOD4V6FSOOKmFUPshKkleFzjWj0KvQfxFhJAjtcNn3r8eLhTh/Jaby1fzTo8Jpvjf+2WJsdhK841Znq7H7nVZLYNs1WOdTHiOzd23EGD8JALgp7+HfQhCEnmDrVlTitXcnJj2AS4uleswI3DpMP2B4jCZNYzdlZFacIMFVB2YbNan7MaHjNaWAKTeqv4PQMSKMBKEdEtMSqU+fAMDW117k83gljLRP3oP6+oix2YnwiXsRbt0G5Qfg5J4W82ka7A1Mwa3bMOll4D8UuhcgEQAvlb316wiCcAoEw2hZ5UoENSblsabRRHJNBXnFh9WgiVPYQRmjjh4AQM+ejDmgxgdsZ6lFQOjXiDAShA7IuWARAGVrPsc2czoF/qGYPa4W4bTMRGggnuXu81XH3vdbnc9qsrHZr/IQ8DaF0zRDGPlp7UA2QRCizcaNQDoMKt8EQNzICXzZADP2bFQD8kdAYhLbKWVM4T4A3LnjSPGoQ2SttsXRMFvoIiKMBKEDLv7BrQAk1hxg/PBSXvOoYo+881rEOLMJshLhPfflqmPPe63OF2uCdb6z1YuwPCMTyQAEqEKnrZNoBUGIFhs3AhmQXa7yifLmnMVXDTBjryGMps6kHi+HqGR00X4AKnKTSfWoLzsm2/woWC10FRFGgtAB42ZPoNo+CBM6HHiZ19yGMFr2fovdaYOT4X33ZerFkVXQ0DJfKEYLE0ZhHiOrIYzAh0eKPApCv6K2FnbvBVOKl8xKtTU//dLzKfPDrD0b1KApM9jFSSxeD8OM0Fpl9gmsuh+/FguWCVGyXugKIowEoRPETJkLgGvb22z0z6DAP1SJos8jiz3mJEOhP4/yuImgB2Bfy2KQcSZY7z9LvfBuBl0dTOvAgQt14naD7EwThH7Fpk1AEmTU7cDid9OIg2OTJ4OuM2e38QVn6ky2UsrIowcwB/zo8dkEnKoQpN92FmjmqNkvdB4RRoLQCWZ9U3mJHEc3kJ/n43XPN9SNd1+PGJdjOH22xxrb9vd+0GKuOBMcDAzHTTLgAZ8qFOfAQj2xgGzZF4T+xrp1QAYMPqkKs7pSRvCl20xuaRFpZcWq4vXk6WzhBOMPq8Nl3UMnkeZVBVuttsuiZbrQRUQYCUInWPSty2nUnDj1BialrGgSRkvfg8ams9NyUtT1S81YBPd/3KIKdqwJQOOkaabq8Cg3vAMLDcQA0CBb9gWhX7F2LUoYlSlhlDB2MivqYdZOo1Dr+MlUxGgUUsO4I2pHakVeOmke9VnW7BdEw2yhG4gwEoROYHPY8AyZDkBq+eus953FSXsu1NfB8k9C44IeoxUNs8CZAq5KKIo8MDbO+NQdwxBG3pbCyCXVrwWh36DrhscoE3JOqrBZ0gXzOOGHuTuNz/eMWWylFJPfz7hClXhdObjMyC9KAMvEKFkvdBURRoLQSUZecgkAccVLAY13/VerG++/ERqTa3iMjlSaYZSxNXdf5Lb+eONTdzgkjNSOFmdEKE227AtCf+HwYSiuBYe1ivSqXQC4LrsIgIW7VqlBM2bzNSUMKy7A4W5AdyRConFWmn0eaPLndqAg/6UEoZNc9sNbCKCR4j1CknaEZ8uvUTc+fhc8KoF6iCGMiiogMFIJKfZ+GDFPgvGp26/PUA3fTtAbcEaE0iTHSBD6C6tXA5kwuGwdGjq1llQ2ZA0hxlXPyL1G8cZZ57CZEiYWGMJp6AQyvcrza7FfES3ThW4gwkgQOknOyFyq44cDMD3hHVb75tCYkAnVVbBqBQCDklRhW48PTmZdpF6UbIXqY6F54o2NKcf0QWDKAvzg3RIhjFySYyQI/YZVq4AsyC1VYTM9dwLL6+Gs3esx+3wwKIeDOfHU4GHKISWMyvMTSfFWqQnk4NgBhQgjQegCqbNUVes899sEMLNt8BJ14z0VTrNalDgCOOJKgxxjW35YOC3oMarxa2A1vEbejTixhgmjMinyKAj9hCZhpMJmtvPmUhOARdu/VAPOOodN2gnMfh/jjB1p1YNLMKHjM+eBJS9KlgvdQYSRIHSBed+5HoDsxtVYaOQNTzCc9g74/QDkpaquI+XAyIvVi/1N9YyCwqg6AFhVQjfeTREeIz8evNT15q8iCEInqKiAbYfAFOcLeYxqr1C7Ti/bvlINmjOPjRQzqugAdo+LQEwyMUkqjGaWMNqAQ4SRIHSBc79xPnXmJKy4GcoK/rZnPnpiEpSegA1q0YwQRsEE7APLwO8FINEIpVX7CRNGXxODlQBmGrEDkmckCP2BoLcoq3wzNl89jZqTjZNmYPO4Gbt1NQDV585mHxVMOaAqYtcMH0W2RwkjzSH1iwYaIowEoQuYTCa0keo4j9Ha+1TUWKmeZZyNZoTThqapl4fLgMEzICYV3DVQpOqdtOox8u3CaVTAljwjQeg/fPEFkA15J1TYrCF7POs9Zs7avR6LuxHSM1g/MgGAWQdVflFZfgBnoJGA5gDbedEyXegm/V4YHTt2jFtuuYXU1FRiYmKYMmUKmzZtCt3XdZ2HHnqIQYMG4XQ6mT9/Pjt37oyixcLpzsSrrwRghP4eoPN11lXqxkdvg66HPEaHywCTGUYYiZf7lwKQFPQYBQBzMAE7gNOrFtXwPCOh+8jaIfQEy1cAg2BoyQoAfOedjw7cuO1zNWDOfNZrxcS66sgrUoUdfYONLzW280Fz9LXJwinSr4VRZWUl55xzDlarlY8++ohdu3bxu9/9jqSkpNCYRx99lN///vc8/vjjbNiwgaysLBYuXEhtbW30DBdOay677wZ8mEmmkDT28Fb1ReB0QuFh2LGV/KDHKOjwGanqnYSEkfGpq/Ib963TADB7t2DHHCaMpJZRd5G1Q+gJKivh60OgOfzklXwBQMkVKmfo4q8/A8A773w2c4IpB7Zh0gO403PIcKjPrslxdXQMF06Jfi2M/vu//5vc3FyeeeYZzjrrLIYOHcoFF1zA8OFqy7Su6zz22GP87Gc/4+qrr2bChAk899xzNDQ08NJLL0XZeuF0JTkjmdrUcQCM5EO+2hQD8xepmx+8FRFK03VghHHv+CaoLwt5jGoC4NcJCaNgnpGE0k4dWTuEnuCLL0DPhuyKzTi81TRqDlZMmkVsQx15W1VO4Y7zJuHBz7n71GGxZSNTSfFWoaOBXfKLBiL9Whi9++67zJgxg2uvvZaMjAymTp3K008/HbpfUFBASUkJixYtCvXZ7XbmzZvH6tWr25zX7XZTU1MT8SMIXWHQvAsBGMUHbNsG7guNcNqHb4VCafVuKKsFEgZB5kSlkg4sCwkjUOKoSRhtIkaKPPYIvbF2yLpx5vH558BgGFq8HICaoVOo0Cxcuv0LTD4f5OWzYqgFLRBg6r4tANTnqf8vAtbpYM6KkuXCqdCvhdGhQ4d48sknGTlyJEuXLuWuu+7iBz/4Ac8//zwAJSUlAGRmZkY8l5mZGbrXGo888giJiYmhn9zc3N77JYTTkkX33AzAEL7EGqhhY+plYDbDru3Yjx1isHFmWkFQ2wTDaQeWYdMgRlMvK/2AZap64dtJnI6E0nqA3lg7ZN0481j6GZAJw48vA6BmoSq/8a3NKiweOO8C1nOc4ccLiKkrI2BzkpCuQrFmxzVRsVk4dfq1MAoEAkybNo2HH36YqVOn8r3vfY8777yTJ598MmKcpmkRr3Vdb9EXzoMPPkh1dXXop6ioqFfsF05fpiyYTo01AzM+hrGMr3amwqy56uZH74TyjELCKJiAfXAZ6DrJhteo0g+Y80BLArwM9R2TUFoP0Btrh6wbZxZFRbC3Giw0MqRE7UjbeqnyDM9Zo+qSFVw4m3q8nLdnKwAVIwaTETA+tyKMBiz9WhhlZ2czbty4iL6xY8dSWFgIQFaWclM2/4ZXWlra4ptgOHa7nYSEhIgfQegq9onnACrPaM0a4JIl6sZH7zAsXTUPnTQGD50LFjtUH4WTeyKFkaaBdQoAed6CkDDyUocfd1/8KqcdvbF2yLpxZrFsGZADQ0q/whpopM6axPbhExhTfIj4gn1gsfDJ3HwAzt2jzkurGe7BhE7AMhYsI6NovXAq9GthdM4557B3796Ivn379pGXp8qr5+fnk5WVxbJly0L3PR4PK1euZM6cOX1qq3DmMe169e1xJB+yZnUAfbHaxs/aLxnvUK6ikDCyOiHP8CgdWEaKIYwqQjvTVDgtx3sAL1bACojXqLvI2iGcKh8vBXJg+LFPAKiYPg80jXs3K29RYMZsvkyoJq2qjLTiveiaRkyOCwCT47pomS30AP1aGP3whz9k7dq1PPzwwxw4cICXXnqJp556invuuQdQbvD777+fhx9+mLfeeosdO3Zw++23ExMTw0033RRl64XTnYvvuhoPNuIpwXRyK4cDQ2H8JAgEOOfwhwAcLA17IBRO+7SlMLJMASDTdwDQCKC8EZJn1D1k7RBOBZ8PPl4LxMOIo+qcw0OXq633l695H4Bji86jDi8X7PoagOq8bDLMRuxchNGAxhJtA9pj5syZvPXWWzz44IP86le/Ij8/n8cee4ybb745NOaBBx7A5XJx9913U1lZydlnn80nn3xCfHx8FC0XzgRiE2JpyJqErWQjo/iANWumkr/4Sti5jTFb3oGEb3LwZNgDw9VONgpWkDHfC1gpD3mMpgCQ6t0Huo5Pi8dGuXiMuomsHcKpsHYt1CZBQl0RmVU7CKCxbv5lxLvqyVmrCjt+etEEABbsVMKoZiQkoROwjMNkHdfW1MIAoF97jAAuu+wytm/fTmNjI7t37+bOO++MuK9pGg899BDFxcU0NjaycuVKJkyYECVrhTONvAvUdu+RfKDyjC5W4bTk9Uux+xspqgC31xicPcU4HqSWSeUbAJqEkWUMYMOm15HpP4mHWEBCaaeCrB1Cd/nwQ2AIjDymvEUncyfiSkrh/h2fornd6Hn5fDTKSmJdNVlHVH6RI68RAJNDPI4DnX4vjAShP3PRvWoRzGEd65aXwuRpkD0YU0M9l1QvR9fD8oxMJhi2AIBJRz8FoCwojDQbWMYDMNR3mEYRRoIQNd5aCqTDyKIPACi8SFW7vmn1OwAcWzSPRi3ARTu3oOk6NYNSSDeqXeO8PhomCz2ICCNBOAXGnj2eKlsuGjqNuz6lvkGDi9ShsjdUvQc0yzMafgEAI4rUcQIhjxGAdTIA+d4j1OMERBgJQl9TUAB7XGDxuUKJ1xsv/gY2n49Ry98F4NNLpgBw4Q7l+a0bbUUDdOtZYBkRDbOFHkSEkSCcIrFT1S6mEfpHbNxISBgtKHwPdJ0DrQijzONriPHVU+YLu2eZBEC+9zC1qIMnJflaEPqW994D8mBY8WdYA43UJGRyYvQk7tv/FaaKcgIpqbw7O5Ok2ioyCzYCEJPfAIDm/GYULRd6ChFGgnCKzLxxCQAj+JhVX/lh7gKIiSGt5ihTqzez/0TY4JThkDQEU8DLuaVfcbI1j5HvCJXYAfEYCUJf89p7QCaMLlTeoYILrwRN4/bVbwFw9KJ5+CxmrtqxDU0PUD04kaSYWnQsEkY7TRBhJAinyEV3LqGRGGIpY/Xrq8DhCB0qe9mJ9yM9RpoWyjM6/8TyphwjCAmjLH8proByJbmoQCfQF7+GIJzxlJfDqqOg4Wf0kbcB2HrxN3DoAcYsfR2Ajy5Vn9P5W78CoHG0sbnbfjGY0vrcZqHnEWEkCKeII8ZBbfp0ANw7PkXXgUXqVO3LT7zHvhPNHjCE0YITn1MbAHdQ95hSCZgGAZDsOwlo6PhxU937v4QgCLz7Luh5MKR0FXHuk7gcCRyeOZ+fHFqNqeQ4/vh4lp4/gtzyUpKLtqBrGon56mw0LeZbUbZe6ClEGAlCDzDiYiV2hvqWsn8/sPBSAGZWbcRzrLhpyz7AsPMBmF6xiQRPdUQ4TbOqPKM8bxE2KfIoCH3Ky28BWTD28BsAHLjgCgJWK3esfA2A/Zech89u5aat6my0qvx4HE4PuikN7JdGy2yhhxFhJAg9wKX3qW37g9nAh68fhcws9KkzAbi45IPInWmJOZA2CrMe4LzSLygNS8DWggnYviNYSAYkz0gQ+oLqavj8EGhagHGHVdhsx+JrScdP/kdKGL175RTQdWZsUbtK9dHqWc15G2jWaJgt9AIijAShBxg5bRRl5lFo6Kx9QW3T14xw2qUnPmgZTstXXqP5J1ZEJmBbJgKQ5y3ERCIgHiNB6AveeQf8eZBTuoYE13EaHXEcPGcR/7FvBdqJYjzJSaydP55zjxzBXn4In81MUm6Netj57egaL/QoIowEoYcIjDhHNQ4sV1cjnLbw5DIOHnVHDh42H1AJ2OEeI6yGMPIVgq6OpmgUYSQIvc4zrwGZMKHgFQD2XrgEn93BjZ+8CMCmK87FZ7Nw7ddrAagdHYvJBrptLljHRstsoRcQYSQIPcQ5t10CQJ7vc06UeGHSVGoTs4jz18PqLyIHD50HwJTKLVTVVTb1W8YQwEyc3oA1tDNNQmmC0JuUl8MXR0EL+Bl/6J8A7LjkBmbSSOpHKt/o3WtmEOtxM3S7KvroHKWOANFi7oqO0UKvIcJIEHqIq++7jEYSiKGc5x/5HEwmSs9SYil30weRgxOyOZE0GhM68YVhokmzU2EZAoDTqzxFIowEoXd5/XUI5MPQkhXEuUtxxSVxaPZCHtr0LtTWUJuTxa5ZY/jmtt1onjpcyXYcWR50LQUcV0fbfKGHEWEkCD2EI8ZBSYyqgr3j7Y8B0BapcNr0Ax+2GF+cq7xGmUcjvUlVlpEAxPhUxrbkGAlC7/Lk60ASTD7wAgA7L74Oi93Ghe89A8DS689FN5mYt3EpAL7xZtBAi7kTNEeUrBZ6CxFGgtCDxE5WSdUOQ+xkXn4hHs3K8Nr9VG7fHzG2ZogSRsOPrYzor7eorS6xvmOAeIwEoTc5fBi21oPV18BYYzfatstv5buuY9hWqLDZsuvPY05xGTFFmwiYNOJHNaBjAgmjnZaIMBKEHuSy+68EIDuwmUM7ColNS2BD1lwAKt+J9BoF8g1hVL4ZGpuKOLqNRM5EbyEAHmrx4+l12wXhTOTZF4B8dQSI3V9P5aChFE2dww8/ewECAfbPGk/xsCxuWr8KgPqRTogBzX45WIZG1XahdxBhJAg9yEXXjuYEE9DQ+ccvVdLmjrEqz8i28qOIscnJgzkQNxyzHoAjq0P9Act4AFJ8RzDrqjaKhNMEoefRdfjLR4Adpu77OwDbL7uZMXaNof/8PwA+vmEuaY1ecre8A0DMWJV0Tey90TBZ6ANEGAlCD6JpUJakPEGFy9W2/bKzlTDK3L4C6utDY7MssDJTjQ0UNIXTrOYRuLFhxUuq3wzIln1B6A1WrYITSZBQV8Sw4k8B2LLkdh7evwKt4ACNcTF8uWQO39u8Dc1TR2OqDfPgALplItgWRNd4odcQYSQIPUzGnAsBSC5fg9/nJ2XqGA4787D63PDV8tC4NDN8lXEeAL6CpgTsBM1BoTUHgBSvOktE8owEoef5w9+BLJh84Dk0dA7POA9P/gguffMpAJZ/4xx8MXamr1XeX9PEgEq6jv2x+hYknJaIMBKEHuaq+y7CQyxxlLHy1U8Zk63xYabyGvFZUzjNrMGubCWMrMc3gKcBgHjsFFpyAUjyqT4RRoLQs9TWwnt7QdMDTNurwmabr/oW9/hPYv3wTQCW3noBNx0swVJ2AL/NhG2UD92UCc4bomm60MuIMBKEHuac85wUoNzsn/7lXcYOgo8yLgYg8OlHKrHBwJ80lKPOwWgBHxxdB0ACtpAwivVJLSNB6A2efxG8Q2Fo8XKSGw7TGJfArkXf4Ecf/Q08HvZNHc6hycO4eJXKLfKNM4MNtNgfgGaPrvFCryLCSBB6GIcDKtPUtv2qTavITIAtQ87Ho1kxFRbAoQOhsYOsGl9mqF1rHP4SACcWjgWLPPrUIWuSfC0IPctv3wDsMHP3kwBsu+wWFqU6yPjHXwD48NsXsfBEHbH7P0fXwD7Ri67FQ8zdUbRa6AtEGAlCL5B/4WIA0lw7KDt2kiFD4vgy1RBAn38cGjfISgthpKFRaRkGgN1XjKYHxGMkCD3I11/DYQfEuk4wuuhtADZd+11+vfl9OFpITUo8Xy6Zw02rVEK2Z7gVEo3jP0xJ0TNc6BNEGAlCL7D4xrGUMQozfj740yuMCwunhecZDbLAl+mGMCpaA351PprXnEOD5sCEjzhfvXiMBKEH+eUTQDpM2/s3zLqfo5POJnXyZKa88EcAPrllARM8ZlK2vAaAfbIXHRvE3h89o4U+Q4SRIPQCc+bAQS4CYPvbHzNuECzNUK9ZtQIaVS2UQRbYmTSeOlsieOqhZCugdqYdtQxWbV8tLsrR0Vu8jyAIXaOyEj4oAFPAx8zdfwZg/Y338PCJLWhffo7fbOLDb1/Ed1d/geb34hlkgWzQYr4N5kFRtl7oC0QYCUIvkJYG1WlGnZMDGxmTFWBH/AROxAwClwvWfQXAYAvomonNGeeosUdUf2LYzrQEXx0BvHio7fPfQxBONx57Cvy5MLrwHRIai6lPSafi0mu57MXHAFh1+SxSUzLIXv88ALapPnSsEPfTKFot9CUijAShlxh90QJ82EgIlMK+DaBpfJy2SN38TOUZDVaFrVmZfq5qGHlGCdgpsqhaRkk+5V2SIo+CcGoEAvDHZYAJZm//AwCbvvFdHjRXYnrrZQDe/ZdLuXvdOkzuerypZhgKmvN2MA+Jmt1C3yLCSBB6ifmLEihECZ7tL71KghM+SjfCacbhlIMt6uUnqUGP0SrQdRLDhFGiT1XLbpAEbEE4JV57G6oyIat8M0PKVhEwm9l9/ff41j//F83jYffMUXgnjCFv1dMAWKf50TULxD0YXcOFPkWEkSD0Euee25RndPzLFYwbBJ+mXYiuabBrOxQfJ8UMDg02pM5EN1mhrgQqD0cIo1hfpexME4Qe4OfPAXY4Z9tvAdix+Hr+JS8B+3Nqy/6b917Jves3YGqowpdkgpFGbpElP4pWC32NCCNB6CXy86E8WR0PElu2kzEpLsrtaRwfMl0NWPEJmgY5Vmi0OKnNmqb6C1eRiJ1Scxoe7JjwE+tvEGEkCKfA+o1wwAYJ9UcZd+SfAHx963386L2/otXWUDhqMOULZpH/5V8BsEwPoJvsEPfzaJotRAERRoLQS2gaTLxgCrVkYcNDwm6VV7Qmzwinfb4UgFwjnHZs0BzVOKKEka6ZKDG8RsGdaYIgdI8f/hGIh1k7HsOs+zg84zyuO3sizqdUrtGb917J9zd+jbm+En+iCUaDFvsvYM6JruFCnyPCSBB6kbnnmTiISrgOrH4bgLcTjQTsLz6FQIAcIwF7T5aRZ1S4hkQcqhnasl8ntYwEoZscKoDVteBwVzF9v6psvf62H/Hg0v/DVFrCycGpnLh0Hnkr/wSAeXoA3RwLsbIT7UxEhJEg9CIqz0gJIfOuFQC8ziz0mFgoL4MdW8k1hNHGtNmqcWI7SY1uAA5bsgGI99WJx0gQusm9jwLJMHPXn7F76zkxcgKLL11I/OOPAPD6fVdxz8a1mBtqCCRrMAa02H8Fc2Z0DReigggjQehFJk2CEzEqzyjZVchgvQS3ZqNm2nw1YMWyUChth30QJA8FPUDs0a+xoIUSsCWUJgjdo7QUPjoOFp+LWXtU2GztHf/Kfyx/AXPxccqyU6i46iKyv1KeJNNZOrolE2J/HE2zhSgiwkgQehGzGabOzaSYqQBMKH4PgL1jjHDaymUhj1GhDxii8oy0IyqcVhQWSvPo1fjx9qn9gjDQue9R0FNh+p6niG0sp3LwUC687mpi//ifALzxgyv57tpPMLtdBNI0GAFa3P8DU1yULReihQgjQehlwsNpWfs/BOCL7IXq5tovyfO5ACjyArlGOK1oLYnYKbZkEcCCRffjDDTSKF4jQeg0FRXwzwNg8TVyzq7/AmDdHQ/wi0+fxXL0KOVZyeiXLSR1zTMAmGbp6JYxEPOdaJotRBkRRoLQy8yd2ySM0ou+AF3nc/8YyBoEbjdDN68CoNwPrpwmYZQcsOHXLLiMirvxkoAtCF3i3v+GQApM2/c0CfUlVGflcvEt1+P4318D8NqPv8FNX72Mye9DzwHyQEv4PWjW6BouRBURRoLQy5x1FhRb5uDFSZy3gszK7Ww/psF85TWK+3IZCcYn8UjqJLA6obGKoWUlAFQZxeUSfLU0UBaV30EQBhpVVfDqXjD73Zy7SyVZr7/jAf7146exlpZyYkg6WQvmEr9Vhbe1OYBjMTgujp7RQr9AhJEg9DJOJ0yd6eAw8wEYdnwZRyuh/myVlM3KTxlifEE9ErDC4JkADC/cA8BJi/IYJcjONEHoNHc9DP4UmLH3LyTUFlOdlcP1N12F+U9KJL35rzewaNnv0HRgJOgZZoj/XXSNFvoFIowEoQ9Q4TTlIRp59CMAtg+7QN3cvpnx9UrwHPECubMAyDm6G4Djxs40CaUJQucoPQmvHQSbt465O34DwNff+infef332KqqOTw2lxnjhxJTsBXdDMwBLfZesI6LruFCv0CEkSD0AeEJ2LknvsLia2RTYzaMGQ+6zgWblwORwiitaJvqi6hlJKE0QeiIO/4TAv+/vTsPj6q6/zj+vrNlX8iekAAJu6whyB7ZQUVE0aqgCArU/lBbrBsIKmjRuqMi1baKWgWsInXBVkBkRyQQkD0sSQgQCNkTss7M+f1xh0gEZEvmTvD7ep55Mrlz7sxnwuTwzb3nnBsE3fe+jv/JE+THNeehWwZh/cccAJZOu4eOS/UjR1oXUEGR4D/DwMTCk0hhJIQb9O4NJ7iKYmKwOitpkrOWnw4D1+hHjbr+uBw4VRh1B8Dv+F58KstJs0QA4OOspMp51Ij4QjQY6Yfgv8fApzKf3jteBGD3xGkM/MdTWCqr+Kl3O673zsOrIBflB3QBLeAlMAUZG1x4DCmMhHCDkBBo317joOt0WsKRZXphlKwXRi02rgAgswoIjIGgODTlpPmRgxwzmXGawgEw2zMMSC9EwzHqWVB+cM3ev+BdXszxVh14oW8r/D/VLxy795G7iV6pXyhW6wX49gGfuwxMLDyNFEZCuMnp44yaH13G9sPg7NkXTCYCMvYRezyLjFPrN7qOGrXO2sdJqnFYWgJgsx9G4TQivhAe74dU2FgOwSXpXL3tLQBy7p9B/HMPArDyjn4MzvoP5mo7xIBqZYGgd/QrPgvhIoWREG7Spw8cRJ+JFp2fiio6QXpVECTqs9AGbFnBETtUKSBWL4zaZO0HoMrSBoAAezGVFLk/vBANwF0vAzYYtGcqFnsVB7sP5PXwIoJTUin388Jv1ACCd25AacA1oAU8LgOuxRmkMBLCTZKT4SSRHKMjAAlHv2NbFpA8AIAhW75DAYdOG2fU+vB+UIoSSwIAAY5SWctIiLNYsAQOWKFxwUba7/gEpWmET3qMoOemAPD9A7+j/Q+zAdA6gYpsDv7TDEwsPJUURkK4SVwcNG3Kz+OMji7XCyPXAOwBqd+DUmRUATFdwGQmuCSf0OJ88mtWvz4paxkJ8QtOJ/zhfdA0J9dt/SMAO68dxcMHv8I/O4fsZpF0alOGT34++AHdQAt6BzQfQ3MLzySFkRBulJz88+m0hKPL+OmQE67uBTYb0TmHaXF4P+nVgM0PItoD0OrwfrItcQD4209SrnKMii+ER3r0dSgOgA7HPyI240cqff25fcIYIt7+GwD7Hx1F9I+L9cb9gKAJ4DXQsLzCs0lhJIQbJSdDJsk4sBJ88hBpqWn60thd9Wuk9U/9/owB2K2y9nHU3AgnVsw4cTj2GJReCM9TUASv/6Av5jho41QA0kZNpve/nsZsd5B6bTc6F3yOyamgOajmjSHwZYNTC08mhZEQbpScDNX4kaXphZDfnhUUlVEzzmjAlhUcrHI1ju0GQMvDB8jTKqmyxOjb7XvdnFoIz3Xzk+Dwg75ZMwnMP0p+43ie7hNG9JofqfS2EnxzMwKyDqFsQDJoQW/LmkXiV0lhJIQbtWkDYWFwUOnjjOKzv9PXM+rTH4B+W1eSXqX0xq7CqMXRgxQ6T+JwXUzWbM90e24hPNGKH2FVIYRX7KTH2tkA2CY8QrPnnwbgp0kjaPLTIgC03kD4OPC+wZCsouGQwkgIN9K02tP247O/Z8vBaujSDaeXN1H5x7Gm6ddII7wtDqsPvpXlWHP3gaUVADbHEaPiC+ExlII7XgPMimFbJ2F22DnQ8zruO/EtAXlFHGrbhFaNNmK2OyAOVIc4CJxtdGzRAEhhJISbJSfDUbpSYQrAp6qADUs2gJcXzm69AeiY8j2lTsBsoTqmMwChh3dgMeuDsX3suSiUQemF8AxP/A1O+EDHko9otns11d4+3Hr3tbT45Eucmoa6px1Bh7PACgwALfh9OYUmLogURkK4WXIyOLGQ6d0PgJJN+gVkLcmnn07T25pi9cUf4w6noSydAfC3l1BFiVszC+FJDufAS2vBV+Uy9Ls/A5B900R6vzMLgL2j+hKb+a3euDcQ+SB4DTAorWhopDASws0SE8HPDw7Y9XFGYYfWUG0HevcDoF/qSg5U6keErI31mWktjhygyDXGyMdZSbkz3e25hfAUw54EhzcMOfAwfoW55DRry4NRRwjNyuFEXDiNm+7AbHdCU1Cd2kHgC0ZHFg2IFEZCuJnFAj17wsEqfZxRXM46UveVQuLVVHj7El6US+HuXQBorgHYCdkZ5Dk1Kk2+AFTbtxqSXQijvfsV/FQFzZ1L6bzmQ5Sm0eWeW+n8L32QdfXdTQnMzwVvUANsaI0WyEKO4qJIYSSEAZKTIZc2FHtFY3VU8MU/l4LNRlYXfZyR9/qVesOQ5pT5BGB12Kk4vpUKSzgADscOg5ILYZzik3D/fLBZSrlh6X0AHB50Gzf+5x0AMkd2JTovRW/cD7Tol8HawaC0oqGSwkgIAyQnA2hkBOrjig6tWgFAcfe+AMT8uEpvqGnkNG6r3z2ymWpzrH7fvt+teYXwBMOmQ6UPDD70KI2yMyiMiGNifAHhh3LIjwsjInYHmgLaAO1uAN8HjI4sGiApjIQwQPfuYLXCQZM+zsgvfT0Apt56YXTV5lX6fGSgOMY1G+3INpyui8laZC0j8RszfxmsLYB46wquXvo2AK3HXEv3RUv1WWg3e+NTWQFBoPrFQPD7+voYQlwkKYyEMICvLyQlQXqFPlMmsmAbxzOPE9H1aspt3oQV5FCdpl/6o7JxIgDBR3agWVoDYLNnGxNcCAOUlsP4eWDzKeHGr8cDcLz/DYz66hMATtzSmtDKw2ACNdSEFvkpmEKNjCwaMCmMhDBIcjIUlTQhL6AFJuXk32/+h2g/Lza21y8XUrBGP51matwVgPDjBzArvTDyceTVHFES4kp37RNQ4QPXHpxMo6MZFIU3ZmJgFkF5xeS3jiIs1HX9wF6gNX8ebL2MDSwaNCmMhDBIcjLghIxQfZzR7uWrMWmwM0k/neZYvxoA/+AWFPsGYHY68Mn1QgEWVY1yylEjceV750tYVwhtvP5Dl6XvoTSNzjd1IXHtNqq8bXgnF2EGaAZ0Gw5+jxiaVzR8UhgJYZDe+gQ0Dnrp0/bNBzYBcOzqawAI+EEfZxSm+bG/sT62yHY0k5Nmfcp+lT3VzYmFcK9j+fDAJ+AfdIzhCycCUDl0EKO//AaAshEB+JrLIQDU0Hho9CFo8t+auDzyCRLCICEh0L49ZDj7ARBWuo+MnenYk3pQabXhn3MU0g8QjDcHYvTCqProZk5aGgFgd0hhJK5cSkH/J8AeoBix8V78CnIpaNKC+4//hMXuoLBXJMFBefq4omu90KK/AFOw0bHFFcCjCyO73c706dOJj4/Hx8eHhIQEnnnmGZxOZ00bpRQzZswgJiYGHx8f+vXrx86dOw1MLcSFS06Gk0URHG+kr7Wy/J+f0yzQh01t9EuB8MMazGgcb9xG//7IZirNEQA47buNiNwgSN/R8D36Duypgh7Vs2n5w3+xW70Y3smP2EPHKYsKIKj1cdCAPqC1flfWKxJ1xqMLoxdeeIG3336bOXPmsHv3bl588UVeeukl3nzzzZo2L774Iq+++ipz5sxh06ZNREVFMXjwYEpK5FpSwvNdcw2QD+lRrnFGS7+npQ1Wd9JPp7FBH2dU4pqyb8vZg50YADT7AbfnbSik72jYNuyEV9dDTHgKgz98HIDIYV0ZuH4bDqsZa/8yNBvQGujxZ/C509C84sri0YXRhg0bGDFiBMOGDaNZs2bceuutDBkyhJQUfWVTpRSzZ89m2rRpjBw5kvbt2/PBBx9QVlbG/PnzDU4vxPklJwN2SA/Sp+07D6bS0gZrOiYDoDasAcASHE+xjz8mRzXW/EB9m/2QIZkbAuk7Gq7ySrj2r2CLLObWBXdgtldTkdSB+9ZvAKBysA1roAPCQQ0dBIEvGpxYXGk8ujDq06cP3333HWlpaQBs27aNtWvXcv311wOQnp7OsWPHGDJkSM0+Xl5e9O3bl/Xr15/zeSsrKykuLq51E8IIjRtDfDxkmvri1EwEVxylNHU3Wzr0wmEyoWUcgOwjhGm+HHANwPY+pv/a2hw5oOxGxvdY9dF3SL/hHkOmQXGgYvjW3xOSdYCysHDuL8vC6nBSluSPb2y5fh20G5qihf8bNLPRkcUVxqMLo8cff5xRo0bRpk0brFYriYmJTJ48mVGjRgFw7NgxACIjI2vtFxkZWfPY2Tz//PMEBQXV3OLi4urvTQhxHsnJUFEcTHZoFwBWzltMREgQ25p30hv8sJYwfDkQEw+Az/ESHJgw4QCHrIB9NvXRd0i/Uf9mzddXt+6m5tB++Sc4zBaub+lLbE4hFY198O1Y6hps7YvW9L9gamR0ZHEF8ujC6JNPPuGjjz5i/vz5bNmyhQ8++ICXX36ZDz74oFY77RfLviulzth2uqlTp1JUVFRzy8rKqpf8QlyI5GQgDzJc44wOfreCVqedTuOHNYSfVhh5H02n1OKnP2bfZ0Biz1cffYf0G/Vr4x548n8Q2/gHhv7jYQCaJbegb1omdl8LXn3KwQbqGg2t4xdgbWtwYnGl8ujC6NFHH2XKlCnccccddOjQgTFjxvDQQw/x/PPPAxAVFQVwxl94OTk5Z/wleDovLy8CAwNr3YQwyqnCKD1aL4xU+la9MOr0c2GkHzHST6WZj6dRgr6WkdOxx4jIHq8++g7pN+pPaTkMfg58muXyu3/chtlejSWxBff8pH++tf4OtGCgA2h93gHX2l9C1AePLozKysowmWpHNJvNNVNu4+PjiYqKYtmyZTWPV1VVsWrVKnr1kiXhRcPQqhWEB8Eh3z44NAsB9jyCd+9mbYc+eoNd2wkvquJYSCSl3r5o9kqqi7wAcNi3G5jcc0nf0XAoBb0fh5NRdm799naCjmVRHR3On46mo2lQ3cuMOVZBLDD0IfCdaHRkcYXz6MJo+PDhzJo1iyVLlpCRkcHixYt59dVXufnmmwH9MPjkyZN57rnnWLx4MTt27GDcuHH4+voyevRog9MLcWE0Dfr0gariAI6G6ddFK/30S46HRpEe2wKUInDTZmyahfToZgBYcr0BUHY5YnQ20nc0HH94A35ywuBDj5Lw4wrsPt7c41WGv91BdRsz1vYOaATqpuEQ/JLRccVvgMXoAL/mzTff5Mknn2TSpEnk5OQQExPDfffdx1NPPVXT5rHHHqO8vJxJkyZRUFBA9+7dWbp0KQEBAQYmF+LiJCfD4vchI7o/cSd+oHT5Mrj/cVZ26EP84f1oG9cRPiiZg9HN6JC+C6/jGjQFkyPd6OgeSfqOhuGj7+DvP0Gn0A/p+clsAAY186d5Ti7VMRasvezgC+rmJLQomYEm3ENTSi7RXVxcTFBQEEVFRTJuQBgiJQWuHgEJ7Zdx99IhlJqDeXd7Hjd9/T7vvTAeeiTz1Nd/oVHqv3nos7coadqUgOGZKDS0qHLQvIx+C5elIf4ONsTMnmR3FrR/AqLabuLemclYqipp0S6KO48dwx5oxjLcAcGgbm2K1m4LmEKMjiw8UH38Hnr0qTQhfis6dwa/CsiK6IXDZMXfUUjbwwdY18F1pdmtm4iqtHAwWp+Z5nvsONWY0VBgP2hccCEuQXEZ9JwO/ldlMeq1G7FUVRKUEM7o7GM4rRqWAQ7wBzU0GK3tKimKhFtJYSSEB7BYoFcSVFf6cSSsGwAxy/9LWlwrTjYKg4oKWv2UweHwGOwWG+bKCspKffSdHTJlXzQcTid0exTKm5cy6sMbCcg9hiU6mP8rPAEmMPVTEAmqnzfa1avB0tToyOI3RgojITxEnz641jPqB0DgyuWgaezprB81arpxBw6zhWOR+lGjqjyrvqM9zYC0QlyakbMgLdjJyJV3Eb1nKwT6cn95IV4a0ANIAHW1Ga3vd3JhWGEIKYyE8BA1Cz1G9wOg0fYNoBTr2uuFUeTGVAAOumamabmuHeWIkWggnv4XfFEAgzMfo833X6CsFsbYKgk2g+oAWgdQ7TS0oV+BTZZNEMaQwkgID9G9O5gKICu8p76eUXkujQ6n89VVemHkvykFlGJPtH4pCkuOfp00p0zZFw3ARyvgmR+gu3qDXh+/AsANQRoJyoGKB60HqBagjfgYfK4zOK34LZPCSAgP4esLnWOh2urHkXB9nFGzTStZ3TIJ5eWFKTeXxgePsy+mGQA+x6v0HeWyIMLDrdsFd8+HthGfc+3rkwHoFe5FV1WNigFtANAMtFv/Dn6jjIwqhBRGQniSAb2AUsiM6gtAi3XLqbJ5UdRBX/jx6h8PkhnZBKVpeJVWQhmYnNmgygxMLcS5ZZ6AAS9CbJv1jHz+TjSluCrch0GOSlQYaEOAJsDtsyFQVrUWxpPCSAgP8vMFZfsBELtpNQDpifrptA4b91Hh5U15qD4AuzrXteCd/YC7owpxXgWl0OkxCOq8k9HP3oC1soLYEB9ucZRDMGjXol/q4/ZZEPwng9MKoZPCSAgP0rs3kKuvZ+TETFDeEYKOZpLSQR+IGp+yG4Dc6NYAVOWfmpkmp9OEZ6mohg5/Bq1zBmOeH4JPcQGhQV6MoRzNH7Tr0I8UjZ4GYU8YHVeIGlIYCeFBQkOhiR9UWf3JDukCQLNNq1jWticAYXsO4ld0kiOuhR7J1fSvMjNNeBCHE7o9AoVtjzPm1cEE5hwl0N/GeFMlVl/QrgfigbumQcRfjI4rRC1SGAnhYfq217+mx/QHoGnKKjb4RUB8CwBabd7Hvih90TtzrkNvLGsZCQ+hFAx+CvY1KeSuf1xH6KH9+PpaGW+pwtvHdaSoOVIUCY8lhZEQHmbINdQagN1s0yoO26H6av10WtuNe9keHQ2AV14V2JEjRsIjKAUjn4N1QSXc+dH1RO9OxeZl4V5bNQHerjFFLYG7pkOkFEXCM0lhJISH6dMHyIVDkb1xYiIk6wABx49wtLN+Oq1NShoHArxRvqFoCsgDJWOMhAcY/zossZYx6tMbidu6AavNzD3edkK8XEVRW2DMDIh61uCkQpybFEZCeJimTSGwGiptQeQEtdO3paxmewe9MGq1eT9Op5Pq6I76DrmgOY+Bs8SoyELw0N/hw8pKbv/iZuI3rcRiMTHWx0Gkt376THUAxr4EUU8bHVWIXyWFkRAeRtOgSxP9/qFofZxRs5RVbGjaHvz88S0tp8meLIqj2wDgyHP9Gjv2GxFXCJ78F7yZV8lt//sdLdYvxWw2McbXSYzr9JnqBNrdcyH8EaOjCnFeUhgJ4YGu0xe+5kDMAACabF7DLocZkroD0DplH8ej9MHYzlOFkZxOEwaYOR+eP1LBbd/eSuuVX2EyaYz2cxLn4yqKuoA29gMI+z+jowpxQaQwEsIDXdsfKIZDkX0AiDiwi7TDx+Fq/XRa65Q0Mk+fmaaQI0bC7f6yEJ7NquD2/95K61VfYzZp3OmniPd1nT7rbkK75wtodLfRUYW4YFIYCeGB2rUDazGUe4eSG9ASAPXjOqq79ACgzaY00sIjUWYLpkoFJcgRI+FWf/0UZhyq4PZvbqXV6iWYTRqj/RTx/qANA9XHgjZ2FQTcaHRUIS6KFEZCeCCzGRIC9ftHI/Rp+01TVrOvo14Yxe4/SkFJLtXh+lEjcpHCSLjNrIXwVOZJRn95489Fkb8iIRC04eDs54N25xbw7WN0VCEumhRGQnioPvrYag5G6QOwm2xZw3bfUKoSmgMQuGUrKsq1GmQespaRcIunPoJnjxZx18Jrab5uGRYT3OmvSAgChoNzSDCm23eBdwejowpxSaQwEsJD3dIPUHCgsX7EKGrPVlKP5KN11Y8axaTsREUl6o1zAWcOOIsNySp+Gx55D17Oy2fs+4NounktNhPc7Q/xocBN4LypCaabD4C1mcFJhbh0UhgJ4aH69QaKocSvMYXBcZicTvYsX4Wlq2sA9uZ9FLnWMnLmyTXTRP164G145+Qx7pl7DTHbU/AxwbgAiIsCbgbnHV0xDdkLphCjowpxWaQwEsJD+fhAmOt+dkxvABwp69GSXAs9puzjcEQzALRCBdXIOCNR55SCO16B+fYDTHipJxFpO/F3FUXRccBIcI4diannRtC8jY4rxGWTwkgID9YxRv+aFdoPgPCdG6lq24FqHy/8i8soPH6MKj8/NIB8pDASdcrphCF/gVW2rUyY2ZPgrAwameCeQIhoAepWUBMfw9RxEWjy34m4MsgnWQgPNqSL/jUtuB8AjXf8yE/FVeR3ugoA0+ZNVETF6Y1kALaoQ3YHdHsa9vuu5N5pyfjlniDSDPcEQUgnUKNB+78P0BJeMDqqEHVKCiMhPNiooYATckNbURoUhqWqkiWff09ZUhIAASlbsEfp6xzJlH1RV05WQNvpUGb7jDFPDMVWUkpTC4wLhIBeoEZb0X6/ASJk4UZx5ZHCSAgP1iQGvMoBTeNoi14ApK9ejZakz0yL2LwDFeWaFp2HrH4tLltOETR9BsIrXuG2p2/DXFVFayvcGQzeg8E5NhTtnnTw72F0VCHqhRRGQni4Zv761+zG+mJ5pp0p+Cfp9xvvSscUeHphlAvOQveHFFeEvUcg/lU73Q89yNDZj6ApRVcvuC0crCPA+YcumG7NAmtjo6MKUW+kMBLCw/XQrxXLQdc4o8h9m/EPa0Z+ZCPMDif24xaUBlQAJ5HTaeKSrN0Jnf5Vxk0bbqbbx3MAGOwL1zcG7XZwPjQeU78U0HwMTipE/ZLCSAgPd3Oy/jXLqzOVvv54nyxm7RdrOZSkL41dtW0HpWEBeiMZgC0uwbzlcN23R7l3YR9aLfsaM3CLP/RqDtwDPPIPTO3+CZpmcFIh6p8URkJ4uOu6Aw5w2q0c7qCP61j59ffkJemLO5o2b+JkZKTeOA85YiQuyp8/gCe2b2HSy12I3JaKjwZjAqF9J3De7402eRNazASjYwrhNlIYCeHhbFYIUfr9bNcA7Nxtm6hI1C8H4p+6lcpI18VkZQC2uEBOJwx5Gf57eDETp/XGN/s4YWaYEAxN+4Hj8eaYxmeDf1ejowrhVlIYCdEAXOU6IJQVrQ+69sv8CXPnq3FqGgGHjqK8mugN5IiRuAAnK6Dls04qs2Zx+5O3YC6vIMEK4yOg0S3gmDEa8w37wBJsdFQh3E4KIyEagIH6WTPS/XviNJsJLDpGxf5SDrfUl8b2PuanN8gHqtKMCSkahH1HIeblk3RPuZUBb0yvmXk2uil43avBzH9iTvxYxhOJ3ywpjIRoAEb21b9WVfmT3UY/hZY5fw37uuhT1nzTyrDbzOAECgrAmW9QUuHJvtgI3T5K556FXWn99WJMwHV+MKwj8EgA2tTtaDHjjY4phKGkMBKiAWgfC2YnUAhZifoFZQ8v38j+Lvqq19at+yiKPG1mmpxOE78wdSE8tPI77n++E4127sFXgzFB0G0AOP7aA/PEE+DXzuiYQhhOCiMhGgCTCWK9gXI43KYnAFUZ28lNbA+Adct2iiJOn7IvA7CFzu6Avq84Wbf5RcZOG4K1sIQoM/w+EpreCY5Xn8U8YAOYvIyOKoRHsBgdQAhxYa6Oh8y9kBWlD8AOLjpEVXQzqm0WrAWF2FUTIEsfZyRHjASQXQCJb5UwdMMoEr5ZAkB7G9yYAObx3mi/X4U5sJvBKYXwLHLESIgGYrjr0lRFjsYUxMZjwoljeRrp7fSp+tYcX72BnEoTwH+3QOd3djJ2XjsSvlmCCRjqCyN7g/ZKF0wP5YEURUKcQQojIRqIfu1dd4rhkGucUeU3qexLbA6Ab6ZrFlERULHH/QGFx/jzApj25YdMmtkF34NZBGgwNhS6jwLnP57Dcv1mMPsaHVMIjySFkRANRFwI+ADk/TwA277+J/Yl6jPT/HfkU+ln1RsfTwOljAkqDFNRBR1fKOPI13czYuZYqKiimQV+3wIaTwtAm70Dc/OpRscUwqNJYSREA6Fp0DoUyINDnfQVsH0P72dfh2YA+GzPpCj81ADsUlB5xgQVhtiaDgkv7+b6ee24av6/AOjlDXf1Bu+/DcT8p3zwl1lnQpyPFEZCNCD92gF2OBF0FRX+gdgclRSWOSj388J0soIyp+vK5zIA+zdl1lcwYd67/OHZjvjszcBHg9GhMHC8CW3+R1gGLgeTzLUR4kJIYSREAzKki/5V5Vs43Emfth+46iAHOibo23Nd44xkAPZvQlU1dH+5hH0fjGT4sxNQFXaaWOAPbaDZKwmYXj2BKeZOo2MK0aBIYSREA9ItwXWnCLI666fTvL7bVTMA23bYqT+eBzikMLqSbTkIbV7cyHVvJBC/aDEAyb5w9zDwXTQd69gDYAsxOKUQDY8cWxWiAQn1h1Ab5J2ArERXYZSyl/2/148K+O+vhm5AGVCyAwKMyyrqz6OfOti59inumfM8TqfCX4ObI6HJA0GY//QD+LcxOqIQDZYcMRKigekSB5yAIx264TSZ8M3L5UBMGAABuwqo8HfNTMvZZVxIUS9OVkC75zIxv9ie7m88h9OpaG2FP/SCuEVjsDxRIEWREJdJCiMhGphBiUARVNoCyWnZAYCywwWcDPLHVGmnzOEagJ2TKVP2ryBfbYV+z33AnbNa4JOyBwswrBHcOtkH369/xNrrQ33qohDiskhhJEQD06sFoIATP48z8t+Qxr7O8QBUFdv0hnmV4MwxJqSoM04nXPf6CVZO6c0Nz46jusxOpBkmdoSOC4dj+WsJWvDVRscU4oohhZEQDUxiU9DAtdCjXhj5rUtjf2d9ALZ23HWUKB8ZgN3A7ciCpJmf0++pWAK/XQ9Ab38YN9FG2HcrsQ35Ekxmg1MKcWWRwddCNDB+XtA0EDJOQJZryr7vloPse+RaAHwOVkIs+sy06r1g62NcWHHJJn1cgteikdy0eDkVQCMTjGgF0a8NxzZksRREQtQTOWIkRAPUpw2QCwVxCZQGh2OqtpPlWsDPf/9JlBOoBIq2GphSXIoj+dD9qS9p/scwghcvByDJFyZM8KbJho3YrpWjRELUJymMhGiArmkLnAA0jcNd9NNpVQdzKA8JwlStqKp2HQzO2WpURHEJHv+0kLnjenP9syMoza/CX4NRLWDw4tvwfbsMLbib0RGFuOJJYSREA9QtHqgAin8+neb/wz6yOrUEoLrUNQA756AxAcVFyS2GftMXEDUhDNtX+liiTr4wYVIgLTfvwmvIJzLjTAg3kcJIiAaoXWOwmoBcONxZL4z8NqSxu0MTABy5rl/tE8fRz6sJT/XUojzeu7U9/WeNprjYQYAJ7mgP133/KEFzitAC2xodUYjfFCmMhGiALGboEA2cgKPtuuIwmbEdLWBnbKj++GGH3jDPAc6jxgUV55RdCLc/+hyNxoRTvmwnAIn+cM+0WFptycer24vGBhTiN0pmpQnRQF1zFWzJgmofX3Li2xN9YBvZ5XpB5JNRAQ6gAKhOA3OsoVlFbfe/t59Os7tx1fYCioFgE1zXVSP+4/ewthhndDwhftPkiJEQDVT3BPQB2EBWV31KviMtm6qQIEx2hSoAqoDCH42KKH5h7zEH0yeMpMnvW5K9vQAN6BECY97uQ6sN1VIUCeEBpDASooG6Oh59EUc7ZLlmpvn/sI8TnfRrZdlPun69j6UYE1DUUAomvLSYNYneWN9dTIUDoixw50g/BqfvJGTiGpmCL4SHkMJIiAYqIRwCrOgDsDv1AMAnNZ39rfVLgzgLXf/RHt9tUEIB8PnGPD4YEEezx0Zy5JgdCzAwHkZ/P53mi0oxBV5ldEQhxGmkMBKigdI01+m0XCiIjac8IBhTtYNUH9fQweOuhrlHjIr4m1ZZDbMeHE1W3zAyVx7GAbTwhdsfb0WffZUE9HnW6IhCiLOQwkiIBqxXKyAH0DSOte4KQGbZSQCsh+36AOzcYlAOwzL+Fv31n5/zaYIV+5wFFFZCoAmG9/PmdxmbaPHXvWC2GR1RCHEOhhZGq1evZvjw4cTExKBpGv/5z39qPa6UYsaMGcTExODj40O/fv3YuXNnrTaVlZU8+OCDhIWF4efnx4033sjhw4fd+C6EME63eGoGYGd2vgYA5/5j2IN8MVUrfQxSgYLqDKMi1gtP7Ts27z3BZ/0jcP7+Fg4ctuuDq2Ph1q+n0eX7cmzhXS/r+YUQ9c/QwujkyZN06tSJOXPmnPXxF198kVdffZU5c+awadMmoqKiGDx4MCUlJTVtJk+ezOLFi1m4cCFr166ltLSUG264AYdD/kIWV75ahVHP3gD4bdxPcccWAKh8oBooWGdIvvriaX2HwwHv//4a1neMYOfKE1QriPOG6x7qyNBMB3HX/eWS36sQws2UhwDU4sWLa753Op0qKipK/fWvf63ZVlFRoYKCgtTbb7+tlFKqsLBQWa1WtXDhwpo2R44cUSaTSf3vf/+74NcuKipSgCoqKrr8NyKEm8VOVooNStl+LFZPa5qaAerHB69XKhRlH2JS6gmU2nqf0TF/1eX8DhrVd5zK/LfnH1H/CtV/7jNAvWxCrR4QoCoL9l/0exFCXJz6+P/bY8cYpaenc+zYMYYMGVKzzcvLi759+7J+vX4toc2bN1NdXV2rTUxMDO3bt69pI8SVrlcr4ARU+QVQ3LQZAFvs+hgWletqdHyHIdmM4O6+4/DUlzmQpzABVzc3MXTZuyR/V4wtuHmdvB8hhHt57MrXx44dAyAyMrLW9sjISDIzM2va2Gw2GjVqdEabU/ufTWVlJZWVlTXfFxUVAVBcXFwn2YVwp44R8O9MIBKOtuiEV0Y6e3ILKXaC84gTUzmQeQA8+PN96ndPKXXZz1Vffce5+o0yoE0AhEweSZ9H5tV6P0KI+lWXfccpHlsYnaL94orSSqkztv3S+do8//zzzJw584ztcXFxlxZSCA/xyak7n65k9qn7rwEcg98HGZDo4pSUlBAUVDc567rvOFe/8RpACfDs5/pNCOF2eXl5ddZ3eGxhFBUVBeh/2UVHR9dsz8nJqflLMCoqiqqqKgoKCmr95ZeTk0OvXr3O+dxTp07lz3/+c833TqeT/Px8QkNDz9txXozi4mLi4uLIysoiMDCwzp63vjXE3JLZPeors1KKkpISYmJiLvu56qvv+GW/UVhYSNOmTTl06FCddcjuIJ8795DM7lFUVESTJk0ICQmps+f02MIoPj6eqKgoli1bRmJiIgBVVVWsWrWKF154AYCkpCSsVivLli3jtttuAyA7O5sdO3bw4ovnvjK1l5cXXl5etbYFBwfXzxsBAgMDG8yH7HQNMbdkdo/6yFxXxUV99R1n6zdO5W5o/34gnzt3kczuYTLV3ZBpQwuj0tJS9u/fX/N9eno6W7duJSQkhCZNmjB58mSee+45WrZsScuWLXnuuefw9fVl9OjRgN4hjR8/nocffpjQ0FBCQkJ45JFH6NChA4MGDTLqbQkh6pn0HUKI+mJoYZSSkkL//v1rvj91mHrs2LG8//77PPbYY5SXlzNp0iQKCgro3r07S5cuJSAgoGaf1157DYvFwm233UZ5eTkDBw7k/fffx2yWCzIKcaWSvkMIUW/qbOK/OENFRYV6+umnVUVFhdFRLkpDzC2Z3aMhZq4vDfVn0RBzS2b3kMw6Tak6nOMmhBBCCNGAeewCj0IIIYQQ7iaFkRBCCCGEixRGQgghhBAuUhgJIYQQQrhIYVRPZs2aRa9evfD19T3v4pF5eXnExsaiaRqFhYVuyXc258u8bds2Ro0aRVxcHD4+PrRt25bXX3/d/UFPcyE/50OHDjF8+HD8/PwICwvjj3/8I1VVVe4Neh5paWmMGDGCsLAwAgMD6d27N99//73Rsc5ryZIldO/eHR8fH8LCwhg5cqTRkerU3LlziY+Px9vbm6SkJNasWfOr7VetWkVSUhLe3t4kJCTw9ttvuynpzy4mc3Z2NqNHj6Z169aYTCYmT57svqCnuZjMn3/+OYMHDyY8PJzAwEB69uzJt99+68a0P7uY3GvXrqV3796Ehobi4+NDmzZteO2119yYVnexn+lT1q1bh8VioXPnzvUb8CwuJvPKlSvRNO2M2549ey749aQwqidVVVX87ne/4//+7//O23b8+PF07NjRDal+3fkyb968mfDwcD766CN27tzJtGnTmDp1KnPmzHFz0p+dL7PD4WDYsGGcPHmStWvXsnDhQhYtWsTDDz/s5qS/btiwYdjtdlasWMHmzZvp3LkzN9xww69eDNloixYtYsyYMdxzzz1s27aNdevW1SygeCX45JNPmDx5MtOmTSM1NZXk5GSuu+46Dh06dNb26enpXH/99SQnJ5OamsoTTzzBH//4RxYtWuSxmSsrKwkPD2fatGl06tTJbTlPd7GZV69ezeDBg/nmm2/YvHkz/fv3Z/jw4aSmpnp0bj8/Px544AFWr17N7t27mT59OtOnT+fvf/+7x2Y+paioiLvvvpuBAwe6KenPLjXz3r17yc7Orrm1bNnywl+0zib+i7OaN2+eCgoKOufjc+fOVX379lXfffedAlRBQYHbsp3L+TKfbtKkSap///71G+gCnCvzN998o0wmkzpy5EjNtgULFigvLy9VVFTkxoTnduLECQWo1atX12wrLi5WgFq+fLmByc6turpaNW7cWP3zn/80Okq96datm/rDH/5Qa1ubNm3UlClTztr+scceU23atKm17b777lM9evSot4y/dLGZT9e3b1/1pz/9qZ6SndvlZD7lqquuUjNnzqzraL+qLnLffPPN6q677qrraOd0qZlvv/12NX36dPX000+rTp061WPCM11s5u+///6y/y+VI0YG2rVrF8888wwffvhhnV7nxZ2Kiorq9OJ9dW3Dhg20b9++1sVJhw4dSmVlJZs3bzYw2c9CQ0Np27YtH374ISdPnsRut/POO+8QGRlJUlKS0fHOasuWLRw5cgSTyURiYiLR0dFcd9117Ny50+hodaKqqorNmzczZMiQWtuHDBnC+vXrz7rPhg0bzmg/dOhQUlJSqK6urresp1xKZqPVRWan00lJSYlb+6G6yJ2amsr69evp27dvfUQ8w6VmnjdvHgcOHODpp5+u74hnuJyf86l+aeDAgRc9LKFh/m98BaisrGTUqFG89NJLNGnSxOg4l2TDhg38+9//5r777jM6yjkdO3as5orqpzRq1AibzeYxp6k0TWPZsmWkpqYSEBCAt7c3r732Gv/73//q9eLGl+PgwYMAzJgxg+nTp/P111/TqFEj+vbtS35+vsHpLl9ubi4Oh+OMz05kZOQ5Pzdn+6xFRkZit9vJzc2tt6ynXEpmo9VF5ldeeYWTJ0/WXAzYHS4nd2xsLF5eXnTt2pX777+fCRMm1GfUGpeSed++fUyZMoWPP/4Yi8X9VxC7lMzR0dH8/e9/Z9GiRXz++ee0bt2agQMHsnr16gt+XSmMLsKMGTPOOqjr9FtKSsoFPdfUqVNp27Ytd911V4PJfLqdO3cyYsQInnrqKQYPHuzRmTVNO2ObUuqs2+vShb4PpRSTJk0iIiKCNWvW8OOPPzJixAhuuOEGsrOz6zXjpWZ2Op0ATJs2jVtuuYWkpCTmzZuHpml8+umnbs1cn375GTnf5+Zs7c+2vT5dbGZPcKmZFyxYwIwZM/jkk0+IiIior3jndCm516xZQ0pKCm+//TazZ89mwYIF9RnxDBea2eFwMHr0aGbOnEmrVq3cFe+sLubn3Lp1ayZOnEiXLl3o2bMnc+fOZdiwYbz88ssX/HqGXkS2oXnggQe44447frVNs2bNLui5VqxYwfbt2/nss8+AnzvQsLAwpk2bxsyZMy8r6yl1mfmUXbt2MWDAACZOnMj06dMvI93Z1WXmqKgoNm7cWGtbQUEB1dXVZ/wVUtcu9H2sWLGCr7/+moKCAgIDAwF9FsayZcv44IMPmDJlSr3mPN2FZi4pKQHgqquuqtnu5eVFQkLCeQdFNgRhYWGYzeYz/irNyck55+cmKirqrO0tFguhoaH1lvWUS8lstMvJ/MknnzB+/Hg+/fRTBg0aVJ8xz3A5uePj4wHo0KEDx48fZ8aMGYwaNaresp5ysZlLSkpISUkhNTWVBx54ANBPWyqlsFgsLF26lAEDBnhU5nPp0aMHH3300QW3l8LoIoSFhREWFlYnz7Vo0SLKy8trvt+0aRP33nsva9asoXnz5nXyGlC3mUE/UjRgwADGjh3LrFmz6ux5T1eXmXv27MmsWbPIzs4mOjoagKVLl+Ll5VXv43cu9H2UlZUBnDHOzGQy1RyZcZcLzZyUlISXlxd79+6lT58+AFRXV5ORkUHTpk3rO2a9s9lsJCUlsWzZMm6++eaa7cuWLWPEiBFn3adnz5589dVXtbYtXbqUrl27YrVa6zUvXFpmo11q5gULFnDvvfeyYMEChg0b5o6otdTVz1opRWVlZX1EPMPFZg4MDGT79u21ts2dO5cVK1bw2Wef1RR4npT5XFJTU2v6/wtyycO2xa/KzMxUqampaubMmcrf31+lpqaq1NRUVVJSctb2dTGS/nKdL/OOHTtUeHi4uvPOO1V2dnbNLScnx2Mz2+121b59ezVw4EC1ZcsWtXz5chUbG6seeOABwzL/0okTJ1RoaKgaOXKk2rp1q9q7d6965JFHlNVqVVu3bjU63jn96U9/Uo0bN1bffvut2rNnjxo/fryKiIhQ+fn5RkerEwsXLlRWq1W9++67ateuXWry5MnKz89PZWRkKKWUmjJlihozZkxN+4MHDypfX1/10EMPqV27dql3331XWa1W9dlnn3lsZqVUze9MUlKSGj16tEpNTVU7d+702Mzz589XFotFvfXWW7X6ocLCQrdlvpTcc+bMUV9++aVKS0tTaWlp6r333lOBgYFq2rRpHpv5l4yYlXaxmV977TW1ePFilZaWpnbs2KGmTJmiALVo0aILfk0pjOrJ2LFjFXDG7fvvvz9re08ojM6X+emnnz7r402bNvXYzErpxdOwYcOUj4+PCgkJUQ888ICqqKgwLPPZbNq0SQ0ZMkSFhISogIAA1aNHD/XNN98YHetXVVVVqYcfflhFRESogIAANWjQILVjxw6jY9Wpt956SzVt2lTZbDbVpUsXtWrVqprHxo4dq/r27Vur/cqVK1ViYqKy2WyqWbNm6m9/+5ubE198Zk/4nb6YzH379j1r5rFjx7o188XmfuONN1S7du2Ur6+vCgwMVImJiWru3LnK4XB4bOZfMqIwUuriMr/wwguqefPmytvbWzVq1Ej16dNHLVmy5KJeT1PKNbhFCCGEEOI3TmalCSGEEEK4SGEkhBBCCOEihZEQQgghhIsURkIIIYQQLlIYCSGEEEK4SGEkhBBCCOEihZEQQgghhIsURkIIIa4I7777LkOGDDE6Ro05c+Zw4403Gh1DXCQpjESDl5eXR0REBBkZGRe1n3RaQlw5Kisreeqpp3jyySfr5PnKy8vx9fVlz549l/wcEydOZNOmTaxdu7ZOMgn3kMJIeARN0371Nm7cuHPu+/zzzzN8+HCaNWtWa/uiRYvo168fQUFB+Pv707FjR5555hny8/MB6bSEuJIsWrQIf39/kpOT6+T5li1bRlxcHG3atLnofZVS2O12vLy8GD16NG+++WadZBLuIYWR8AjZ2dk1t9mzZxMYGFhr2+uvv37W/crLy3n33XeZMGFCre3Tpk3j9ttv5+qrr+a///0vO3bs4JVXXmHbtm3861//ApBOSwgP9M4779C4cWOcTmet7TfeeCNjx449534LFy484wjwuHHjuOmmm3juueeIjIwkODiYmTNnYrfbefTRRwkJCSE2Npb33nvvjOf74osvuPHGG8nIyMBkMpGSklLr8TfffJOmTZuilGLlypVomsa3335L165d8fLyYs2aNTW5//Of/1BeXn6pPxLhbnVxgTch6tK8efNUUFDQBbVdtGiRCgsLq7Vt48aNClCzZ88+6z6nX6h35cqVymazqbKyskuNK4SoQ3l5ecpms6nly5fXbMvPz1c2m019++2359wvODhYLVy4sNa2sWPHqoCAAHX//ferPXv2qHfffVcBaujQoWrWrFkqLS1NPfvss8pqtapDhw7V7OdwOFRERIRas2aNUkqpwYMHq0mTJtV67sTERPXUU08ppX6+CHjHjh3V0qVL1f79+1Vubq5SSqnS0lKlaZpauXLl5f1ghNvIESPRoK1evZquXbvW2vbxxx/j7+/PpEmTzrpPcHBwzf2uXbtSXV3Njz/+WJ8xhRAXKCQkhGuvvZb58+fXbPv0008JCQlh4MCBZ92nsLCQwsJCYmJizvp8b7zxBq1bt+bee++ldevWlJWV8cQTT9CyZUumTp2KzWZj3bp1Nfv88MMPOJ1OevXqBcCECRNYsGABlZWVAGzbto2tW7dyzz331HqtZ555hsGDB9O8eXNCQ0MB8PPzIzg4+KLHQArjSGEkGrSMjIwzOsN9+/aRkJCA1Wo97/7SaQnhee68804WLVpUU4h8/PHH3HHHHZjN5rO2P3Waytvb+4zH2rVrh8n08391kZGRdOjQoeZ7s9lMaGgoOTk5Ndu++OILbrjhhpr9brrpJiwWC4sXLwbgvffeo3///meMa/zlH2mn+Pj4UFZWdr63LTyEFEaiQSsvLz+jM1RKoWnaBT+HdFpCeJbhw4fjdDpZsmQJWVlZrFmzhrvuuuuc7UNDQ9E0jYKCgjMe++UfSJqmnXXb6WOavvzyS0aMGFHzvc1mY8yYMcybN4+qqirmz5/Pvffee8Zr+fn5nTVffn4+4eHh58wvPIsURqJBCwsLO6MzbNWqFQcOHKC6uvqCnkM6LSE8i4+PDyNHjuTjjz9mwYIFtGrViqSkpHO2t9lsXHXVVezateuyX3vfvn1kZGScsR7ShAkTWL58OXPnzqW6upqRI0de0PMdOHCAiooKEhMTLzubcA8pjESDlpiYeEZnOHr0aEpLS5k7d+5Z9yksLKy5L52WEJ7pzjvvZMmSJbz33nu/erTolKFDh9bJ0htffPEFgwYNwtfXt9b2tm3b0qNHDx5//HFGjRqFj4/PBT3fmjVrSEhIoHnz5pedTbiHFEaiQRs6dCg7d+6sddSoe/fuPPbYYzz88MM89thjbNiwgczMTL777jt+97vf8cEHH9S0lU5LCM80YMAAQkJC2Lt3L6NHjz5v+4kTJ/LNN99QVFR0Wa/7xRdf1DqNdrrx48dTVVV11tNo57JgwQImTpx4WZmEe2lKKWV0CCFO9/777zN58uRaR3Z+Tc+ePRk3bhz33Xdfre3//ve/eeutt0hNTcXpdNK8eXNuvfVWHnzwwZqZaUOHDqV///5MmTKljt+FEMLdbrvtNhITE5k6deol7Z+bm0t0dDRZWVlERUWd8fisWbNYuHAh27dvv6Dn27FjBwMHDiQtLY2goKBLyiTcTwoj0eB98803PPLII+zYsaPW7JPzkU5LiCtLZmYmX375JQ8++OAl7Z+Wlsa33357xv6lpaXs3r2b4cOH8+yzz17wEaClS5eilGLo0KGXlEcYQwojcUV4/fXXGTlyJHFxcRe8j3RaQogLMW7cOBYsWMBNN93E/Pnzz7lsgLgySGEkhBBCCOEig6+FEEIIIVykMBJCCCGEcJHCSAghhBDCRQojIYQQQggXKYyEEEIIIVykMBJCCCGEcJHCSAghhBDCRQojIYQQQggXKYyEEEIIIVz+H7kyMuO+bQKBAAAAAElFTkSuQmCC", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "Caption. (left) Temperature T as s function of depth z, for different\n", "times (colors, increasing from blue to red). (right) velocity v as a\n", "function of depth z for different times (colors, increasing from blue to red).\n" ] } ], "source": [ "# Simulation 3\n", "# sinuoidally-varying surface temperature \n", "\n", "# parameters that can be varied\n", "theta = 5.0; # slope of glacier in deg\n", "period = 100.0; # period of sinusoid in years\n", "Nt = 10; # number of times per period top make a plot\n", "grad = 30.0 / 1000.0 # geothermal gradient in deg C per meter\n", "T0 = -10.0 # background surface temperature about whch sinusoidal flucuation occurs\n", "Ts0 = 3.0; # amplitude of sunusoidal temperature at surface\n", "Tminplot = -15.0; # minimum temperature on plots\n", "Tmaxplot = -5.0; # maximum temperature on plots\n", "vmaxplot = 0.5; # maximum velocity on plot in meters per year\n", "# end parameters that can be varied\n", "\n", "k = 2.22; # thermal conductivity of ice in W/(m·K)\n", "rho = 917.0; # density of ice in kg/m3\n", "cp = 2090.0; # heat capacity of ice in J/kg-K\n", "\n", "# ----------------- no changes below here\n", "\n", "# seconds in year\n", "sinyr = 60*60*24*365.25;\n", "# force of gravity parallel to sloping surface\n", "g = 9.81; # acceleration of gravity in m/s2\n", "\n", "period = sinyr*period;\n", "w = 2*pi/period; # angular frequency\n", "\n", "# constant A n dv / sz = A tau**3\n", "def AofT(T):\n", " if( (np.min(T)<(-50.0)) or (np.min(T)>0.0) ):\n", " print(\"Error: temperature out of allowable range of -50 to 0\" );\n", " xxxx\n", " NT, i = np.shape(T);\n", " logA = np.zeros((NT,1));\n", " logA0 = -25.0 + 0.88/(5.18/4.0);\n", " C1 = (1.23/(5.18/4.0)) / 10.0;\n", " C2 = (2.75/(5.18/4.0)) / 40.0;\n", " T0 = -10.0; # C\n", " for i in range(NT):\n", " Ti = T[i,0];\n", " if( Ti > (-10.0) ):\n", " logA[i,0] = logA0 + C1 * (Ti-T0);\n", " else:\n", " logA[i,0] = logA0 + C2 * (Ti-T0);\n", " return np.power(10.0*np.ones((NT,1)),logA);\n", "\n", "# periof of oscillation, in years converted to seconds\n", "w = 2*pi/period; # angular frequency\n", "Nt = 10; # number of times\n", "mytimes = gda_cvec( np.linspace(0.0,period,Nt) );\n", "Nt, i = np.shape(mytimes);\n", "\n", "# z-axis\n", "Nz = 101;\n", "zmin = 0.0;\n", "zmax = 100.0;\n", "Dz = (zmax-zmin)/(Nz-1);\n", "z = gda_cvec( np.linspace(zmin,zmax,Nz) );\n", "\n", "# tables of results\n", "Tlist = np.zeros((Nz,Nt));\n", "vlist = np.zeros((Nz,Nt));\n", "\n", "for itime in range(Nt):\n", " mytime = mytimes[itime,0];\n", "\n", " # static temperature\n", " T = T0*np.ones((Nz,1))+grad*z;\n", "\n", " # periodic function of temperature, sin(wt) at surface\n", " kappa = k/(rho*cp);\n", " fac = sqrt( w / (2.0*kappa) );\n", " ph = w*mytime*np.ones((Nz,1)) - z * fac;\n", " Ts = Ts0 * np.exp(-z*fac) * np.sin(ph);\n", "\n", " T = T + Ts;\n", " \n", " # flow constant\n", " A = AofT(T);\n", " logA = np.log10(A);\n", " \n", " f = rho*g*sin(pi*theta/180.0)*np.ones((Nz,1));\n", "\n", " # d tau / d z = - f\n", " dtaudz = -f;\n", " tau = gda_cvec( Dz*np.cumsum(dtaudz) );\n", "\n", " # free surface boundary condition tau(z=0)=0;\n", " tau = tau - tau[0,0];\n", " taumax = np.max(np.abs(tau));\n", "\n", " # dvdz = A tau^3, and boundary condition v(0)=0\n", " dvdz = np.multiply(A,np.power(tau,3));\n", " v = gda_cvec( Dz*np.cumsum(dvdz) );\n", " v = v-v[Nz-1,0];\n", "\n", " Tlist[0:Nz,itime:itime+1] = T;\n", " vlist[0:Nz,itime:itime+1] = v;\n", "\n", "vmax = np.max(sinyr*vlist);\n", "Tmin = np.min(Tlist);\n", "Tmax = np.max(Tlist);\n", "\n", "jet = plt.get_cmap('jet') \n", "cNorm = colors.Normalize(vmin=0, vmax=Nt-1);\n", "scalarMap = cm.ScalarMappable(norm=cNorm, cmap=jet);\n", "\n", "fig1 = plt.figure();\n", "\n", "ax1 = plt.subplot(1,2,1);\n", "plt.axis( [Tminplot, Tmaxplot, zmin, zmax] );\n", "ax1.invert_yaxis();\n", "plt.xlabel(\"T (C)\");\n", "plt.ylabel(\"z\");\n", "plt.title(\"T(z)\");\n", "for itime in range(Nt):\n", " colorVal = scalarMap.to_rgba(itime);\n", " plt.plot(Tlist[0:Nz,itime:itime+1],z,'-',color=colorVal);\n", "\n", "ax1 = plt.subplot(1,2,2);\n", "plt.axis( [0, vmaxplot, zmin, zmax] );\n", "ax1.invert_yaxis();\n", "plt.xlabel(\"v (m/yr)\");\n", "plt.ylabel(\"z\");\n", "plt.title(\"v(z)\");\n", "for itime in range(Nt):\n", " colorVal = scalarMap.to_rgba(itime);\n", " plt.plot(sinyr*vlist[0:Nz,itime:itime+1],z,'-',color=colorVal);\n", "plt.show();\n", "print(\"Caption. (left) Temperature T as s function of depth z, for different\");\n", "print(\"times (colors, increasing from blue to red). (right) velocity v as a\");\n", "print(\"function of depth z for different times (colors, increasing from blue to red).\");\n" ] }, { "cell_type": "code", "execution_count": 21, "id": "da00f4b1-9aa5-4156-a783-75de07a4c000", "metadata": { "tags": [] }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkQAAAHFCAYAAAAT5Oa6AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAACavElEQVR4nOzdd3xTVf8H8E920r0XowxBNjJUQFkyZIOKAxyggj8F8UFFH3ABjwPFgc8jiqIIKiigCA5QAdkyZcgWLIW2tKV0N2l2zu+Pm4SGtnQkzbnJ/b5fr77S3pwk39t8k3xzzrnnyhhjDIQQQgghEibnHQAhhBBCCG9UEBFCCCFE8qggIoQQQojkUUFECCGEEMmjgogQQgghkkcFESGEEEIkjwoiQgghhEgeFUSEEEIIkTwqiAghhBAieVQQSYhMJqvVz7Zt29y32blzJzQaDS5cuFDrx7FarWjZsiXef/993+8ECVq7d+/GnDlzUFxc7JfHS0tLg0ajwZ49e+p0uz59+mD69OkNExQhAB555BEMGTKkTrf5/fffERYWhosXLzZQVMFPRqfukI69e/d6/P3qq69i69at2LJli8f2du3aISIiAowxdO/eHT179sTChQvr9FhffPEFnn76aZw9exaxsbFex06C3zvvvIPnnnsO6enpaNasWYM/3h133AGr1Yqff/65Trfbvn07Bg0ahGPHjuH6669voOiIVB0+fBjdu3fHvn370L179zrd9rbbbkOTJk3wxRdfNFB0QY4RyZowYQILDQ2t9voNGzYwAOz06dN1vm+z2cxiYmLY66+/7k2IRELefvttBoClp6c3+GOdPHmSAWC//vprvW7foUMHNnnyZB9HRQhj99xzD+vRo0e9bvvdd98xhULBMjIyfByVNNCQGanWokWLcOONN3p8C162bFm1Q239+vVzt1Or1bj33nuxePFiMOqEJDWYM2cOnnvuOQBA8+bNPYZvV61ahcGDByM5ORk6nQ5t27bFzJkzYTAYPO6jX79+HjnoMnHixEo9TosWLUJSUhIGDRrk3rZt27Zqc/vq2z/44IP4+uuvUVZW5pP9J8Ft3bp1kMlk+P333ytdt2jRIshkMhw9ehSXLl3C2rVr8eCDD3q06devX7W5uWzZMne7kSNHIiwsDJ9++mlD71JQooKIVMlisWDz5s3o37+/x/bhw4djz549Hj/vvfceAKB9+/Yebfv164cLFy7g+PHjfoubBKZJkyZh2rRpAIDvv//enVtdu3bF2bNnMWzYMCxZsgS//vorpk+fjtWrV2PkyJH1frz169ejT58+kMuvvAV27dq1Um5/+eWXUKlUVea2wWDwmG9HSHVGjBiBhIQELF26tNJ1y5YtQ9euXdGpUyds3LgRVqu10vvuRx99VCk3Bw4cCIVC4fGFVa1Wo1evXli/fn2D71NQ4t1FRfi51pDZvn37GAC2cuXKa97H6dOnWWxsLOvfvz8zm80e1509e5YBYIsWLfJZzCR41WbIzOFwMKvVyrZv384AsL/++st9Xd++fVnfvn0r3WbChAksNTXV/felS5cYAPbmm29eM55Lly6xFi1asPbt27OioiKP6ywWC5PJZOzf//53bXaNEPbMM88wnU7HiouL3dtcQ7cffPABY4yxJ554gul0OuZwOK55X67XyuLFiytd9+KLLzK5XM70er1vd0ACqIeIVCk7OxsAkJCQUG2b3NxcDBkyBMnJyVi7di3UarXH9a7b0lEPxBvnzp3D+PHjkZSUBIVCAZVKhb59+wIATp06Vef7q01uGwwGDB8+HCaTCb/88guioqI8rlepVIiKiqLcJrX2yCOPwGg0YtWqVe5tS5cuhUajwfjx4wEIuRkfHw+ZTFbt/XzzzTd4/vnn8dJLL2Hy5MmVrk9ISIDD4UBubq7vdyLIUUFEqmQ0GgEAWq22yuvLysowbNgwWK1W/PLLL4iMjKzUxnVb130RUld6vR69e/fGvn378Nprr2Hbtm04cOAAvv/+ewD1y62acttms2Hs2LE4c+YMNmzYgCZNmlTZTqvVUm6TWmvfvj1uvPFG97CZ3W7H8uXLMXr0aMTExAAQcrO6vASArVu3YuLEiXjooYfw6quvVtmG3nfrT8k7ACJOcXFxAIDCwsJK11mtVtx1111IS0vDzp070bhx4yrvw3Vb130RUldbtmxBdnY2tm3b5u4VAlDlWkVarRYlJSWVtufn53v8fa3cBoDHHnsMv//+OzZs2IDOnTtXG1tRURHlNqmThx9+GFOmTMGpU6dw7tw55OTk4OGHH3ZfHxcXh0OHDlV526NHj2LMmDHo27fvNSdN0/tu/VEPEalS27ZtAQiL113t0UcfxbZt2/D999+jU6dO1d7HuXPnAAjrGhFSE41GA8Dzm61r6MB1ncsnn3xS6fbNmjXDmTNnYDab3dsKCgqwe/duj3apqanQ6XRV5vZLL72EpUuX4rPPPsPAgQOrjTU7Oxsmk4lym9TJuHHjoNVqsWzZMixbtgyNGjXC4MGD3de3adMGBQUFlQr7jIwMDB06FC1atMCaNWugUqmqfYxz584hNjYWiYmJDbYfwYp6iEiVGjdujBYtWmDv3r146qmn3NvffvttfPXVV5g2bRpCQ0M9FnuMiIjw+IDYu3cvFAoF+vTp49fYSWDq2LEjAOC///0vJkyYAJVKhU6dOiE6OhqPP/44Zs+eDZVKhRUrVuCvv/6qdPsHH3wQn3zyCR544AFMnjwZBQUFmD9/PiIiIjzaqdVq9OzZs9JCpd9++y1ef/11jB07Fq1bt/a4XqPRoEuXLu6/XdddfTQQIdcSFRWFO+64A8uWLUNxcTFmzJjhcaRjv379wBjDvn37PAqloUOHori4GAsXLsSJEyc87rNly5aIj493/71371707dv3mvOQSDV4z+om/NS0MOPLL7/MoqOjmclk8rgNgCp/rj7Cp3fv3mzkyJENFT4JQrNmzWIpKSlMLpczAGzr1q1s9+7drGfPniwkJITFx8ezSZMmsUOHDjEAbOnSpR63/+KLL1jbtm2ZVqtl7dq1Y6tWrap0lBljjC1ZsoQpFAqWnZ3t3jZ79uxqc/vq2z/44IOsY8eODfRfIMFs48aN7rw6c+aMx3V2u501a9aMTZkyxWN7dXl59Wvgn3/+YQDYmjVr/LErQYdO3UGqlZ2djebNm+PLL7/EvffeW6fbpqWloVWrVvjtt988Fr8jRAxMJhOaNm2KZ599Fv/+97/rdNvS0lKkpKRgwYIFVR7lQ4g33n33Xbz++uu4ePEidDpdnW778ssv48svv0RaWhqUShoAqiuaQ0SqlZKSgunTp+P111+Hw+Go021fe+01DBgwgIohIkparRZz587Fe++9V2nF65osWLAATZs29ZgMS4ivTJ06FZGRkfjwww/rdLvi4mJ8+OGHeOONN6gYqif6r5FreumllxASEoKLFy9We/jx1Ww2G1q2bIlZs2Y1cHSE1N9jjz2G4uJinDt3zj1/qTYiIiKwbNky+tAhDUKr1eKrr77C4cOH63S79PR0zJo1y72mEak7GjIjhBBCiOQFzZDZRx99hObNm0Or1aJbt27YuXMn75AIqRXKXRKoKHdJMAmKgmjVqlWYPn06XnzxRRw+fBi9e/fG0KFDkZGRwTs0Qq6JcpcEKspdEmyCYsjs5ptvRteuXbFo0SL3trZt22LMmDGYN28ex8gIuTbKXRKoKHdJsAn4WYEWiwUHDx7EzJkzPbYPHjy40gq1Lmaz2WM1W4fDgcLCQsTGxtJiVqTeGGMoKytDSkqKx2Jr1aHcJWJBuUsCVV1z91oCviDKz8+H3W6vtEx5YmJitWf7nTdvHubOneuP8IgEZWZmVnt+t4ood4nYUO6SQFXb3L2WgC+IXK7+hsEYq/Zbx6xZs/DMM8+4/y4pKUHTpk2RmZlZaZl/EnjueuZTbF6Sj9A28cjeN8lvj1taWoomTZogPDy8TrfzRe7GdHsD6Vum1j1oQsA3d13vu599dhDPPrsRo0Zdj6++urPS7dMKga6LgTA1cPGZSlfX2gHsw0b8hnZojztwV/3vyFvGfOCrlsLvj1U+KXGwYozhzagoAMC/zp1DSGysV/dX39ytSsAXRHFxcVAoFJW+leTl5VV7cjuNRlPpZJGAsL4IFUSBLzY6BIAWdquWy/NZ2+5/X+Zu4V/lOJ+ZhU7t6WSjpP545K7rfVenCwOghUoVUuXrNtwGQAvI1IA3L+tQhEIDDUIQgghwfL9XmQHXQtQS+txhjEHr/D0iPBwhPtp3Xwy7BvxRZmq1Gt26dcOmTZs8tm/atAm9evXiFBXhKSpUAQCwm+ycI7k2n+auzYZp72zzXXCEXAO975JgFPA9RADwzDPP4MEHH0T37t3Rs2dPLF68GBkZGXj88cd5h0Y4iIlQAwDsZnEXRIBvc3fPZjtsNhutoEz8gt53SbAJinfOe++9FwUFBfjPf/6DnJwcdOjQARs2bEBqairv0AgHCVFCPzQzWTlHUjOf5a5CAWtWIeYvXokXpjzQMMESUgG975JgExQFEQBMmTIFU6ZM4R0GEYHEGGFyHbOIvyACfJO70TfEoehgCT5cbcAL9DIgfkLvuySYBPwcIkKu1igpTvjFYoXZYr524yAxbrjw3SZ7TyHSzp3jHA0hhAQeKohI0GnWKNn9e2bWRY6R+M+r/xoPeXwkYLHgiTd/4R0OIYQEHCqISNBJSU4GnEdgXsjK4RuMnyiVSnQZIEwm376phsaEEEIqoYKIBB2lUgmoheIgK6+IczT+8+5TXQGFHJbz+fjfslW8wyGEkIBCBREJSjKNCgBwqaCMcyT+07dnD0TdkAAAeHeFdApBQuoi4M9mThoMFUQkKMk1wiTjglIT50j8694Rwlhhxq5iZGVLY/4UIYT4AhVEJCjJNcJq1YVlgXHova/894UJkEeHAyYznpj3A+9wCCEkYFBBRIKSQicURCUG8a9W7UsatQbt+wtnCtr8K+dgCCEkgFBBRIKSSiOkdmm59GYMvDW1HSCTwfTPZXz2DfUSEUJIbVBBRIKSUivMpSkzcA6Eg6G39UNEJ2Fy9bwvpbHsACGEeIsKIhKU1FqhZ6jcJOMcCR9jhgmX53aWIu/yZb7BEEJIAKCCiAQlrXB+V5Qb+cbBy8IXHoAsIhQwGDHlje94h0MIIaJHBREJSlphXjFMEu0hCg8Lw/V9QwEAv/7GORhCSGVMevMbxY4KIhKUdM4hM7NECyIAmDu5BSADDKfysOrHDbzDIYQQUaOCiASlUJ1QEFlM0v0Wds/I2xHaVphc/cpnGZyjIcQ3ZNL9jkMaGBVEJCiFhQiXVmktVF3JsCHC5dntepTp9XyDIYQQEQ8VUkFEglJEiPA10mZ2cI6Er49fvBcI1YGVGjDlteW8wyGEENGigogEpahwYaVqu1FaK1VfLSYmBi37RAAAfqBpRIQQUi0qiEhQig0TznZvN0m7IAKAlx9OAQCUHc/Dz5u2co6GkKqJeCSFSAQVRCQoxUUJCxExi41zJPxNuHsUdK3iAcYw6+PTvMMhhBCByGbIU0FEglJSTBgAgJmkdbb76gy8Xbg8sdWI8vJyvsEQQogIUUFEglKjhFjhF6sFNisVRZ+8eAeg04IVlWH6fJpcTQghV6OCiASlpo2ThV8YkJl1kW8wIpCclIzUWyMBAN/+JO0j7wghpCpUEJGg1DglGXAOT1/IoTO+A8CMB+IAAMVHLmPbrj2coyGkajKRzSsh0kEFEQlKarUGUAlHml3MK+IcjTg8+dBYaJrHAQ4HnvngMO9wCCFEVKggIkFLphEKokv5pZwjEY++g4TLv7ZYYKW5VSSABN9h+UG3QwGPCiIStFwF0eViI+dIxGPRrBGARg1Hfgmef+cL3uEQ4neMChGumIgrWyqISNBSaIXVqov01BPi0qJZKlJ6RgMAvlpHazQRQogLFUQkaCk0QkFUrKfVqiuadm84AKDgYD72HTzEORpCBLXtOaAp16ShUEFEgpZSK7x1lpaLt4uWh5mP3w9V4xjAbse/FuzlHQ4hEkclnlhQQUSClkonvNGUUUFUyS2DhZf+n5utsNlo6IxIj4wKEXIVKohI0FI7e4gM5fTGd7WFz98GqFSwXyrG7P/SytWE+J2IJxf7i9jWnKKCiAQtjVZ4wzGaxPWiE4P217dF4k0xAIDP1po4R0PIFdV9RlL5QBoaFUQkaGm1wqXRSAVRVSbfJfyD8vYX4OiJk5yjIVJX2w4TkXUqkLoScc8YFUQkaOm0wjm7zGZ6B63K7GkPQJkcDVhtmPbONt7hEEKkRmTVragLonnz5uHGG29EeHg4EhISMGbMGPz9998ebSZOnAiZTObx06NHD04REzEJ1QmXFpP/v5EEQu4qlUrcOEAJANiz2Q67nSZXE0Eg5G/gE29PiVSJuiDavn07pk6dir1792LTpk2w2WwYPHgwDAaDR7shQ4YgJyfH/bNhwwZOERMxCQsR3nCsHBaqDpTc/d8ztwBKBaxZhXjrk5V+fWwiXjzzV2wTbRuc1PZXxJS8A7iWX3/91ePvpUuXIiEhAQcPHkSfPn3c2zUaDZKSkvwdHhG5iBDhjcZmdvj9sQMld7t36YzYbntRsC8XH6424IUp3EIhIiLG/PXV1BM6dQdfdOoOHykpKQEAxMTEeGzftm0bEhIS0Lp1a0yePBl5eXnXvB+z2YzS0lKPHxJ8okKFlap5FERXE3PuPjRG+D9l7ylE2rlzXt8fCT6+yF9f5a6v+lP4r0Mk3sLAX8TWGxgwBRFjDM888wxuvfVWdOjQwb196NChWLFiBbZs2YJ3330XBw4cwG233Qaz2Vztfc2bNw+RkZHunyZNmvhjF4ifxUQIJ3d1mPjOjRF77s6fMRHyuAjAYsETb/1a8w2IpPgqf2vK3Zp6DoK3fBBXUSBloh4yq+jJJ5/E0aNHsWvXLo/t9957r/v3Dh06oHv37khNTcX69etx5513Vnlfs2bNwjPPPOP+u7S0lIqiIBQXKRxWzrsgEnvuKpVK3DBAg0OrgO0bg/djh9SPr/K3trkrsk4DIiEB0UM0bdo0/Pjjj9i6dSsaN258zbbJyclITU3F2bNnq22j0WgQERHh8UOCT0K0cBJTZuZ3tvtAyd13n+oCyOWwnM/H/5Z+65P7JIHPl/lbU+7WNLVExFNP6ifodqiWRLzfoi6IGGN48skn8f3332PLli1o3rx5jbcpKChAZmYmkpOT/RAhEbNGidHCLxb/n68r0HK3X6+eiOoSDwB49+sCvz8+ERcx52/Q9SAF3Q7Vgcj2XdQF0dSpU7F8+XJ8/fXXCA8PR25uLnJzc2E0CsdR6/V6zJgxA3v27MH58+exbds2jBw5EnFxcbjjjjs4R094a5LiPPqFMeTk5vr1sQMxd+8dIbwdZOwqRlb2RS4xEHEQY/76ql+BjjLji44yq6dFixahpKQE/fr1Q3Jysvtn1apVAACFQoFjx45h9OjRaN26NSZMmIDWrVtjz549CA8P5xw94a1Z0yvzEy5k+fcDPhBz9/1ZD0EeHQ6YzHjijR+4xEDEgUf+uj4oazryiI4yC3AVCiKxHWUm6knVNVWSOp0Ov/32m5+iIYFGo9YAKhVgtSL7kn+HgQIxd7UaLdr11+H492XYvJF3NIQnnvkrss9IP5DcDl8hsidb1D1EhHhLphEOvc8uKOMcSWB464m2gEwG09nL+HzVOt7hEAmR3KRqiaIhM0I4kWmETtD8Eg7n7whAwwb2Q0THBADAG8v8O++KEKAWQ2ZediqIbw6RuHpJpIwKIhLUFFqhICostXCOJHCMHiZcpu0sxeXL+XyDIZIhuYUZRdxT0qBEvN9UEJGgJtcKKV6kt3OOJHB8+OIDkEWEAgYjprxBaxIR/6qpByjoJlWLbB6NP4ltUjUVRCSoqTRCipcaxPutRGzCw8Jwfd9QAMAv4pr3TYJYbecQiewz1AeCboeuyaMnUGRPJhVEJKgpdcILTk9TiOpk7mRhIT7DqTys/uEXztEQKWnow+5FM4dIxENHUkUFEQlqauF0ZlQQ1dE9I4cgtK0wufqVJRc4R0OkwN9HH9GQGSciXoeICiIS1DQa4bLcKK4XXiAYNlS4PLNdjzK9nm8wRDKq+4wM3v4Uab030ZAZIZxodcKliQqiOvv4xXuBUB1YqQFTXlvOOxwS5Pw1h0g0Q2aiicPPRDxUSAURCWo6rQMAYDJxDiQAxcTEoGUf4YzkP2zgHAwJejWdusP1Mer9Vxvn4/DumWG+26NAwmjIjBA+Qpw9RFYz3zgC1csPC2cuLzueh583b+UcDQlmNfUA+a6HSCwkOoeoIpHtOxVEJKiFOwsiC/UQ1cuEu0dD1yoeYAyzFp3mHQ4JYv7rIXLdD/UQcUFDZoTwER4qvNnYTA7OkQSugbcLlye2GmE00uF6pGH4q4dIPH1E0uwhoiEzQjiJChFS3E4FUb19/MIdgE4LVlSGf731Fe9wSJCq7WH33q9DJBbUQyS2YpAKIhLUoiOEc5nZzXTqjvpKSU5G6q2RAIBvf6bCkjSMGnuIfPdIwuOIpRARWVHQ0KiHiBBO4iOFlRkdJivnSALbs/fHAgCKD1/Gtj/2cI6GBKMa5xAF26RqEc+laVDUQ0QIH0mx4QAAZrZxjiSwTZtwNzTN4wCHA89+cJh3OCSI1dRDFDSH3Ut0yIx6iAjhJDk+WvjFbIHNRkWRN/oOEi6P/G6B1UY9bsS3rvQASa2HSFxFQYOjHiJC+GiSIpyPC4whP/8y32AC3KJZwwGNGo78Ejw3/0ve4ZAg43C4hsyqud5VEHn9SCLrIRJZUdDQqIeIEE5SGzdx/34+K5tjJIGvRbNmSOkp9Lgt/5F624hv1XodIp/1EIlkHSKZxD6Gfbd+gs9J7JkgUhMSEgKohCPNMnOoh8hb0+4V5mQV/HkZ+w7RXCLiO7Veh8jbxxFND5HriE3ecfhXTYUvT1QQkeCnVgEALhWWcQ4k8M18/H6oGscAdjumL6CjzYjv+KuH6MqQGWdSn0NEBREh/ifXCAXR5aJyzpEEh16DFACAA5utNFGd+IxrDpFcXvUHpWsOUTVX15p4eoikOWTGHELPmEwuvv0WX0SE+JhcK3yAF5TRkVG+8MFz/QGVCvbcYsz+YDnvcEiQcHUcVFcQ+W7IzIX3HCLnkJkIe0oaEg2ZEcKRwlkQFZVRb4YvdGzbFok3CQs1fraGzppLfOPKB2U11zsvve0hEs2QmVTXIXKItxCkgogEPaVWSPMSA512wlcevVMDAMjbX4CjJ05yjoYEg9oOmXl/lJlIhszcPUQS+xh2Fr5yhYJzIJVJ7JkgUqTSCm98ZXSidp+Z+9QDUCZFAVYbpr27jXc4JAhcWYfo2kNmCh8dds+/IJL2HCLqISKEA1dBZDCK7wUYqJRKJboPFCar79lkh91BvW/EOzXNIfJ1DxH3oSom0cPuaVI1IfxotMIbYDn1EPnUf5/uCSgVsGYV4q2Pv+YdDglw/jrKTDwrVUtzyMxdEFEPESH+pxVOeA+jSXwvwEB2U9cuiO0WDwD4cLWBczQk0LkmVVd7lJnzMmgOu5f4kBn1EBHCgdbZQ2SmITOfe2iMMDEye08h0s6d4xwNCWT+OpcZE8tRZhKdVO0+mpAKIkL8L1QnvAAtZtGc5zpozJ8xEfL4SMBiwRNv/so7HBLA/L8wI++PP5pDJDbii4gQHwvTCZcWmkPkc0qlEl1uUwMAtm+igpPUX01Hmfm+h4j3kJmrh0h8h583JCqICOEoIlS4tJnpSKiG8M5TXQC5HJbz+fjfsm95h0MClN0uFCqKao6rt7sOu/fyU8vh7JnhXhA57MKl1IbM7MJ+y2gdIkL8LzJUSHO7iQqihtCvV09E3SBMrn53RQHnaEigcvUQKaqpeHw9ZCbn/vEn0TlE1ENUP3PmzIFMJvP4SUpKcl/PGMOcOXOQkpICnU6Hfv364cSJExwjJmIUHSasl2M32f36uFLK33tGCG8lGbuKkZV9kXM0xFs8cre2k6q9X5hRJEO7NGTGOZLKxBfRVdq3b4+cnBz3z7Fjx9zXzZ8/H++99x4WLlyIAwcOICkpCYMGDUJZWRnHiInYxEUKp5lwmP1/LjOp5O/7Mx+EPDocMJnxxLwfeIdDfMDfuSu5HiKpDpk5CyI6dUc9KJVKJCUluX/i44WuecYY3n//fbz44ou488470aFDB3zxxRcoLy/H11/TInHkioToMAAAM/n/bPdSyV+dTof2/YUFn37/jXMwxCf8nbs1HWVmd3aoeDuHSDSTqiU6ZOZwzSGiHqK6O3v2LFJSUtC8eXPcd999OOdc6yQ9PR25ubkYPHiwu61Go0Hfvn2xe/duXuESEUqOixJ+sVhht/t3HpGU8nfeE+0AmQzGs5fx+ap1vMMhXvJ37tY0qdpXQ2bim1Qtvp6ShuQeMqMeorq5+eab8eWXX+K3337Dp59+itzcXPTq1QsFBQXIzc0FACQmJnrcJjEx0X1ddcxmM0pLSz1+SPBq0siZIw4H8vP9N+m3IfJXzLk7fGA/hHdMAAC8sezar0Eibjxy1/VlpdoeIp8PmfE+7N5ZEMnFVxg0JEY9RPUzdOhQ3HXXXejYsSMGDhyI9evXAwC++OILd5ur16xgjNV4jpR58+YhMjLS/dOkSRPfB09Eo3nTK8/vhYtZfnvchshfsefumGFC7Gk7S1FQQEecBSoeuXulh+jac4h8N2TG+ePPVRDxjsPPXENmNIfIS6GhoejYsSPOnj3rPuLh6m8keXl5lb65XG3WrFkoKSlx/2RmZjZYzIS/8LAwQCm8+DJyL3OLwxf5K/bc/fDF+yGLCAUMRjzxxmre4RAf8UfuXplUfe05RN73EIlkyEzqPURUEHnHbDbj1KlTSE5ORvPmzZGUlIRNmza5r7dYLNi+fTt69ep1zfvRaDSIiIjw+CFBTiOsppxXwG+IyRf5K/bcDQ8Lw/V9hZUwN/zCORjiM/7IXdeQWXU9RHYfzSGyOwsi/kNm0jzsnnqI6mnGjBnYvn070tPTsW/fPowdOxalpaWYMGECZDIZpk+fjjfeeANr167F8ePHMXHiRISEhGD8+PG8QyciI9coAQB5ReV+e0yp5u/cyc0BAIZTeVj9E53fLBDxyN0aV6r2+VFmIhkyk1hBJOYeIiXvAK4lKysL48aNQ35+PuLj49GjRw/s3bsXqampAIDnn38eRqMRU6ZMQVFREW6++WZs3LgR4eHhnCMnYiPXKOEAUFhq8dtjSjV/7xk5BI+0TYfhVB5mf5qOe0byjojUFY/c9VcPkcPdQySWdYjEVxg0JDH3EIm6IFq5cuU1r5fJZJgzZw7mzJnjn4BIwFJoFbABKCzz3+KMUs7fYUOBb08Bf283oEyvF+ZxkYDBI3dr6iGy+biHiHtB5J5DJOqPYZ8Tcw+RqIfMCPEVpVZI9ZJyOp+ZP3z84r1AqA6s1ICpry/nHQ4JADZbDT1EroIoaNYhcn45k1oPkU3YbzH2EFFBRCRBqRXe/PT+m0IkaTExMWjZW5g0u24952BIQHANmSmV1x4yq+bqWhPNkJlEjzJzD5mpVJwjqYwKIiIJauF0ZlQQ+dELE4XDs8uO52H95m18gyGiJ7khM3cPkbSGzKiHiBDONDrhstzE+/xF0vHIvWOgaxUPMIaZi07xDoeIXI09RM6CSOV1D5Gzh4L3xx9zFkQSnUMkV4pvv6kgIpKgEc47CpORbxxSM+B24fLkViPKy6l7jlSvpjlEvuohujJkxrmHQqpHmTl7iGhSNSGc6HRCN7nJTCnvT4tmjQZ0WjiKyvD0fJpcTapntQqFiqqaLiCbjydVc+8hcliFS7n45tI0JLtV2G8FzSEihI8QrVAQWYyMcyTS0jilEZreEgkAWP0THeFHqlfbHiLvh8zEslK1NIfM3HOIaMiMED7CnHOILGa+cUjRjAdiAQDFRy5j2x97OEdDxMpVENXUQ+S7o8x4D5lJ/LB7KogI4SM8RLi0GamXwt+mTbgb6mZxgMOBZz84zDscIlI19RBZXT1EXtYPdhoy48rhHDKjgogQTiJDhVS3mWnIjIe+g4ThiSO/W2Cz+W+1cBI4rFZhkrG/eogUvD/+XD1EUiuIXD1ENIeIED6iw4UXn91EH8Y8LJo5DNCo4cgvwfNvf8E7HCJCV4bMqu4Csvr8sHvOQ1USnUPkmlRNBREhnMRGCCszOqgg4qJli2ZI6RkNAPjyB3oOSGU1HWXm7EDywZCZcEf8e4ikPWRGR5kRwklijDCJiFnow5iXafcKZ0Iv+PMy9h+iuUTEk2vIrLqFGa0+n1TN+ePPLs2CyE5ziAjhKzle6J2A2cI3EAmb+fj9UDWOAex2/GsBHW1GPF3pIapmyMzVQ+Tlp5ZdLENmDud7kcQKIncPkVrNOZLKqCAiktA4KV74xe5AYWEh32AkrNcg4UPowGYrTa4mHlw9RGp1DXOIvKxjxDOpWuI9RDRkRggfzZo0cv+enpnFMRJp++C5/oBKCXtuMWb/j1auJlfUdg5RNfVSrTCwCgUR5yEbV0GkEF9PSUOiOUSEcBYdFQ04z52TlZvPORrp6ti2LRJuEhZqXPI9rZJJBIyxCofdN9xRZq7hMkAMc4ikOWRmpyEzQkRAI7zx5F4u4hyItE26UzjT7qX9+Th26hTnaIgY2O0MzLlEWHU9RBYf9BBVLIgUNIeIC4dF2G8qiAjhSO4siC4V0ynveZr71ANQJEUBVhumvb2VdzhEBFy9QwCg0VQ9lOWLw+7FVRC5hsw0fOPwMzsVRITwJ9cKb7SFJTRUw5NSqcSNA4XidPcmew2tiRSYzVfyoLoeIlcTjQ8KIhlkIhoyE19h0JBsZuH9lyZVE8KR3PlOWqS3co6E/PfpnoBCAWtWIeYtWsE7HMKZxXKlIKruKDNfDpkpoICM99nuXUNmEptU7eohUmrE1zNGBRGRDKVWSPciPZ3glbebunZBbHdhKYSFq/WcoyG8mc3CEgwqlRwyWdWFitknBZHwONyHywDA7uypltqQmbOHSEEFESH8KLXCG62BphCJwoOjhSHM7D2FSDt3jnM0hCdXD1F184eAKz1Evhgyo4KIH5pDRIgIqJ0FURkVRKLw9nMTII+LBMwWPPHWr7zDIRy55hBVN1wGAM5OJK96iGzOHiIl7zWIgCsFkUTnENGQGSEcqbXCcb3lRs5zBwgAYXL1DQOED4PtGxnnaAhPV3qIrlEQuXqIvKhlbO4eIhEVRFLrIaIhM0L40wrL38BoooJILN59qgsgl8NyPh//W/Yt73AIJ645RNcaMnP1EHk3ZObqIaIhM15sJhMAQOl6QxYRKoiIZOicPURmKohEo1+vnojqIkyufndFAedoCC8mk6sgqrmHSOtVD5EIh8yU4isMGhINmREiAiEhQkFkMdLwjJjcM0J4G8rYVYys7GzO0RAeXHOItNVUOw4G2JwHh3o3ZOY6ykwMBZHQUwK5+AqDhuQaMqMeIkI4CtM5CyIT50CIhwXPPwB5dDhgMuOJeet4h0M4uNJDVHWh4rxaaBMMk6oZk24PEQ2ZEcJfmE4YKrOZqYdITEJCQtCuvw4A8PtvnIMhXLgKIp2u5oJI58UCx6IpiFyLMgKAQnyFQUNyFUQ0qZoQjiJDhXS3GmlhRrF584m2gEwG49nL+Hz1j7zDIX5W2x4iuQxQevGp5SqIVLwLIluFbmoJ9RAxxqiHiBAxiA4X3gQdZjp/ltgMH9gP4R0TAABvLKV5RFJT2x6iaq6utSs9RJzPo2VzLYYmk9Q6RA6rFcwhfCFV6XSco6mMCiIiGTHhwhuPo2L/OxGNMcOEIc20naUoLCzkHA3xJ6NROL9gdZOqnVd7dYQZAFgh3BH3ITO7syBSaoFqTlUSjKzGK6viKqkgIoSfxOhQAIDDTCd3FaMPX7wfsohQwGDE46+v4h0O8aMrPURV99wYXT1EXnbs2JwFkYp7D5FzyEwhvqKgIdlcBZFMRqfuIISnlPhI4RcqiEQpPCwM1/cVitYNv3AOhviV0XjtITNXD5G3Q2ZW0QyZlQuXSmkVRK4eIpVOV+1JfHkSfUHUrFkzyGSySj9Tp04FAEycOLHSdT169OAcNRGjxknCAoCw21FcUtzgj0e5W3dzJzcHABhO5WH1T3R+M178nbuuIbNqCyIf9RBZIRzdxX9StWvILIRvHH5mLRcKQTEOlwHgnRU1O3DgAOz2K5Ngjx8/jkGDBuHuu+92bxsyZAiWLl3q/lstwq44wl/zpo3dv2dkXkRUZFSDPh7lbt3dM3IIHmmbDsOpPMz+NB33jOQdkTT5O3fLy10F0bWHzEKCZlK1NHuIXENmqhBxFoKiL4ji4+M9/n7zzTfRsmVL9O3b171No9EgKSnJ36GRABMTEwso5IDdgYycPHTq0L5BH49yt36GDmH47hTw93YDyvR6hIeF8Q5Jcvydu64hs5CQqguVcteQmdc9RMIdqcH5i4erIFKF8o3Dz1w9RGI8wgwIgCGziiwWC5YvX45HHnnEY/xx27ZtSEhIQOvWrTF58mTk5eVxjJKImvNbbG5+iV8flnK39j556T4gVAdWasDU15fzDkfy/JG7BoNQqNRUEIX6bMhMLD1E4uwpaSjugoh6iLy3bt06FBcXY+LEie5tQ4cOxd13343U1FSkp6fj5Zdfxm233YaDBw9CU81KmGazGWbn+VQAoLS0tKFDJyIh0yjBjMClQr1fH5dyt/ZiYmLQsncE0n41Yt0GAPN4RyRt/shd15BZdQWRwbmwczVX15pFNEeZSbMgshgMAABVqDh7xgKqh2jJkiUYOnQoUlJS3NvuvfdeDB8+HB06dMDIkSPxyy+/4MyZM1i/fn219zNv3jxERka6f5o0aeKP8IkIyJ0r4RaUmmto6VuUu3Uza2IyAKDsWB7Wb97GNxiJ80fuugqi0Gq6gAyuHiIvR7qsYimIrEJhILWCyOosiNRUEHnnwoUL2Lx5MyZNmnTNdsnJyUhNTcXZs2erbTNr1iyUlJS4fzIzM30dLhEphVY4M2RBqf8WZ6TcrbtH7x0NXat4gDHMXHSKdziS5a/cNTi7gEKrqXhcPUTeDplZnENm3OcQuQoiic0hEnsPUcAMmS1duhQJCQkYPnz4NdsVFBQgMzMTycnJ1bbRaDTVduuS4KbUymEBUFruv9N3UO7Wz4DbgZ/PAie2GmE0maAT4bmPgp2/ctc1h6jGHiKfzSHiPana1UMkzsKgobh7iER6oERA9BA5HA4sXboUEyZMgFJ5pYbT6/WYMWMG9uzZg/Pnz2Pbtm0YOXIk4uLicMcdd3CMmIiVUiukfGm5fx6Pcrf+Fs0aDWg1YEVlePrNL3mHIzn+zF1XD1G1c4h8NGR2pYdIJENmUush0gtzN8XaQxQQBdHmzZuRkZGBRx55xGO7QqHAsWPHMHr0aLRu3RoTJkxA69atsWfPHoSHh3OKloiZSiscJWMw+meVVMrd+muc0ghNb40CAKz62cE3GAnyZ+7q9UKhEh5eTQ+Sj4bMrhx2z7mX1eo8qEMlrde6ReQ9RAExZDZ48GAwxipt1+l0+O233zhERAKVxjnqYjBeu52vUO5659n7Y/GvzZdQfPgytu3eg369evIOSTL8mbs1DZk56yVUUy/VCgMTUQ+RqyASZ2HQUFw9RDSpmhAR0GiFN3iTSXzn0SGVPTXxbqibxQEOB5793xHe4ZAG4HCwGnuIynzQQ2SFFQzC659/D1GZcCm1IbMyYb/VIu0Fp4KISIpO5yyI/NRDRLzXd5BQvB753QybzX9HBxL/cB1yD9Sih8iLOURmCEttyCDjf9i9xVUQibMwaCiuHiINFUSE8Bfi7CEyUw9RwFg0cwigVsORX4Ln3v6CdzjEx/R6oVCRy2XVTqou88GQmcVZEKmggpz3R5+rh0gtzsKgoVAPESEiEuo8hY7FVHluBBGnli1aIKVnDADgqx+sNbQmgUavF57TsDC1x6lBKipzrqMa5oMeIg3v4TJAsj1EZldBJNJJ1VQQEUkJcy4Ma6OCKKBMvUeYa1HwZz72HzrMORriS2XOaif8GuNhrh6iCC9qGbNzQrUoCiJ3D1EE3zj8zOw8XYs2MpJzJFWjgohISmSo8A3UZqLDuAPJ84/dB1XjGMBux/QFe3iHQ3zIVRBFVFPtONiVHiJv5hBZRNVD5DyPm1qchUFDcRVEmghxFoJUEBFJiQ4TVpqwm/y3UjXxnlKpRK9BwmlXDvxuo8nVQaTM2f1TXUFksACu/txILxYrN8EEANCA84rndgtgF2KRag8RzSEiRATiIoSvmA4zFUSB5oPn+gMqFWw5RZjzwQre4RAfcfUQRVZT7ZQ4e4cUMkDnxcp5ZndBxLmHyNU7BEhqUrXDZnOfuoOGzAgRgbhoYS6Kw0yTcwNNx7ZtkXhTLADgszW0bkKwKCm59pBZqbMgitQC1cy5rhWTc8hMy7uHyFIiXCpDAXlArI3sE67eIQDQUEFECH/Jsc5vZBYqiALRo3cKPXyX9hfg2KlTnKMhvlBa6uohqrogKnGOLlVzda2JZsjMVRBpxFkUNBRTibDfSp0OChXndaCqQQURkZRGSQnCL1YbDOV+OsMr8Zm5Tz0IRVIUYLVh2ttbeYdDfKDGgsjZQxTlZR3jGjLT8h4yMzsLIqlNqHYWRGIdLgOoICIS07xpY/fv5zMyOUZC6kOpVKL7AOHb5e5NNA8sGLiGzKKqqXiKfdxDpIXOuzvylqVYuNREcw3D34xFRQAAbbR495sKIiIpsdHRgFyYiHDhYi7naEh9vP/0zYBCAWtWIeZ9TJOrA12Jc0ysuknVroLI2x4iI4R5ZzreBZG5WLjURPGMwu9MxcUAAB0VRISIg1KpBNTCPJTc/CLO0ZD66NGtG2K7xwMAFq4q4xwN8VZxsdBDFB1ddcVT5CyIor2sY670EHGeQ2R2vu9IbMjM5OohioriG8g1UEFEJEemEY7suFRo4BwJqa8HRwvPYfaeIqSdO8c5GuKN4mKh5ya6moqnyHlAYTX1Uq2ZnD1E3IfMXAWRNoZvHH5mpIKIEPGRa4U5KJddh6+QgDP/uQmQx0UCZgumvPUL73CIF1xziGrsIQqWITNToXCpkVhBVCjsty42lnMk1aOCiEiOQiOseFxcRqsdByqVUonOA4RZtts3cQ6GeKXI2QUUE1N1oVLo6iHyoo5hYOIpiFw9RFKbVO0qiGLEWwhSQUQkR6EV0r7YQOczC2TvPXkDIJfDnJ6PhV9+xzscUk/FzlnT1Q6ZOXuIqqmXasUMMxwQXu/cCyJTgXApsSEzk7MgoqPMCBERpbMgKjPSGe8DWb9beyLqBmFy9TvL8zlHQ7xVXQ9RgbOHKNaLOsbVO6SEEmp4cYZYXzA7h8y04h06agjlBUIhGEJDZoSIh9o5F0FP6zIGvLtHCm9hF3aVIDc3h3M0pL7CwtRQqxVVXlfok4JIeLGHIKT+d+Ir7h4i8RYGDcHoKoji4jhHUj0qiIjkqLXCOkTlRi9OjERE4f3nH4AsOhwwmvDY62t5h0PqKfYa1U6+84tLrBe1TLmzINJRQcSNq4eIJlUTIiIanTBURgVR4AsJCUH7/sKH6ebfOAdD6i22mmqn3AqYnMc+eNNDVC6WHiK75crZ7rXxfGPxs/J8YVibhswIERGdViiIzHTUfVB484m2gEwG49nLWLr6B97hkHqIj6+6ULnsXCpMrQDCvJj6Uw7hjkIRWv878QVX75BMIamTu1oMBtiMwthnSLx4C0EqiIjkhDgLIpOJeoiCwfCB/RDeUThp7+vLaB5RIIqLq7ogcg2XxYUAMi9ergZnQcS9h8h4WbjUxgIy6Xz8ll8W9luh0UAdFsY5mupJ5xkhxCnU2fVuNdNRZsFizDDh0zJtRykKnYf3ksBRXQ9RnrOHKMHLjp0rBRHnHiJjnnCpS+Abh58ZnAVRaHw8ZN5Utg2MCiIiOWHO914rHXYfND588X7IIkIBgxGPv76KdzikjuLjqy5ULjt7iKqpl2rNNYcojHtB5Owh0ol32KghGPKEQlDMw2UAFUREgiJChLS3mWhhxmARHhaGVn2FrvgNv3IOhtRZYmLVhYqveoj00AMAQsF5uMbdQyTuwsDXXAVRWGIi50iujQoiIjnRYcJ6J3YzFUTB5NVJqQAAw6k8rP6JDjkLJNX1ELkKomrqpVozuAsizj1E5ZeES524CwNfM1wS9juUCiJCxCUmQji5q8NE5zILJveMGorQtgkAA2Z/do53OKQOEqrpArrk4x6iMO49RM6CKETchYGv6V0FUYK4505RQUQkJyFaeHdlZiqIgs2QIcLl39sMKNPr+QZDai0pqepC5ZIPeoissMIMMwARDJmVS7MgcvUQhSUlcY7k2qggIpKTFBsOAGBmC+dIiK998uI9QKgOrNSAJ19fzjscUkvVzSHKdda03hRErt4hJZTQQlv/O/KFcueyECHiLgx8TZ8j7HdYcjLnSK6NCiIiOY0SnOfSsdpgdC4WRoJDbGwsWvSOAACs3cA5GFIrEREa6HSqKq9zFUTJ4fW//zKUAQDCEA4ZOB/yXZ4rXIaIuzDwNX2usN/UQ0SIyKQ2ufJmdD4zg2MkpCG8OFF40y07lof1m7fxDYbUqLr5QzbHlUnVyV6MdOndBRHn4TLmqDBkJu7CwNfKXD1EVBARIi5JCYnuZW8v5l7mHA3xtUfuHQPtdfEAY5i56BTvcEgNkpKq7v7JMwAMgEImrFRdX64eoghE1P9OfKE8D2B2ADJJzSGyGAwwl5QAAMJTUjhHc21UEBHJUSqVgFroor94qYhzNKQhDHROrj651QiT2cw3GHJNSUlV9xBllzmvDwMUXnxSlUE4mWo4vBh384XybOEyJBGQK/nG4keu+UOq0FBoIjgXpTWggohIkkwjFES5hXQkUjBaNGs0oNXAUVSG6fO+4B0OuYbkasbDXAWRN/OHAM85RFwZnAVRqLh7SXytLFvY7/CUFFGftgPgXBDt2LEDI0eORIrzH7Vu3TqP6xljmDNnDlJSUqDT6dCvXz+cOHHCo43ZbMa0adMQFxeH0NBQjBo1CllZWX7cCxKI5FrhG1pBSf0mVVPuilvjlEZoemsUAGDVz7QAZ0Viy93kaiqei86CqJGXdUwJhOEa7kNm+ovCpcQKotKLwn6LfbgM4FwQGQwGdO7cGQsXLqzy+vnz5+O9997DwoULceDAASQlJWHQoEEoKytzt5k+fTrWrl2LlStXYteuXdDr9RgxYgTsdru/doMEILnGWRCVWet1e8pd8Xvm/hgAQPHhy9i2ew/naMRDbLlbXUGUJYx0eV0QuYbMuBdEBmfBGNaEbxx+VpqZCQCIbBIA+83qoX///mzOnDmVthcWFrL+/fvX5y4ZALZ27Vr33w6HgyUlJbE333zTvc1kMrHIyEj28ccfM8YYKy4uZiqViq1cudLd5uLFi0wul7Nff/211o9dUlLCALDs7GzmcDjc281mM9Pr9cxkMnm01+v1TK/XM7vd7t5msViYXq9nRqOx3m0NBgPT6/XMZrO5t1mtVqbX61l5eXm925aXlzO9Xs+sVqt7m81mq3Nbg8Hg0dZoNDK9Xs8sFku92trtdvf/pyKTycT0ej0zm831autwONxtr34++/Tpw15++WWma/UhA+awO6d/yPR6PcvMzPTI3bo89wDYN998w/Ly8hgAVlxcTLnLxJG76mYfMGAOu+Gu/3q0DeTcvbptoOfuDz8crDJ3719tYpjL2Bs7q4+/Nrn7GpvLXmYvsIuWi3xzd/NEZvsfmH7HbEm97/4wZQp7AWC/PP98jW3rkruutq7cLSkpYd6qV0Ekk8lYXFwcGz16tMc/Kjc3l8nl8voFclVBlJaWxgCwQ4cOebQbNWoUe+ihhxhjjP3+++8MACssLPRo06lTJ/bKK69U+1gmk4mVlJS4fzIzMxmEAxpYXl6eu91rr73GALBJkyZ53D4kJIQBYOnp6e5tCxYsYADY+PHjPdrGxcUxAOz48ePubYsXL2YA2OjRoz3apqamMgBs//797m3Lly9nANjAgQM92rZr144BYFu3bnVvW7t2LQPAevXq5dG2e/fuDAD7+eef3ds2btzIALDOnTt7tO3bty8DwFavXu3etmvXLgaAXXfddR5thw0bxgCwpUuXurcdPnyYAWApKSkebceOHcsAsIULF7q3nTlzhgFgkZGRHm0nTJjAALD58+e7t2VlZTEATKlUerSdMmUKA8Bmz57t3lZUVOR+Piu+EcyYMYMBYDqdjikjOjPgBTbg0Q/cbSvm7uzZsxkANmXKFI/HUyqVDADLyspyb3Pdfty4cQwAO3LkCOUuE0fudh/1MgPmMMif9viwCeTcdb3vWiyWIMnd8CpzN7nvJIa5jH31l7C9Prl78PhB9jJ7gb3MXmAfLf6Ib+6uG8A2ToXk3ndHXHcdA8AeGDDAva1i7hYVFbm31yV358+f75G7viiI6j1ktnnzZuTm5qJHjx44f/58fe+mWrnOhZwSrzoZXGJiovu63NxcqNVqREdHV9umKvPmzUNkZKT7p0kgdOURn7n77rvB7KUAlqCkuNDn95/nPLMz5S5/M+7vCMAMyOxYsOob3uF47e67727Q910+uVv1gQ0G50Lyjb0Y6XKtQaSDDkpwPrJLn8n38TkxO4da1eGcJ7XXRn2qKJlMxi5dusRMJhMbP348i4uLY1u3bvVpD9Eff/zhHgqoaNKkSez2229njDG2YsUKplarK93XwIED2f/93/9V+1jVfVOhYYfg7ro1m81MJpOxzMxMduvHvzB0HM804eFsw4YNLC0tzSN3vRl2cPVgUO6KI3dvnreG4UUD67Fkl3t7IOduxffdYM3dsjI908wVhszOFVYff025e8p+kr3MXmAfsg/45q7DwdgirTBkdvGYpN5334iNZS8A7MKBAzW25T1kVq+S2XXonEajwYoVK/Daa69hyJAh+Pe//+11geaS5FzRMjc3F8kVzn+Sl5fn/vaSlJQEi8WCoqIij28reXl56NWrV7X3rdFooNFoKm0PDQ31OCxQrVZDrVZX2e5qKpUKKlXl5efr0jYkpPLqY0qlUlg3x4u2Op2u0jaFQlFlbHVpq9VWPi9QXdrK5fIq21b1/NSlrUwmq7KtWq2GTCaDWq1GmIYBY1egxV8P4I477qiUu3V57l3754ojwXlGZ8pdceTu0zcC9/0RggM5N+Gf9JO4rnm7gM7diu+7wZq7xVY1zABkABpFVB9/TbnrmlAdhUi+uVueB9hNUMiB0MRWgEJTfVunYHjftZaXw1JQADWAhOuuu2ZboG6562rry4NQ6jVkxhjz+Pull17CihUr8O677/okKABo3rw5kpKSsGnTJvc2i8WC7du3u1903bp1g0ql8miTk5OD48ePX/OFSaTLlbshcmGxviajHvR57jZr1oxyV0TG9huNRrEZsNtVmL/nL97h1Js/3nfFkrsXioXL5HBAraj//RRDuKMIRHodk1fKLgiXoSmViqFgVpIhnBpJHRYGTSTn56AW6tVDlJ6ejvj4eI9td911F9q0aYM///yz1vej1+vxzz//eNzvkSNHEBMTg6ZNm2L69Ol444030KpVK7Rq1QpvvPEGQkJCMH78eABAZGQkHn30UTz77LOIjY1FTEwMZsyYgY4dO2LgwIH12TUS5Fy5GyoXDrcvt2tx1123+yR3jx49CkD49kO5Kx4KhQKjo3fio4L78VNBH9jtdigUXnzKctKQ77tiy93zwtJBSPXyM9RVEEUjxrs78lbZeeEyvBnPKPyuKD0dABDVvLnoF2UEUL85RL6ydetW90zzij8TJkxgjAnjjLNnz2ZJSUlMo9GwPn36sGPHjnnch9FoZE8++SSLiYlhOp2OjRgxgmVkZNQpDtfhn74YgySB4fEVKxjmMtb9s731un11uevKI8pdcTmf9Q9TvW5mmMvYsl9X8Q6Hq0DI3bf/YAxzGRu3xqtdZYvZx+xl9gI7zo7V3LghHZzP2EIw9tv4mtsGkf0ffcTmAOybUaMa7DF8+R4oY+yqflgJKi0tRWRkJEpKShAh8nOtEN94ftVXePvvB9E+6SiOP9bJJ/fJI48od2uv99Lt2JXZF72bbMOOh/vxDkdUxJa7UzcAH/0JzLoFeGNA/R9jPuZBDz3+D0+gERp7GbEXtk8Bji8Cur0A9HidXxx+tun557H77bdx87/+hSHvv98gj+HL3KVzmRFJClcK3wNMjsqTDklweiRZOCR8b24vZOakcY6GXEt6sXDZIvqaza7JAgv0zkP6YxDrfVDeKD0nXEa05BuHnxVXGDILBFQQEUmKUApzSEx2Koik4qFBY5EYnQ2rVY352+hUHmJ2rki49KYgKoZwJ1pooUPlo7j8qsRVEAVGYeArhc65ajEtA6MQpIKISFKE81xmJhsVRFKhUCgwImY7AGBdUW/O0ZDq2B2+6SEqhLDoKvcJ1Q7blUnVES24huJPjDEUpgk9sdFUEBEiXtE6YT0Ri006h8AS4PlenaBQ2JCVn4pvt3zPOxxShYtlgMUOqORAEy+mhBSgAAAQy3u4TJ8JOKzC4fbh0llZvjw/H5ayMkAmQzQNmREiXjFhYQAAs4V6iKSkdfP26J68HwDwSQZNQhejf5xn02keDSi8+IQqcvYQxfDuISpxLnEQ0QKQSecjt/DsWQBAROPGUFaxQKQYSefZIaSCmAihL95i1cBqs3COhvjTxITzAIBdubci95I0zy8lZmedBVErL+uYfOQDEFFBFBkYw0a+UuAsiGJbt+YcSe1RQUQkKTH6yskr8wvyOEZC/G3ykLsRF5kHs0WLt7du4x0OucpZYaQL13lZxxS6h8zivIzIS8VnhMuo6/nG4WeuHqKYVq04R1J7VBARSYqJTgDgAABcLqKCSEoUShWGxW4FAHxf1JNzNORqZ5w9RK29KIissKIEwnLX4imIAqenxBcKzgj7HUsFESHiplAooFELQ2UFZUWcoyH+9lz31pDL7Th/+Tr8tGs973BIBX87e4iu92IudCEKwMCghRahqPqktn5T9LdwKbGCKP/0aQBAXJs2nCOpPSqIiGSpVcIJXgsNBs6REH/r0KYLbkg6BAD4KC3wzmsWrCx2IM3ZQ3S9Fx07l3EZABCHeMjA8RxaNhNQJixOiKjAKQy85bDb3T1EVBAREgA0ShMAoMRk5BwJ4eH+eOGb+/ZLfVBcnM85GgIIxZCdAWFqoFF4/e8n310QcR4uKzkLMAegiQJCEmtsHiyKz5+H3WyGQqNBZGoq73BqjQoiIllaZ0FUbLZyjoTwMHXIWESFF8JoCsH8jb/wDocAOOWsS6+PBbw5ObqrhygeCT6IyguFp4TL6Lbe7VCAyT8l7Hds69aQKwKnB5YKIiJZWoVQEJVZHZwjITxoNFoMiRMmV39XdCPnaAhwpSBqH+/d/VyGcKBEPLy8I28VnhAuo9vyjcPP8k4I+53Qvj3nSOqGCiIiWe6CyC6db27E0zM3pEAmc+DspTb4fd8m3uFI3kmhYwdtvRjpcsDhXoOIew9RkbMgigmswsBbl50FUTwVRIQEBp1cmDuktwdOly7xrRs79kSHpL8AAP87beYcDTnuLIg6eFHHFKIQNtigggrR8OJkaL7g6iGK6cA3Dj9zFUQJHQJrv6kgIpJ1pSBScY6E8DQu9jgA4Pe8vtDrSzhHI102B3DaOWTmTUGUh0sAhN4hOc+POJsJKBYWJ5RSD5HDbsflkycBUA8RIQEjRC70CJQzNedICE/Th92J8NASGIzhePfXH3iHI1lnCoTD7sPUQNPI+t/PJeQCABK4D5edApgd0MQAoSl8Y/Gjwn/+gc1kgiokBDEBcpZ7FyqIiGTpZEJBZGR0xnsp02lDMTB+GwBgdWEXvsFI2DHngvEd4gG5F9P6Ljl7iJKQ7IOovFBwTLiM6ySpI8wu/SUMQSd06ACZPLBKjMCKlhAfCpULK1UbHIFxJmbScJ5uL3RJnMxtj92Ht3OORpr+Ejp20NHL5XpynT1EieC87k++UBggpiPfOPzs0tGjAICEjoG331QQEckKlQvrD5moIJK83t36oW3ScQByvHecTuXCw19Cxw5u8KKOMcPsPqkr9x6i/CPCZby0eh1zDx8GACTdcAPfQOqBCiIiWWFyYf0ho0PHORIiBndHC2/km/L6wWgq5xyN9BxxFURJ9b+PXOQAACIQwfccZowB+UI+Ie4GfnFwkOMqiLoEXiFIBRGRrHAlAwCY7NRDRIBnhwxHiE6PUkMU/vfLGt7hSMolPZBdBsgAdPKihyjHWRBx7x0qywDMRYBcCcS04xuLH+kvXYI+JweQyZDUuTPvcOqMCiIiWREqIf2NduohIkBEeAxuSxDmD31TEFiHCwe6w875Q61jhaPM6isH2QCAZHA+quvyQeEypgOgkM5BGzmHhBMmx7ZuDXVYGOdo6o4KIiJZkWolAMBsk84bFrm2aa2FnDiacwMOntjHORrpOCh07KCrlx072bgIAEgRS0EU341vHH6W/eefAICU7t05R1I/VBARyYrSCT1DZhsNmRHB4J6347qEv8GYHO8dyuQdjmT8KXTsoLsXBZEFFvdJXVPQyAdRecFVECVIqyDKoYKIkMAUHSpMujRbqYeIXHFXzH4AwC8F/WC1WThHIw1/OnuIunlREOUgBw44EIYwRCDCN4HVB2PAJSGHEB+YhUF9uXuIbgzMkyVTQUQkKy4iBgBgsahht9s5R0PE4rlBg6HVlKOoNA6LNnzLO5ygl1sGZJUKizF282Kk6yKyAACN0BgycFwIsSTNOaFaDcQF3sTi+irNykJZdjZkCkVAHnIPUEFEJCw+2rW0vxwFRXlcYyHiERudiD6JOwEAX12+jnM0we+gc0J12zjvJlRfKYg4D5fluXqHugAK6ZwWKGufMOcusVMnqEM5LnngBSqIiGTFxsS7f79cdIljJERsprYQhsoO5XTH8TOHOUcT3P4U5kGjR2Pv7icLwpyvJmjqZUReyt0rXCbezDcOP8vaK+x34x49OEdSf1QQEclSKdVQq4TzmeWXFnKOhojJqD4j0Sw+DQ6HAu/sP8M7nKB2wDl/qIcXHTt66FGEIsggQyN4WVl569Ie4TKpJ984/OyisyBqdHPgFoJUEBFJcxVEhWV6zpEQsbkjSvhgW1/Qj+aYNSDXEWbe9BBlIgMAEI94aMHxqFGb8copOxKlUxDZzGZcPHAAANCkZ+DuNxVERNI0KhMAoMRk5BwJEZvnb+sLtdqE/JJEfPbrat7hBC2jFYjUAO3ia25bnQxcAAA0RaqPoqqnS/sBhw0ISQbCOQ/d+VHOwYOwm80IiY9HTKtWvMOpNyqIiKRplUJBVGSxcY6EiE1SYhPckvQHAGDZJel8uPHQo7FwlFl9ZTh7iLjPH8rZJVym9AZkHI9087OMP4TXSdNbboEsgPebCiIiaVqFUBDpLTQkQip7rEkJAOBAzk1IO3+aczTBq7cXdYwVVvcK1alo5puA6stVECXfyjcOP8vcJex3k1tu4RyJd6ggIpKmVQhDZaX2wP1WQxrO3f1Go1FMJux2Fd76g442ayi3Nqn/bbOQCTvsCEc4ohHtu6DqymEDcncLv0uoIGIOBy7sFJapSO3Th3M03uFaEO3YsQMjR45ESkoKZDIZ1q1b577OarXi3//+Nzp27IjQ0FCkpKTgoYceQnZ2tsd99OvXDzKZzOPnvvvu8/OekEClkws9RAZH3V4KlLvSoFAoMDpmBwDgp8I+QTG5Wmy5q1IAN3lxhNl5nAcg9A5xXZAx/whgKQXUkUBsJ35x+NmlY8dgKiqCOiwMyV278g7HK1wLIoPBgM6dO2PhwoWVrisvL8ehQ4fw8ssv49ChQ/j+++9x5swZjBo1qlLbyZMnIycnx/3zySef+CN8EgRcBZHeXrcF1Ch3peP5vj2gUlqQW9QIKzZ/zzscr4ktd7unADpVvW4KADiPdABAczSv/534wsVtwmVKH0Cu4BqKP13Yvh0A0PTWWyFXKjlH4x2u0Q8dOhRDhw6t8rrIyEhs2rTJY9sHH3yAm266CRkZGWja9Mqgc0hICJKSkryOx2AwIDw83D0pzGKxwGq1QqlUQqPReLQDAJ1OB7lcqCmtVissFgsUCgW0Wm292paXl4MxBq1WC4VCeEHZbDaYzWbI5XLonCcjrWtbo9EIh8MBjUYDpTNh7XY7TCZTndrKZDKEhIS425pMJtjtdqjVaqhUqjq3dTgcMBqFIavQCiubms1m2Gw2qFQqqNXqOrdljKG8vByAkBtXP58V2+pkzqPMLAowxmr93N9+++0euWsymWA2C4fwU+4GV+4mxjZC9/jd2JPTD59lx+MhiCN3a2obKLl7U5KlTq+9ivlYbi1HmuUfOBQONNO2uGbbBs/dc5uhA4CUvgDEkbv+eN89v3UrAKBpnz7u/3tD5W7F59PV1pW7PsFEAgBbu3btNdts2rSJyWQyVlJS4t7Wt29fFhcXx2JjY1m7du3Ys88+y0pLS695PyaTiZWUlLh/MjMzGQAGgOXl5bnbvfbaawwAmzRpksftQ0JCGACWnp7u3rZgwQIGgI0fP96jbVxcHAPAjh8/7t62ePFiBoCNHj3ao21qaioDwPbv3+/etnz5cgaADRw40KNtu3btGAC2detW97a1a9cyAKxXr14ebbt3784AsJ9//tm9bePGjQwA69y5s0fbvn37MgBs9erV7m27du1iANh1113n0XbYsGEMAFu6dKl72+HDhxkAlpKS4tF27NixDABbuHChe9uZM2cYABYZGenRdsKECQwAmz9/vntbVlYWA8CUSqVH2ylTpjAAbPbs2e5tRUVF7ufTYrG4t8+YMYMBYDNmzHBvG7V0HcNcxjBkASsqKnJvnz17NgPApkyZ4vF4SqWSAWBZWVnuba7HGjduHAPgkZ8ulLtXBGTuNunFMJcx1Rtmlpl9ThS5a7FY3G0DOneb3lrv3H1pwUsMALthfGfmYA73di6521LO2EIwlneIMSai3G3A991XXn6ZzYuMZHMAduL33/2au/Pnz68xd+sqYPq3TCYTZs6cifHjxyMi4sqZjO+//340b94cSUlJOH78OGbNmoW//vqr0reciubNm4e5c+f6I2wicqEy57cLdViDPQblbhDI3I1wpENvS8Xne37GuI5DeEfkF37J3Yv76x1fAfIBAGEI4zt/CACYA9DGSuqErmU5OZCXlEAbFYWkzoG/3zLGGOMdBADIZDKsXbsWY8aMqXSd1WrF3XffjYyMDGzbts3jhXm1gwcPonv37jh48CC6VjPBy2w2e3SzlZaWokmTJsjOzkZSUhINOwRo1219hh2+2vg0trdJQZuMv/HsLZ/W67mXyWT45ptvMGDAACQkJKCkpMSdo5S7wZO7Cze9h5zb1GipP4upSYu5525NbaWQu4usH+KC5TxGK8agp/aWa7Zt0NzdPQfyg69D13YsMORbAOLK3YZ639333nvY+coraDNmDO75/nu/5q6rbXl5eaXcrS/R9xBZrVbcc889SE9Px5YtW2rc4a5du0KlUuHs2bPVvjA1Go3HP9slNDTUY1EptVrtfgKvbnc1lUrlTrj6tq2YyC5KpdL9Aqlv24ovPBeFQlFlbHVpW/FNpT5t5XJ5lW2ren7q0lYmk1XZtqrnM0ljRkrTYkQZzfV+7gFh/66Og3I3uHJ30s2jsTBkBS5HJOLUoc/RvuukSm39mbt1aQsEX+4aYUSuKgdqlRpt0f6abYEGzt38bYAaQOOB7u1iyt2KfPm+m/H77wCA5gMH+j13XW19eeSnqNchcr0oz549i82bNyM2NrbG25w4cQJWqxXJycl+iJAEOhWENzib2rdHhVDuBp/Y5E5odioLAPCXYwvnaBpOoOTuOaSBgSEO8YhClN8etxJzyZUz3De9nV8cfmYuK0Omc4Xq64YExxAy1x4ivV6Pf/75x/13eno6jhw5gpiYGKSkpGDs2LE4dOgQfv75Z9jtduTm5gIAYmJioFarkZaWhhUrVmDYsGGIi4vDyZMn8eyzz6JLly64JcBXzCT+oVGGArDBqqnbS6Gq3D169CgAoQudcjc4tSvriDSU4VzHFOiLshAWzfnM6vUQLLn7D84CAK7DdX57zCpd3AIwOxDVGohoxjcWPzq/dSscNhuiW7ZETMuWvMPxDa+nZXth69at7pnmFX8mTJjA0tPTq7wOFWb4Z2RksD59+rCYmBimVqtZy5Yt2VNPPcUKCgrqFEdJSYnPZqmTwHJwzzvsZfYCey//8TrdrrrcBcCOHj1KuRukbDYze6fgCfYye4Ft3Dql5huIUDDkroM52NvsLfYye4H9zU7X+fY+tWWycHTZ9ml84/Czn594gs0B2M9T+L4OfPkeyLWHqF+/fmDXmNN9resAoEmTJtjuXBSKkPrQqKMBFMKqrtvKcFXlbmlpKSIjI5Gamkq5G6QUCjWuO2HAwd7RONPSiEG8A6qHYMjdPFxCKUqghBLN0aLmGzQUxoALG4Tfmw3nF4efMcZw5uefAQCthwfPfot6DhEhDU2nE+ZHWKqYyEdIVXo0mwK53Y5LTZLx918reIcjSWdwBgDQHC2gghfLXHsr/y/AcBFQhrgXZJSCvOPHUZqZCaVOh2b9+/MOx2eoICKSFhKSAACwqlRwOAL/PFWk4SU2uRlN/84EABw2reccjTT9jdMAgOtxPd9ALgi9JGg8AFBWPqIrWLl6h1oMGABVFUfIBSoqiIikhYQLR8UwuRwm/WXO0ZBA0bawFQDgXKckmPT5nKORFgMMyEQGAKA12vANJv0H4bJ55XO9BbMzP/4IAGgVRMNlABVEROJcBREA6MtyOEZCAsmNN89EeEkJTDod9hx8jXc4knIGf4OBIQlJfA+3118E8v4EIAOajeQXh5+VZWcja6+wzMD1VZz0N5BRQUQkTanSQGW1AABMhlzO0ZBAoVRpcd2xEgDA36nFfIORmFM4CQBog3Z8Azn/k3CZeDMQksg3Fj/629k71OjmmxGeksI5Gt+igohInspiBQCUm2jog9TeTSmPQuZwILtZI5w7tY53OJJggQVpENZQase7IEpbI1y2uINvHH52eu1aAECbO4Jvv6kgIpKnNgs9RGZTMd9ASEBp1KIfmpwVVq4+WPIt52ik4SzOwAorohGNRCTxC8RUAFzcKvze4k5+cfiZsbAQ6VuEVdrbVHHe0UBHBRGRPKWzh8hkKeYbCAk4bfKElarTOsbDYizhHE3wO4kTAIB2aM/37PbpPwqrU8d2AqI4r5TtR6fXrYPDZkNip06Iu57zEX4NgAoiInlKiw0AYHHoOUdCAs3NN72IUL0e5aGh2HOAJlc3JCus7sPt26ED32D+WS1cthzLNw4/O/mt0BPa7u67OUfSMKggIpKntAjrD5kd5ZwjIYFGpQlDy6MFAIC/Uy5xjia4ncUZWGBBJKLQCI34BWIqALI2C7+3updfHH5mLCzEuc3CflNBREiQUpmFgsgqM3OOhASiG2PHAwAutmyMzLMbOUcTvI5BOAFtB3SEnOdHV9r3gMMGxN0gnNBVIk5+950wXNa5c1AOlwFUEBECpVU4d5NVbuEcCQlEqdcPQ+O0LDCZDPsvf8k7nKBkhhln8DcAoCM68g3m7NfCZav7+MbhZ8dWCKep6Xj//ZwjaThUEBHJUwpzqmGV2/gGQgJW66w4AEBaxxhYLTT06msncQJWWBGHOCSD49o3ZZnAxW3C763G8YvDz0oyM3Fhxw5AJkPHccG731QQEclTWYWjVWwKB+dISKDqceOL0JWXQx8ejv373uAdTtA5ir8AAJ1wA9+jy85+I1ym9AHCm/KLw89cvUOpvXsjonFjztE0HCqIiOQp7QoAgJVOeE/qSRsSgxZHhUnVp+LP8w0myJSiBOeQBgDohM78AmEM+Ns5JNo6eIeNrsYYw19ffAEA6PTQQ5yjaVhUEBHJUzlUAACbiuM3TxLwuocJC/Rltm6C7PSdnKMJHn/hLzAwpKIZYhDDL5DLB4HCE4BCC1x3D784/Cz7wAHknz4NpU6H9kF6dJkLFURE8lRM6BqyqenlQOqvZYexSD5/EUwux/6Ln/IOJygwMBzGIQDADejCN5jTy4TLFncAmiiekfjVkWXLAABt77wTmogIvsE0MPoEIJKnkocAoIKIeK/1BeED458OEbDb6ahFb2UiE/m4DBVUaM9zMUabCTjjPLqszUR+cfiZtbwcx74W9vuGiRP5BuMH9AlAJE8jCwUA2NRKzpGQQNez64vQmowojYrEn3vf5B1OwDuEPwEA7dEBWmj5BZK2BjAXAWFNgcYD+MXhZye+/RbmkhJENW+O5rfdxjucBkcFEZE8jSocAGDVqDhHQgJdSHgimh/LBQCcjP6bczSBzQwzjuMYAKAruvMN5qRzCLTdo4BcwTcWPzr0qbDfXSdNgkwe/OVC8O8hITXQqqMBADY1FUTEe13UQwEAF65vgrysPzlHE7iO4ggssCAOcUhFKr9Ais8A2dsBmRxo+wi/OPzs8smTyPzjD8gUCtzw8MO8w/ELKoiI5Gm1sQAAKxVExAfadH4QiVm5cCgU2Jv+Ie9wAhIDwwHsBwB0x0181x46vki4TB0GhAXvGjxXO/DRRwCA60eORHhyMudo/IMKIiJ5ISEJAACzWgOHw845GhIMWqUJRy7+005LOVUPWchELnKhhJLv0WVWA3BqqfB7h6n84vAzc1kZ/vpSWHPpxqnS2W8qiIjkhYQnAQCYXA6LsZhvMCQo9Oo0C2qLGcWxMTi0713e4QScfdgLAOiITghBCL9Azn4DWEqAiBZA08H84vCzo199BUtZGWKvvx7NB0hnEjkVRETyQiIauX8vK8nkGAkJFmHRTdH8WDYA4EToX5yjCSxlKMMJHAcA3Iwe/AJhDDj6P+H3Dk8Ic4gkgDGG/QsXAgBunDIFMpl0FqyVxjNMyDWoVFoorcIZXo2GPM7RkGDRifUFAJxv1xiFuSc5RxM4DmA/7LCjMZogBY1qvkFDubgVKDgGKEOAto/yi8PP0n77DfmnTkEdHi6JtYcqooKIEABqi7CInrH8MudISLBo33US4nLyYFcqsedvGjarDSusOIB9AICe6MU3mL/+K1y2mQhoo7mG4k97FywAAHR59NGgX5n6alQQEQJAZRF6iMzmIs6RkGAhlyvQ6ozw+z9tlTS5uhaO4SgMMCASkWiH9vwCKT4DnP9J+L3TNH5x+FneiRNI27gRMrkcNz/1FO9w/I4KIkIAKJ0FkdFawjkSEkx6tnsOSqsVBQlxOPbnR7zDETUHHNiNXQCAm9ETCnBcAPHwuwAY0GwEEN2GXxx+tueddwAAbcaMQXTz5pyj8T8qiAgBoLLYAAAWexnnSEgwiYpvjeYnsgAAx1R7OEcjbmdxBnnIgwYadMeN/AIpvwT8/YXwe5fn+MXhZ6VZWTi6YgUAoNfzz3OOhg8qiAgBoDQ7CyJWzjkSEmw6mIQP9/QOjVBacI5zNOK1CzsBCAsxcj1v2dEPALsZSLgJSO7NLw4/27NgARxWK1L79kXjm2/mHQ4XVBARAkBpcQAALMzEORISbDrf9BRiLhfAqlJj9/G3eIcjShdwARdwHgoo0BM9+QViLgGOCYeco+u/AYkccm4sLMShxYsBALf8+9+co+GHCiJCAKicBZFNbuEcCQk2crkC150S8upsK5pYXZUd2AYAuAFdEIFIfoEc/0hYiDG6HdBiDL84/Gzv++/DotcjsXNnXDdkCO9wuKGCiBAACmFONaxK+sAivtej1b+gsNlwOSURJw59xjscUclBNs7iDGSQ4Vb04ReI1QD8JRxyjm6zJLMQo6m4GPv+JyxA2efllyW1EOPVpPGME1IDpU14E7DKHZwjIcEoLrkzmp0SJlf/5djCORpx2emcO9QRnRCLWH6BHPsIMF4GIloCre7jF4ef7fvgA5hLShDfvj3a3nEH73C44loQ7dixAyNHjkRKSgpkMhnWrVvncf3EiRMhk8k8fnr08FzK3Ww2Y9q0aYiLi0NoaChGjRqFrKwsP+4FCQYqu3CIr03FatWecpfUVbuyjgCAcx1ToC++yC0OseXuWfwNGWToi/713SXvWQ3A4fnC791fAuRKfrH4kam42L0QY5+XX4ZMLu0+Eq57bzAY0LlzZyx0njelKkOGDEFOTo77Z8OGDR7XT58+HWvXrsXKlSuxa9cu6PV6jBgxAnY7DX2Q2lPZhTdAm7p23cWUu6Suut78DCILi2DRaLDnrze4xSHG3O2ITohHfL1u6xPHPgRM+ULv0PUP8IvDz/a89x5MRUWIb9cO7caO5R0Od1zL4KFDh2Lo0KHXbKPRaJCUlFTldSUlJViyZAm++uorDBw4EACwfPlyNGnSBJs3b8btt99ep3gMBgPCw8PdY6gWiwVWqxVKpRIajcajHQDodDrInRW11WqFxWKBQqGAVqutV9vy8nIwxqDVaqFQOHssbDaYzWbI5XLodLp6tTUajXA4HNBoNFAqhafcbrfDZDLVqa1MJkNIyJUzT5tMJtjtdqjVaqhUqjq3dTgcMBqNAIDQ0FB3W7PZDJvNBpVKBbVaXee2jDGUlwuHz4eEhFR6Pqtsa3MWRKraPfe33367R+6aTCaYzWZURLlLuXt12+tOGHCwdzTOtjCij69yt5q2gZK7MiZDH9YPcH4X8XvuFuWA7XkTWgeguPFlQK6URO4aLl929w71f/VVWG022Ewm/77vVtO2Ns+9q+3VuesVJhIA2Nq1az22TZgwgUVGRrL4+HjWqlUrNmnSJHbp0iX39b///jsDwAoLCz1u16lTJ/bKK69U+1gmk4mVlJS4fzIzMxkABoDl5eW527322msMAJs0aZLH7UNCQhgAlp6e7t62YMECBoCNHz/eo21cXBwDwI4fP+7etnjxYgaAjR492qNtamoqA8D279/v3rZ8+XIGgA0cONCjbbt27RgAtnXrVve2tWvXMgCsV69eHm27d+/OALCff/7ZvW3jxo0MAOvcubNH2759+zIAbPXq1e5tu3btYgDYdddd59F22LBhDABbunSpe9vhw4cZAJaSkuLRduzYsQwAW7hwoXvbmTNnGAAWGRnp0XbChAkMAJs/f757W1ZWFgPAlEqlR9spU6YwAGz27NnubUVFRe7n02KxuLfPmDGDAWAzZsxwb7NYLAwAa39vO/Yye4EtSpvAGGNs9uzZDACbMmWKx+MplUoGgGVlZbm3uR5r3LhxDAArKSmh3GWUuy4Vczc3Yy+bbfs3e5m9wB771xif5C4AVlRU5N4eaLk75MPBfHM3KVLI3f80Y8xuY4xJI3dDNRo2B2CfdO3KHA4Hl/ddb3J3/vz5lXLXW6IeMBw6dChWrFiBLVu24N1338WBAwdw2223uSvC3NxcqNVqREd7nngvMTERubm51d7vvHnzEBkZ6f5p0qRJg+4HET+LXjgs2qbxzekCKHdJVRKb3IymfwtzbbQ32ThHUzV/5+7uN/c23M7UpDwPsJQKv3d4ApBzPF2In9mdz2f/116T9JFlHrwuqXwEVfQQXS07O5upVCq2Zs0axhhjK1asYGq1ulK7gQMHsv/7v/+r9n6q+6aSnZ3NHA6Hu53ZbGZ6vZ6ZTCaP2+v1eqbX65ndbndvs1gsTK/XM6PRWO+2BoOB6fV6ZrPZ3NusVivT6/WsvLy83m3Ly8uZXq9nVqvVvc1ms9W5rcFg8GhrNBqZXq/3+DZQl7Z2u939/6nIZDIxvV7PzGZzvdo6HA5326qez6raHl3/Bju0qSM7tLyVR9vaPPcA2DfffMPy8vKq/aZCuVu/tsGYu39umc3+/L0zu/SOmhXnZnmdu9W1pdytRdvtU5nhPTD9l12YrULeBHvufjNuHHsBYMv69XP/73m873qTu66218rdugqoqfTJyclITU3F2bNnAQBJSUmwWCwoKiry+LaSl5eHXr16VXs/Go3GY3zSJTQ01KNSVqvV7jHPq9tdTaVSucdo69u24tivi1KpdI8p17dtxbFqF4VCUWVsdWlbcRy+Pm3lcnmVbat6furSViaTVdm2qufT1TYppBHiTxxDaami2rZA1c8nIOxfVTnlQrlbv7bBmLtdbn0B+rdfQ0SkHRm/vIHIiR+6r6tP7tamLUC5W6lt8RngxCcIUQPo/y5QIf+COXfzjh3D3ytXQg1g4Pz57v89j/fd2rQFqn4+XW19eRCKqIfMrlZQUIDMzEwkJycDALp16waVSoVNmza52+Tk5OD48ePXfGEScjVleBwAQKVsmHWIKHeJi1ylRoFSOEeWKv1rztHULGhzd89MwGEDUocDjTke8u9HjDFsfv55gDF0uO8+NLqR40l0RYhrD5Fer8c///zj/js9PR1HjhxBTEwMYmJiMGfOHNx1111ITk7G+fPn8cILLyAuLg53OBePioyMxKOPPopnn30WsbGxiImJwYwZM9CxY0f30Q+E1IYyQjjkV62p3TpEVeXu0aNH3df95z//odwl1Yod8yYcv/VAckIxio5sQvQNg/z22JS7AC5uB86tFVaj7imd88udXb8eaRs3QqFW47bXX+cdjvh4Pejmha1bt7pnmlf8mTBhAisvL2eDBw9m8fHxTKVSsaZNm7IJEyawjIwMj/swGo3sySefZDExMUyn07ERI0ZUalOTkpISn41BksBkvHSesYVgbCGYrbysxvbV5S4AlpubS7lLapT1SjxjC8HOvXGTXx9X8rlrtzH2TWfh9b71cf8+Nkc2s5n9r1UrNgdgm/79b97h+Iwv80jGGKvdV+IgVlpaisjISJSUlCAiIoJ3OIQDu7kcis+EceryO84iJOW6Ot8Hjzyi3A1cWd/MQuPCN1FukEEzrRQKXRi3WCSVuyc+BbY9BqgjgQfOAjqOC0L60e5338WmGTMQmpiIaWfPQhMezjskn/BlHgXUHCJCGopCEwKb6wSvxdUfOkyIryTf+TL0ZXKEhDJkfz+HdzjSYCoC9r0o/H7THMkUQ/rcXOz4z38AAAPeeCNoiiFfo4KIECeLRTjawqYv4BwJkQKFJgT5uFn4/cwyvsFIxf6XhRO4RrcFOkzlHY3fbJwxA+bSUqTceCNumDiRdziiRQURIU5Wq/BysJflc46ESEX0COGcZslxBSg9uYtzNEHu8iHg+CLh9z4fAorKh+sHo/StW3FsxQpAJsPwjz6S/Alcr4X+M4Q42ZwneLUbqIeI+Edkh37IyYuGTA4U/DSLdzjBy2EHtk8BmANoNU4yh9nbLRZsmCr0hHV//HGkdO/OOSJxo4KIECe7w3miREMR50iIlFhbPggAiGe74bCYOEcTpE58DFzaB6jCgVve4R2N3/zx9tvIP3UKIfHxdJh9LVBBRIiTjTnP8Gwq4RwJkZKUsa+i3CBDWLgD2WvpQ8vn9BeBPc7et57zgNAUvvH4Sf7ff7snUg95/33orjr3HKmMCiJCnBwQlqJnVBARP1KGROCStavwx8lP+QYTbBgDdk4DrGVAYg+g/eO8I/IL5nDg58ceg91iwXVDhqDDuHG8QwoIVBAR4uSQCef9YeZSzpEQqYm8fS4AICXuEsr++ZNzNEHkn2+FFanlSqD/Ysmczf7gp5/iwo4dUIWGYvjHH9PZ7GuJCiJCnBxy5wkWrWV8AyGSE9N9OHLzIiCXAwXrZvIOJzgYLwM7nxR+7/oCENuRbzx+UnzhAjbNmAEAuO211xCVmso5osBBBREhLkrnGZWtBr5xEEmyNBWGNaIt28HsNs7RBIGdTwlFUUwHoPuLvKPxC+Zw4MdHHoFFr0fTW2/FTdOm8Q4poFBBRIiLSjh1gsxOBRHxv+R73oDJKENkpA05P77NO5zA9s+3wNmVwslbBywFFGreEfnFn598gvQtW6DU6TB66VLIFdIYIvQVKogIcVELy9nL7EbOgRApUoXHINfUAQBgP/Ih52gCmCEH2OacPN11FpAgjbV3Cs6exabnngMADHzrLcRcV/fzMUodFUSEOMk0QkEkZ7QWDOEjfMArAICU2IswZJzgHE0AYgzY8ihgLgTiugA3vsI7Ir+wW61Y+8ADsBoMaNavH26aKp3TkvgSFUSEOMm0kQAABcycIyFSFdtzLPIuh0KhAC6veZ53OIHn+CIg4xdAoQEGfiWZobIdr76Ki/v3QxsVhTFffkmn56gn+q8R4iTXRQEAFDIL30CIpBmT7wIARBo2gTkcnKMJIAXHgT+eFX7v+SYQ255vPH6SuXs3djpXoR7+8ceIbNKEc0SBiwoiQpwUITEAAKWCjvAh/CTf8xbMZiA62orcXz/gHU5gsBmBjeMAuwloOhTo9C/eEfmFsagIa8aNA3M40OnBB9Hh3nt5hxTQqCAixEkR6iyIlFQQEX7U0UnI1bcBAFj3v883mEDxxwyg8DigSxCOKpPAQoSMMfz4yCMoychAdMuWGLZwIe+QAh4VRIQ4KcPjAAAqJQ1TEL50vYXFGVOizsOYk8Y5GpE7uxo4/pHw+4AvgJBEvvH4yf4PPsDpdeugUKtx9+rV0ERE8A4p4FFBRIiTMiIeAKBSM86REKmL7/sg8gu0UKqAS98+xzsc8Sr+B9g6Sfi96ywgdQjfePwk+88/sdG5GvWgd95BcteunCMKDlQQEeKkihK+WSqVgN2o5xwNkTKZXA597EgAQHjxBppcXRWbEfjtHuFUO8m3Ajf/h3dEflGen4/Vd90Fh9WKNmPG4KYnn+QdUtCggogQJ3Vkgvt3S+lljpEQAiTd/TasFiA21oy8LUt4hyMujAHbnwDyDwPaOGDwSuEErkHOYbfj+/vvd88bGr10KZ241YeoICLESaENhc05n9paksc3GCJ52oRU5JS2AACY/qBTeXg48TFw+gvh1By3rwLCGvGOyC+2z52LtI0bodTpcO/330MbFcU7pKBCBREhFVgtwrctW8klzpEQAmhuFtbVSY44C3N+FudoRCJ3D7DTeVh9j3lA49v4xuMnp3/4ATtefRUAMHLxYiR26sQ5ouBDBREhFVitwkvCpi/iHAkhQMLgx1FYqIZaDeSs/jfvcPjTXwR+uRNwWIGWdwFdpDHhPO/4cax94AEAwI1PPolOzt+Jb1FBREgFVrswD8FuyOccCSHC5OrSCOHIqdDLazlHw5nNCPwyBijPBWI6ALdJY72h8oICfDNqFCx6PZr174/b33uPd0hBiwoiQiqwuwsi6iEi4pAwdj5sNiA+zojLO1bwDocPxoAtk4C8PwFtLDD8R0AdzjuqBme3WvHdPfegOD0dUc2b4+5vv4VCpeIdVtCigoiQCuxMOBkkK6eCiIhDSKPrkVMknJ/KsO0NztFwcvB14OzXwpFkQ74DIprzjqjBMcawYepUpG/ZAnVYGMb9+CNCYmN5hxXUqCAipAI7NAAAh7mEcySEXKHs9hQAIDn0JCzFEjsC8sw3wL6Xhd97LwQa9eMajr/sfucdHPr0U0Amw51ff42EDh14hxT0qCAipAKHTAsAYOYyzpEQckXSsOkoKVZCowVyvp3JOxz/ydkNbHlY+P2GZ4EO/8c3Hj85+d132Pz88wCAIe+/j+tHjuQckTRQQURIBUyuE36xlPINhJAKZAolCrXC4eXai99yjsZPis8AG0YDdjPQfDTQ8y3eEflF1t69WPvggwCAm6ZNw81PPcU5IumggoiQCpgyRLi0GjhHQoinhDvnw2EHEuP1KNi3jnc4Dav8EvDTEMCUDyR0BwatAOQK3lE1uMunTuHr4cNhM5nQesQI3L5gAe+QJIUKIkIqYMowAIDcTgUREZfQ5p2RXZAMACjbNJdzNA3IUgb8PAwoTQciWgLD1wOqUN5RNbjSixex/PbbYSwsRKObbsJdK1dCrgj+IlBMqCAipAKZ81BemcPIORJCKpN1ehwAkKj5CzZ9Md9gGoLdDPx6F3D5EKCLB0b+CoQk1Hy7AGcsKsKKIUNQmpmJ2Ouvx/j166EODf4iUGyoICKkIk0EAEDuMHEOhJDKkkfNRGmJAroQhuzvXuQdjm857MCmB4DMTYAyBBj+MxB1He+oGpzFYMDKUaOQd/w4wpKT8cBvvyEkLo53WJJEBREhFci1kQAABcycIyGkMrlKjQJlbwCAKv1rztH4EGPA9seBtO8AuQoYtg5IvIl3VA3OZjZj9Z13ImPXLmgiI/HAr78iKjWVd1iSxbUg2rFjB0aOHImUlBTIZDKsW7fO43qZTFblz9tvXznzc79+/Spdf9999/l5T0iwkOuiAAAKmeWa7Sh3CS+xY96EwwEkJxSj6MimOt9edLnLGLDn38DJz4Sz1w/6GmgyqH73FUAcNhvWjBuHtI0boQoNxf2//EInbOWMa0FkMBjQuXNnLFy4sMrrc3JyPH4+//xzyGQy3HXXXR7tJk+e7NHuk08+8Uf4JAjJQ6IBAAq59ZrtKHcJLxGtb0ZOfjwAoPiXl+p8e9Hl7sF5wGFnsdVvMXDd2PrdTwBhDgd+eOQRnF67FgqNBvf98AOa9OzJOyzJU/J88KFDh2Lo0KHVXp+UlOTx9w8//ID+/fujRYsWHttDQkIqtSWkPpShMcKlwnbNdpS7hCfW5lGg8E0kyA/AbtRDoQur9W1Fl7uH3gJ0AG59H2j3qPf3J3LM4cBPjz2Go199BZlCgbu//RYtBgzgHRZBAM0hunTpEtavX49HH638glmxYgXi4uLQvn17zJgxA2Vl9Vtl2GAwgDHm/ttiscBgMMBsNldqZzAY4HA43NusVisMBgNMJlO925aXl8NgMMBut7u32Ww2GAwGGI3Gerc1Go0wGAyw2a58yNvt9jq3LS8v92hrMplgMBhgtVrr1dbhcLj/PxWZzWYYDAZYLJZ6tWWMudtW9Xxeq60iXJjMqFI5av3cu/bv6rYulLuUu77O3eQ7X4a+TI7QMIb0lS/W+7l37R/P3AUA1vNNoPO/6hx/oOWuzWrFt488gv1LlkAml+PO5ctx/ciRksrd2rStzXNfXVuvMJEAwNauXVvt9W+99RaLjo5mRqPRY/vixYvZpk2b2LFjx9g333zDmjVrxgYOHHjNxzKZTKykpMT9k5mZyQAwACwvL8/d7rXXXmMA2KRJkzxuHxISwgCw9PR097YFCxYwAGz8+PEebePi4hgAdvz4cY+YAbDRo0d7tE1NTWUA2P79+93bli9fzgBU2qd27doxAGzr1q3ubWvXrmUAWK9evTzadu/enQFgP//8s3vbxo0bGQDWuXNnj7Z9+/ZlANjq1avd23bt2sUAsOuuu86j7bBhwxgAtnTpUve2w4cPMwAsJSXFo+3YsWMZALZw4UL3tjNnzjAALDIy0qPthAkTGAA2f/5897asrCwGgCmVSo+2U6ZMYQDY7Nmz3duKiorcz6fFYnFvnzFjBgPAZsyY4d5msVjcbYuKiljxyV2MLQQzvSdsmzJlisfjKZVKBoBlZWW5t7luP27cOAaAlZSUeNyGcpdytyFyN+31HowtBPtlipC7LrNnzw6o3H1+oDRy12G3s7nOvEsC2NEVK9xtpZa7V7/vutQld+fPn3/N3K0PrkNmdfH555/j/vvvh1ar9dg+efJk9+8dOnRAq1at0L17dxw6dAhdu3at8r7mzZuHuXODeGEzUm+q6EY4sAM468MvHZS7pCFEDH0V6xYNwid/AG0zMhAVFeXzx/BH7s7fDMzwbdiiwxwOrJ86Ff9s2AAAiGzaFB3Hj+ccFanE65LKR3CNHqIdO3YwAOzIkSM13o/D4WAqlYqtXLmy2jbVfVPJzs5mDofD3c5sNjO9Xs9MJpPH7fV6PdPr9cxut7u3WSwWptfrK32Tqktbg8HA9Ho9s9ls7m1Wq5Xp9XpWXl5e77bl5eVMr9czq9Xq3maz2erc1mAweLQ1Go1Mr9d7fBuoS1u73e7+/1RkMpmYXq9nZrO5Xm0dDoe7bVXP57XaWk0mNgdgLwHscmZmrZ57AOybb75heXl5lb6pUO5S7jZk7i7u14+9ALDfX3qpUlvKXXHkrtlkYusefpjNAdgrANvz6aeUuzW0rc1z72pbVe7WV0D0EC1ZsgTdunVD586da2x74sQJWK1WJCcnV9tGo9FAo9FU2h4aGgqZTOb+W61WQ61WV9nuaiqVCiqVyqu2ISEhlbYplUoolZWfprq01el0lbYpFIoqY6tL26u/Nda1rVwur7JtVc9PXdrKZLIq21b1fF7dVqnRQK5SQWm1Qu28/4qqul9A2L+qcopyl3K3IXO35+OPI3vbNhxZuhT9Zs+GXKms03Pv2j/KXU++yl271Yp1Dz2E4ytXQqZQ4K5ly9DpgQeqbHu1YM/d2rYFqn4+XW0rzufyFteCSK/X459//nH/nZ6ejiNHjiAmJgZNmzYFAJSWluLbb7/Fu+++W+n2aWlpWLFiBYYNG4a4uDicPHkSzz77LLp06YJbbrnFb/tBgos6LAymoiJY9Ppq21SVu0ePHvVoQ7lLGlqbMWOgi41F2cWL+OfXX9F6xIgab0O56x82sxlr7rsPp9etg1ylwl3ffIN2Vy1dQETG6z4mL2zdutU9sariz4QJE9xtPvnkE6bT6VhxcXGl22dkZLA+ffqwmJgYplarWcuWLdlTTz3FCgoK6hRHSUmJz7rcSOB7r0kTNgdgFw8cqLZNdblbMY8od4k//PrMM2wOwL4ZNapW7Sl3G55Zr2df3X47mwOwVzUadmb9et4hBS1f5pGMsQrHvElUaWkpIiMjUVJSgoiICN7hEM4+bNcO+adO4aEtW9C8f/9a345HHlHukvzTp/Fh27aQKRR4OiMD4Skpdb4Pyl3fKS8owNfDh+Pivn1QhYTgvh9/pHWGGpAv8yhg1iEixF/UYcIid9caMiNELOLatEHTW28Fs9txeOlS3uFIWmlWFpb27o2L+/ZBFxODh37/nYqhAEIFESFXoYKIBJquzsPgD3/2GdhVCy8S/8j/+298fsstyD91CuGNGuHhnTvRuEcP3mGROqCCiJCraMLDAQAWL1beJcSf2o0dC01kJIrPn8e533/nHY7kZO7ejc9vuQUlGRmIbd0aj/zxB+LbteMdFqkjKogIuYq7h+iq5eoJEStVSIj7cO5Dn37KORppOblmDb647TYYCwqQcuONeHjXLkSlpvIOi9QDFUSEXEVFQ2YkALmGzU6vWwdDXh7naKRhz4IF+Pbuu2E3m9F65EhM2LoVofHxvMMi9UQFESFXoTlEJBAlde6MRjfdBIfViiNffME7nKDmsNvxy7/+hY3PPAMwhhunTsW9a9dCXc3ilyQwUEFEyFXcBRHNISIBxtVLdOjTT0ErqjQMc2kpVo4ahf3/+x8AYNDbb2PoBx9ArlBwjox4iwoiQq7iKoisNIeIBJgO990HdVgYCs+exYUdO3iHE3SKzp3Dkl69cHbDBih1OoxdvRq9ZszwOPUICVxUEBFyFRoyI4FKHRaGDuPGAaDJ1b52YedOfHbzzbh84gTCU1Lw8I4daH/33bzDIj5EBREhV3EVRGYaMiMByDVsdvK772AsLOQcTXA4tGQJvhwwAOX5+Uju1g2T9u9HSvfuvMMiPkYFESFXoSEzEshSundHYufOsJvNOLpiBe9wAprdYsHPTzyBnyZNgsNqRbuxY/Hwjh2IaNSId2ikAVBBRMhVqIeIBDKZTHZlcvXixTS5up7KcnLwRf/+OPjxx4BMhv6vvYaxq1ZBFRLCOzTSQKggIuQqNIeIBLpO998PpU6HvOPHcXHfPt7hBJzMPXuwuFs3ZO7eDU1kJMb99BP6vPgiZHL6yAxm9OwSchU6dQcJdNqoKPeE34M0ubrWGGPYv3AhlvXtC31ODuLbtcPkAwfQevhw3qERP6CCiJCr0Kk7SDBwDZudWLkS5tJSztGIn7msDGvGjcMv06bBYbWi7Z134tG9exHbqhXv0IifUEFEyFVcBZHNaITDbuccDSH10+SWWxDXti2s5eU49s03vMMRtbzjx/HpjTfixKpVkCuVGPzuu7j7u+/cvcVEGqggIuQqroIIoCPNSOCSyWToOmkSAFqT6Fr++vJLfHrTTSj4+2+EN2qEidu3o+czz9BiixJEBREhV1FoNJA5l+GnI81IIOv80ENQqNXIOXgQOYcP8w5HVMxlZVj70ENYN2ECbEYjWgwahP87fBhNevXiHRrhhAoiQq4ik8noSDMSFELi4tDmjjsAUC9RRdkHD2Jxt244+tVXkMnl6Dd3Lu7/5Rc6U73EUUFESBXcR5pRQUQCnGty9bEVKyR/oABjDHsWLMCSnj1RePYsIpo0wYRt29D3lVfo5KyECiJCqkJnvCfBonn//ohu0QLm0lKcWL2adzjc6HNz8c2IEdj4zDNwWK1oM2YMHj9yBKm9e/MOjYgEFUSEVIEOvSfBQiaXo4vEJ1ef/uEHLOrYEWc3bIBCo8GwDz/EPd9/D11MDO/QiIhQQURIFWgOEQkmN0ycCJlCgaw9e5B34gTvcPzGXFaGHydNwqoxY1Cen4/ETp3w2J9/4sYpU+goMlIJFUSEVIEKIhJMwpOTcf3IkQCk00uUuXs3PrnhBhxesgSQydDr+ecxaf9+JHTowDs0IlJUEBFSBTWdvoMEGdfk6qNffQWbycQ5moZjM5mw6d//xtLevVF07hwimzbFhK1bMeitt6DUaHiHR0SMCiJCqkBziEiwaXn77Yho0gTGwkKc+v573uE0iIv79+OTrl2xe/58MIcDnR96CI8fPYpmffvyDo0EACqICKkCDZmRYCNXKNDlkUcABN+wmc1kwuaZM7GkZ0/knzqFsKQk3PfDDxjzxRfQRkbyDo8ECCqICKkCFUQkGHV55BFAJsP5bdtQcPYs73B84uL+/VjcrRv+eOstMIcDHe+/H1NOnMD1o0bxDo0EGCqICKkCrUNEglFk06a4bsgQAMChzz7jHI13LHo9fn36aSzp2ROXT55EaGIi7l27FncuX06H05N6oYKIkCpQDxEJVq7J1X8tWwa7xcI5mvr559df8VGHDtj3/vsevUJtxozhHRoJYFQQEVIFKohIsGo9YgRCExNhyMvD3z/9xDucOjFcvozvH3gAK4YORcmFC4hMTcX9v/yCO5cvR0hsLO/wSICjgoiQKlBBRIKVQqUKuMnVjDEc+eILfNi2LY6tWAHIZLh5+nRMOX7cPQRIiLeoICKkCjSHiASzLo8+CgBI27gRxefP8w2mBnknTuCLfv3ww8SJMBYUIKFjRzy6Zw+GLFjgfp0S4gtUEBFSBVqHiASzmJYt0XzAAIAxHP78c97hVMliMGDzzJn45IYbcGHHDih1OgyYNw+PHTyIxjffzDs8EoSoICKkCtRDRIKda3L14c8/h8Nm4xyNp9M//ICP2rXDH2+9BYfNhutHj8bUU6dw68yZUKhUvMMjQYprQTRv3jzceOONCA8PR0JCAsaMGYO///7bow1jDHPmzEFKSgp0Oh369euHE1ednNBsNmPatGmIi4tDaGgoRo0ahaysLH/uCgkyroLIXE1BVFXunr1qXRfKXSJGrtztOWkS3pbJsPjiRWz58kuPNrxyt/Cff/D1iBFYNWYMSjIyEJmaivt+/BH3rVuHqNRUr+6bkJpwLYi2b9+OqVOnYu/evdi0aRNsNhsGDx4MQ4Vhivnz5+O9997DwoULceDAASQlJWHQoEEoq/BBNX36dKxduxYrV67Erl27oNfrMWLECNjtdh67RYKA61xmNqMRjiryqKrcveOOOzzaUO4SMaqYu28/8AAcACbPmuXRxt+5a9HrsXnWLHzUvj3Orl8PuUqFW2fNEhZYdJ6UlpAGx0QkLy+PAWDbt29njDHmcDhYUlISe/PNN91tTCYTi4yMZB9//DFjjLHi4mKmUqnYypUr3W0uXrzI5HI5+/XXX2v1uCUlJQwAKykp8eHekEBmKS9ncwA2B2Cm0tIa27ty15VHlLskEFw+dYo958xbXrn7x+LF7N2UFPfrbfmQIezy6dO+3VEStHz5HiiqOUQlJSUAgBjnKqPp6enIzc3F4MGD3W00Gg369u2L3bt3AwAOHjwIq9Xq0SYlJQUdOnRwt6ktg8EAxpj7b4vFAoPBALPZXKmdwWCAw+Fwb7NarTAYDDBddRbpurQtLy+HwWDw+IZls9lgMBhgNBrr3dZoNMJgMMBWYZ6A3W6vc9vy8nKPtiaTCQaDAVartV5tHQ6H+/9TkdlshsFggKXConF1acsYc7et6vmsTVuHXA6ZXHh5VDz0vqrn02KxICcnxyMuyl3K3fq09UXu1uW5j2jRAlE33ODRzt+5+9Njj6EsOxvRLVrgvh9/xNh166Br3Jhyl3LXrbr33araesXrkspHHA4HGzlyJLv11lvd2/744w8GgF28eNGj7eTJk9ngwYMZY4ytWLGCqdXqSvc3aNAg9thjj1X5WCaTiZWUlLh/MjIy3N+Q0tLS3NtfeuklBoA99NBDHu11Oh0DwI4ePereNm/ePAaA3X333R5tY2JiGAC2d+9e97b//ve/DAAbNmyYR9smTZowAGzLli3ubYsXL2YAWL9+/TzaXn/99QwA+/nnn93bVqxYwQCwm266yaNtly5dGAC2evVq97a1a9cyAKxDhw4ebW+55RYGgC1btsy97bfffmMAWIsWLTzaDho0iAFgH330kXvbzp07GQCWlJTk0Xb06NEMAHv77bfd2w4dOsQAsIiICI+248aNYwDYf/7zH/e2U6dOMQBMoVB4tJ00aRIDwGbOnOneduHCBffzmZ+f794+bdo0BoBNmzbNvS0/P9/d9sKFC+7tM2fOZE8DbCbA0g8edG9XKBQMADt16pR729y5cxkAFhsbywCw4uJiyl3KXa65C4BNmjTJ4/Gqy91wgKU474dH7j4JsO9mzGAFly5R7lLu1jp3//Of/zAAbOzYse7c9ZZoCqIpU6aw1NRUlpmZ6d7memFmZ2d7tJ00aRK7/fbbGWPVvzAHDhzI/u///q/Kx5o9e7b7yaAf+vH1T1paGuUu/QTkD+Uu/QTqT1paWpV5VxdKiMC0adPw448/YseOHWjcuLF7e1JSEgAgNzcXycnJ7u15eXlITEx0t7FYLCgqKkJ0dLRHm169elX5eLNmzcIzzzzj/tvhcKCwsBCxsbGQyWQ+3bfqlJaWokmTJsjMzERERIRfHpOHYN/P5557DuvXr8eGDRsQHR2Npk2buod8gYbP3eLiYqSmpiIjIwORkZG+3r2gEOw5WF+Uu+JHuVuzkpKSSrlbb16XVF5wOBxs6tSpLCUlhZ05c6bK65OSkthbb73l3mY2m6uc3Ldq1Sp3m+zs7DpN7uOhpEQak2GDdT+ryt2K++qv3A3W/68v0f/IE+Vu4KD/Uc18+T/iWhA98cQTLDIykm3bto3l5OS4f8rLy91t3nzzTRYZGcm+//57duzYMTZu3DiWnJzMSisc+fP444+zxo0bs82bN7NDhw6x2267jXXu3JnZbDYeu1UrUkn0YN3PqnL3zJkzHvvqj9wN1v+vL9H/yBPlbuCg/1HNgqYgQjVjgUuXLnW3cTgcbPbs2SwpKYlpNBrWp08fduzYMY/7MRqN7Mknn2QxMTFMp9OxESNGsIyMDD/vTd1IJdGDdT+ry92K++qP3A3W/68v0f/IE+Vu4KD/Uc2CpiCSMpPJxGbPns1MJhPvUBqUVPaTMT77KqX/b33R/6hmlLviRP+jmvnyfyRjrMIiAIQQQgghEiSqhRkJIYQQQniggogQQgghkkcFESGEEEIkjwoiQgghhEgeFUQcmc1m3HDDDZDJZDhy5IjHdRkZGRg5ciRCQ0MRFxeHp556yuPkeGJ3/vx5PProo2jevDl0Oh1atmyJ2bNnV9qHQN9Pl48++gjNmzeHVqtFt27dsHPnTm73vX37dnTr1g1arRYtWrTAxx9/7LNYxKou/6Nt27ZBJpNV+jl9+rQfI/afHTt2YOTIkUhJSYFMJsO6detqvE1D51BDvl6CwZw5cyrlp+vMDVJVUx4zxjBnzhykpKRAp9OhX79+OHHiRJ0egwoijp5//nmkpKRU2m632zF8+HAYDAbs2rULK1euxJo1a/Dss89yiLJ+Tp8+DYfDgU8++QQnTpzAggUL8PHHH+OFF15wtwmG/QSAVatWYfr06XjxxRdx+PBh9O7dG0OHDkVGRobf7zs9PR3Dhg1D7969cfjwYbzwwgt46qmnsGbNGq9jEav6/v///vtv5OTkuH9atWrlp4j9y2AwoHPnzli4cGGt2jd0DjXk6yWYtG/f3iM/jx07xjskrmrK4/nz5+O9997DwoULceDAASQlJWHQoEEoKyur/YN4feA+qZcNGzawNm3asBMnTjAA7PDhwx7XyeVyj7NNf/PNN0yj0QT0Al3z589nzZs3d/8dLPt50003sccff9xjW5s2bdjMmTP9ft/PP/88a9Omjce2//u//2M9evTwOhaxquv/aOvWrQwAKyoq8kN04gKArV279pptGjqHGvL1Eixmz57NOnfuzDsM0bo6j12nm3nzzTfd20wmk8fpZmqDeog4uHTpEiZPnoyvvvoKISEhla7fs2cPOnTo4NF7dPvtt8NsNuPgwYP+DNWnSkpKPE7AFwz7abFYcPDgQQwePNhj++DBg7F7926/3/eePXsqtb/99tvx559/wmq1ehWPGHnz/+/SpQuSk5MxYMAAbN26tSHDDCgNmUMN+XoJNmfPnkVKSgqaN2+O++67D+fOneMdkmilp6cjNzfXI680Gg369u1bp7yigsjPGGOYOHEiHn/8cXTv3r3KNrm5ue6zSrtER0dDrVYjNzfXH2H6XFpaGj744AM8/vjj7m3BsJ/5+fmw2+2V9iMxMdHrfajPfVf1P01MTITNZkN+fr5X8YhRff5HycnJWLx4MdasWYPvv/8e119/PQYMGIAdO3b4I2TRa8gcasjXSzC5+eab8eWXX+K3337Dp59+itzcXPTq1QsFBQW8QxMlV+54m1dUEPlIVZPgrv75888/8cEHH6C0tBSzZs265v3JZLJK2xhjVW73p9ruZ0XZ2dkYMmQI7r77bkyaNMnjOrHuZ11dHa8v96Gu911V+6q2B5O6/I+uv/56TJ48GV27dkXPnj3x0UcfYfjw4XjnnXf8EWpAaOgcasjXSzAYOnQo7rrrLnTs2BEDBw7E+vXrAQBffPEF58jEzdu8Uvo6IKl68skncd99912zTbNmzfDaa69h79690Gg0Htd1794d999/P7744gskJSVh3759HtcXFRXBarVWqoD9rbb76ZKdnY3+/fujZ8+eWLx4sUc7Me9nbcXFxUGhUFT6FpKXl+f1PtTnvpOSkqpsr1QqERsb61U8YuSr/3+PHj2wfPlyX4cXkBoyhxry9RLMQkND0bFjR5w9e5Z3KKLkOgIvNzcXycnJ7u11zSvqIfKRuLg4tGnT5po/Wq0W//vf//DXX3/hyJEjOHLkCDZs2ABAOPLi9ddfBwD07NkTx48fR05Ojvv+N27cCI1Gg27dunHZP5fa7icAXLx4Ef369UPXrl2xdOlSyOWe6Sbm/awttVqNbt26YdOmTR7bN23ahF69evn9vnv27Fmp/caNG9G9e3eoVCqv4hEjX/3/Dx8+7PFGKmUNmUMN+XoJZmazGadOnaIcrUbz5s2RlJTkkVcWiwXbt2+vW155P9+beCM9Pb3SUWY2m4116NCBDRgwgB06dIht3ryZNW7cmD355JP8Aq2jixcvsuuuu47ddtttLCsri+Xk5Lh/XIJhPxljbOXKlUylUrElS5awkydPsunTp7PQ0FB2/vz5Br/vmTNnsgcffNDd/ty5cywkJIQ9/fTT7OTJk2zJkiVMpVKx7777zutYxKqu/6MFCxawtWvXsjNnzrDjx4+zmTNnMgBszZo1vHahQZWVlbHDhw+zw4cPMwDsvffeY4cPH2YXLlxgjPk/hxry9RIsnn32WbZt2zZ27tw5tnfvXjZixAgWHh4u6f9RTXn85ptvssjISPb999+zY8eOsXHjxrHk5GRWWlpa68eggoizqgoixhi7cOECGz58ONPpdCwmJoY9+eSTzGQy8QmyHpYuXcoAVPlTUaDvp8uHH37IUlNTmVqtZl27dmXbt2/3y31PmDCB9e3b16P9tm3bWJcuXZharWbNmjVjixYt8lksYlWX/9Fbb73FWrZsybRaLYuOjma33norW79+PYeo/cO1zMDVPxMmTGCM8cmhhny9BIN7772XJScnM5VKxVJSUtidd97JTpw4wTssrmrKY4fDwWbPns2SkpKYRqNhffr0YceOHavTY8gYc86WI4QQQgiRKJpDRAghhBDJo4KIEEIIIZJHBREhhBBCJI8KIkIIIYRIHhVEhBBCCJE8KogIIYQQInlUEBFCCCFE8qggIoQQQvxgyZIlGDx4MO8w3BYuXIhRo0bxDkM0qCAiNSooKEBCQgLOnz9fp9vRi40QTxaLBddddx3++OOPOt3u559/RpcuXeBwOBooMtLQzGYzXnnlFbz88ss+uT+j0YiQkBCcPn263vcxefJkHDhwALt27fJJTIGOCiKJkMlk1/yZOHFitbedN28eRo4c6XEWewBYs2YN+vXrh8jISISFhaFTp074z3/+g8LCQgD0Ygtk/fr1w/Tp0xv8MT7++GNs27YNMpkMxcXFDfp4YrB48WKkpqbilltu8di+detWDBs2DLGxsQgJCUG7du3w7LPP4uLFiwCAESNGQCaT4euvv+YRNvGBNWvWICwsDL179/bJ/W3atAlNmjRBmzZt6nxbxhhsNhs0Gg3Gjx+PDz74wCcxBToqiCQiJyfH/fP+++8jIiLCY9t///vfKm9nNBqxZMkSTJo0yWP7iy++iHvvvRc33ngjfvnlFxw/fhzvvvsu/vrrL3z11VcAQC82Uq3CwkLs3r0bI0eO5B2KX33wwQeVXkuffPIJBg4ciKSkJKxZswYnT57Exx9/jJKSErz77rvudg8//DC9lkTgk08+QaNGjSr11o0aNQoTJkyo9nYrV66s1GM+ceJEjBkzBm+88QYSExMRFRWFuXPnwmaz4bnnnkNMTAwaN26Mzz//vNL9/fDDDxg1ahTOnz8PuVyOP//80+P6Dz74AKmpqWCMub90/Pbbb+jevTs0Gg127tzpjnvdunUwGo31/ZcEDx+ff40EgKVLl7LIyMhatV2zZg2Li4vz2LZv3z4GgL3//vtV3qaoqMj9+7Zt25harWbl5eX1DZf42YQJEyqdQDE9PZ3ZbDb2yCOPsGbNmjGtVstat25dKQf69u3L/vWvf3lsGz16tPsEjC5ffvkl6969u/vkxqjiZI2//PILu+WWW1hkZCSLiYlhw4cPZ//884/7Plwne6yYb64zYaenpzPGruT6Tz/9xFq3bs10Oh276667mF6vZ8uWLWOpqaksKiqKPfnkk8xms7nv56uvvmLdunVjYWFhLDExkY0bN45dunTJff3cuXNZcnIyy8/Pd28bOXIk6927N7Pb7VX+Xw8ePMjkcjkrKSlxb8vMzGRqtZpNnz69yttU3Lfz588zACwtLa3KtsQ/CgoKmFqtZps3b3ZvKywsZGq1mv3222/V3i4qKoqtXLnSY9uECRNYeHg4mzp1Kjt9+jRbsmQJA8Buv/129vrrr7MzZ86wV199lalUKpaRkeG+nd1uZwkJCWznzp2MMcYGDRrEpkyZ4nHfXbp0Ya+88gpj7MprpVOnTmzjxo3sn3/+ceeuXq9nMpmMbdu2zbt/TBCggkiC6lIQ/etf/2JDhgzx2PbUU0+xsLAwZrFYarw9vdgCT3FxMevZsyebPHkyy8nJYTk5OcxmszGLxcJeeeUVtn//fnbu3Dm2fPlyFhISwlatWuW+bW0LorFjx7JXX32V2Ww2tmbNGgaA/f333ywnJ4cVFxczxhj77rvv2Jo1a9iZM2fY4cOH2ciRI1nHjh3dBUdtCyKVSsUGDRrEDh06xLZv385iY2PZ4MGD2T333MNOnDjBfvrpJ6ZWqz0+rJYsWcI2bNjA0tLS2J49e1iPHj3Y0KFD3dfbbDbWs2dPNmbMGMYYY4sWLWKRkZHs/Pnz1f5fFyxYwNq0aeOx7b333mMAWHZ29rWfFKeEhAS2bNmyWrUlDWfUqFHskUcecf/9ySefsKSkJI+iuqKioiIGgO3YscNj+4QJE1hqaqpHEX399dez3r17u/+22WwsNDSUffPNN+5tf/zxB4uLi3PfbtWqVSw6OpqZTCbGGGNHjhxhMpnM/TpwvVbWrVtXZXzR0dGUV4wxpX/7o0igOX/+PFJSUjy2nT17Fi1atIBKparx9qGhoYiKisL58+fRt2/fhgqT+FBkZCTUajVCQkKQlJTk3q5QKDB37lz3382bN8fu3buxevVq3HPPPbW+f7PZjN9++w2vvPIKFAoFYmJiAAAJCQmIiopyt7vrrrs8brdkyRIkJCTg5MmT6NChQ60fz2q1YtGiRWjZsiUAYOzYsfjqq69w6dIlhIWFoV27dujfvz+2bt2Ke++9FwDwyCOPuG/fokUL/O9//8NNN90EvV6PsLAwKBQKLF++HDfccANmzpyJDz74wD0/qDrVvZYiIiKQnJxcq31p1KhRnQ9uIL53//3347HHHsNHH30EjUaDFStW4L777oNCoaiyvWs4SqvVVrquffv2kMuvzF5JTEz0yG+FQoHY2Fjk5eW5t/3www8YMWKE+3ZjxozBk08+ibVr1+K+++7D559/jv79+1ea99m9e/cq49PpdCgvL6/dzgcxmkNErsloNFZ6ETPGIJPJan0f9GILHh9//DG6d++O+Ph4hIWF4dNPP0VGRkad7mPLli2IjY1Fx44dr9kuLS0N48ePR4sWLRAREYHmzZsDQJ0fLyQkxF0MAcIHTrNmzRAWFuaxreIHzuHDhzF69GikpqYiPDwc/fr1q/TYLVq0wDvvvIO33noLI0eOxP3333/NOOi1FDxGjhwJh8OB9evXIzMzEzt37sQDDzxQbfvY2FjIZDIUFRVVuu7qL5YymazKbRXnLP34448YPXq0+2+1Wo0HH3wQS5cuhcViwddff+1R1LuEhoZWGV9hYSHi4+OrjV8qqCAi1xQXF1fpRdy6dWukpaXBarXW6j7oxRYcVq9ejaeffhqPPPIINm7ciCNHjuDhhx+GxWJxt5HL5WCMedzu6jy5+s28OiNHjkRBQQE+/fRT7Nu3D/v27QMA9+O5vh1XfLyqcrKuHzgGgwGDBw9GWFgYli9fjgMHDmDt2rUej+2yY8eO/2/njkKaasM4gP9HceYKKRetblZSI1yksbpoRgppdC6LkVB6I5jJvMvCvDAKi1bdhAUSXkRe5JCg0DqRWWFYZFYUlbVZs0mBkHZhKoyVe76LD/d52mamlfnt/7vbu/d53/cMXs7D2XlezJs3D8FgEN++fZv0ehLtpaGhIfT3908aO4576e9gMpngcrlw6dIleL1erFmzBhs3bkzYX1EUrF27Fq9fv57x3G/fvkUwGIw5z2jv3r24ffs26urq8PXrV7hcrimNFwgEEAqF4HA4Zry2uY4JEU3K4XDEbOLCwkKMjIygrq4ubszE8mlutrlJURSMjY3p2jo6OrB582aUl5fD4XDAZrMhEAjo+ixdulR3cx8bG8OrV6+in0UE165d01XbKIoS7Tvu8+fPePPmDaqrq5Gfnw+73R6TTIwnBhPne/78+TSv+D8+nw+Dg4M4efIkcnJykJGRoXt6NK6pqQlXrlxBe3s7Pnz4gGPHjk06rsPhgM/n0yVwu3btgqIoOH36dNyYiXspFAohEAhwL/0lioqKoGkaLly4MOnToXGqqv6SI0iam5uxbds2LFiwQNdut9vhdDpx6NAh7NmzByaTaUrjdXR0YNWqVbqnqMmKCRFNSlVVdHd3625GmzZtQmVlJQ4cOIDKyko8fPgQfX19uHPnDgoKCtDQ0BDty802N6Wnp+PRo0cIBoMYHBxEJBKBzWbDkydP0Nraip6eHhw+fBiPHz/WxeXl5UHTNGiaBp/Ph/Lyct1N/enTpxgdHUVubm60beXKlTAYDLh+/ToGBgYwMjKCtLQ0LFmyBPX19Xj37h3u3r2LiooK3Vw2mw1WqxVHjx5FT08PNE3TlalP14oVK6AoCs6dO4fe3l60tLTEJDsfP36E2+3GqVOnsGXLFly8eBEejwednZ0Jx926dStGR0fR3d0dbbNarThz5gxqa2tRUlKCe/fuoa+vDw8ePEBZWZlu3s7OThiNRmRnZ8/4Gmnm8vLyYDab4ff7UVhY+MP+paWluHHjBoaGhmY0b3Nzc8InrCUlJQiHw3H/LkvE6/WitLR0Rmv635jNN7ppdvxMlZmIiNPplPPnz8e0NzU1SW5urqSmpsrChQslKytLampqdFU/27dvF4/H8wtWTX+S3+8Xp9MpJpMpWrUVCoWkuLhYFi1aJIsXLxa32y1VVVWyfv36aFw4HBa32y1ms1ksFot4PB5dlVl1dbUUFRXFzFdTUyPLly8Xg8EQ7dvW1iZ2u12MRqNkZWVJe3u7AJCrV69G4+7fvy+ZmZmSkpIiOTk5cvny5bhl9xMdOXJEt2aRf6t9duzYEf3c2Ngo6enpYjQaJTs7W1paWgSAPHv2TCKRiOTn54uqqhKJRKIx+/fvl9WrV8vw8HDC33X37t1SVVUV097W1iaqqkpaWpqkpKRIRkaGHDx4UFd9tm/fPikrK0s4Nv39CgoK5MSJE9OOHxgYkPnz50t/f3/c748fPy7r1q2b8ngvX74Ui8USrexMdkyI6Ic0TRO73Z7wfJVEuNnoe5mZmboy/WTz4sULsVgs8uXLl5+K+/Tpk5jNZunt7f1NK6M/IRgMytmzZ6cd7/f748YPDw9LV1eXLFu2TOrr66c8Xmtrq9y8eXPa6/m/MYh89wYkURy1tbVwuVywWq1Tjrl16xZEBKqq/saV0VwRDofh8XhQUVGB1NTU2V7OrGloaMCGDRt+WGU3UVdXF96/fx89FoBoouLiYni9XuzcuRONjY0Jy/9pckyIiIiIKOnxpWoiIiJKekyIiIiIKOkxISIiIqKkx4SIiIiIkh4TIiIiIkp6TIiIiIgo6TEhIiIioqTHhIiIiIiSHhMiIiIiSnr/AJgQCnVtSCdrAAAAAElFTkSuQmCC", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "Caption. (left) Temperature T in degC as a function od depth z in meters\n", "(middle) hear stress tau as s function of depth z, for different glacial\n", "thcknesses (colors, increasing from blue to red). (right) velocity v as a\n", "function of depth z for different glacial thickneses (colors, increasing\n", "from blue to red). Bottoms of glaciers are also shown (dotted).\n" ] } ], "source": [ "# Simulation 4\n", "# glaciers of differenting thickness\n", "\n", "# parameters that can be varied\n", "theta = 5.0; # slope of glacier in deg\n", "grad = 30.0 / 1000.0 # geothermal gradient in deg C per meter\n", "T0 = -10.0 # surface temperature in deg C\n", "g = 9.81; # acceleration of gravity in m/s2\n", "Nz = 101;\n", "# thicknesses myh: the interior of gda_cvec is in meters\n", "myh = gda_cvec( 100.0, 125.0, 150.0, 175.0, 200.0 );\n", "vmaxplot = 10.0; # maximum velocity plotted, in meters per year\n", "# end parameters that can be varied\n", "\n", "rho = 917.0; # densitty of ice in kg/m3\n", "\n", "# ----------- no changes below here -----------------------\n", "\n", "# constant A n dv / sz = A tau**3\n", "def AofT(T):\n", " if( (np.min(T)<(-50.0)) or (np.min(T)>0.0) ):\n", " print(\"Error: temperature out of allowable range of -50 to 0\" );\n", " xxxx\n", " NT, i = np.shape(T);\n", " logA = np.zeros((NT,1));\n", " logA0 = -25.0 + 0.88/(5.18/4.0);\n", " C1 = (1.23/(5.18/4.0)) / 10.0;\n", " C2 = (2.75/(5.18/4.0)) / 40.0;\n", " T0 = -10.0; # C\n", " for i in range(NT):\n", " Ti = T[i,0];\n", " if( Ti > (-10.0) ):\n", " logA[i,0] = logA0 + C1 * (Ti-T0);\n", " else:\n", " logA[i,0] = logA0 + C2 * (Ti-T0);\n", " return np.power(10.0*np.ones((NT,1)),logA);\n", "\n", "# seconds in year\n", "sinyr = 60*60*24*365.25;\n", "mytimes = sinyr*sinyr;\n", "\n", "# thickness\n", "Nh, i = np.shape(myh);\n", "\n", "# tables of results\n", "zlist = np.zeros((Nz,Nh));\n", "vlist = np.zeros((Nz,Nh));\n", "taulist = np.zeros((Nz,Nh));\n", "Tlist = np.zeros((Nz,Nh));\n", "\n", "for ih in range(Nh):\n", "\n", " # z-axis\n", " zmin = 0.0;\n", " zmax = myh[ih,0];\n", " Dz = (zmax-zmin)/(Nz-1);\n", " z = gda_cvec( np.linspace(zmin,zmax,Nz) );\n", "\n", " # static temperature\n", "\n", " T = T0*np.ones((Nz,1))+grad*z;\n", " \n", " # flow constant\n", " A = AofT(T);\n", " logA = np.log10(A);\n", "\n", " # force of gravity parallel to sloping surface\n", " f = rho*g*sin(pi*theta/180.0)*np.ones((Nz,1));\n", "\n", " # d tau / d z = - f\n", " dtaudz = -f;\n", " tau = gda_cvec( Dz*np.cumsum(dtaudz) );\n", "\n", " # free surface boundary condition tau(z=0)=0;\n", " tau = tau - tau[0,0];\n", " taumax = np.max(np.abs(tau));\n", "\n", " # dvdz = A tau^3, and boundary condition v(0)=0\n", " dvdz = np.multiply(A,np.power(tau,3));\n", " v = gda_cvec( Dz*np.cumsum(dvdz) );\n", " v = v-v[Nz-1,0];\n", "\n", " zlist[0:Nz,ih:ih+1] = z;\n", " Tlist[0:Nz,ih:ih+1] = T;\n", " taulist[0:Nz,ih:ih+1] = tau;\n", " vlist[0:Nz,ih:ih+1] = v;\n", "\n", "zmin = 0.0;\n", "zmax = np.max(zlist);\n", "vmax = np.max(sinyr*vlist);\n", "taumax = np.max(np.abs(taulist));\n", "\n", "jet = plt.get_cmap('jet') \n", "cNorm = colors.Normalize(vmin=0, vmax=Nh-1);\n", "scalarMap = cm.ScalarMappable(norm=cNorm, cmap=jet);\n", "\n", "fig1 = plt.figure();\n", "\n", "ax1 = plt.subplot(1,3,1);\n", "plt.axis( [-50.0, 0.0, zmin, zmax] );\n", "ax1.invert_yaxis();\n", "plt.xlabel(\"T (C)\");\n", "plt.ylabel(\"z\");\n", "plt.title(\"T(z)\");\n", "for ih in reversed(range(Nh)):\n", " colorVal = scalarMap.to_rgba(ih);\n", " plt.plot( [-50.0, 0.0], [zlist[Nz-1,ih], zlist[Nz-1,ih]], 'k:');\n", " plt.plot(Tlist[0:Nz,ih:ih+1],zlist[0:Nz,ih:ih+1],'-',color=colorVal);\n", "\n", "ax1 = plt.subplot(1,3,2);\n", "plt.axis( [0.0, 1.0, zmin, zmax] );\n", "ax1.invert_yaxis();\n", "plt.xlabel(\"tau/taumax (C)\");\n", "plt.ylabel(\"z\");\n", "plt.title(\"tau(z)\");\n", "for ih in reversed(range(Nh)):\n", " colorVal = scalarMap.to_rgba(ih);\n", " plt.plot( [0, 1.0], [zlist[Nz-1,ih], zlist[Nz-1,ih]], 'k:');\n", " plt.plot(-taulist[0:Nz,ih:ih+1]/taumax,zlist[0:Nz,ih:ih+1],'-',color=colorVal);\n", "\n", "ax1 = plt.subplot(1,3,3);\n", "plt.axis( [0, vmaxplot, zmin, zmax] );\n", "ax1.invert_yaxis();\n", "plt.xlabel(\"v (m/yr)\");\n", "plt.ylabel(\"z\");\n", "plt.title(\"v(z)\");\n", "for ih in reversed(range(Nh)):\n", " colorVal = scalarMap.to_rgba(ih);\n", " plt.plot( [0, sinyr*vmax], [zlist[Nz-1,ih], zlist[Nz-1,ih]], 'k:');\n", " plt.plot(sinyr*vlist[0:Nz,ih:ih+1],zlist[0:Nz,ih:ih+1],'-',color=colorVal);\n", "plt.show();\n", "print(\"Caption. (left) Temperature T in degC as a function od depth z in meters\")\n", "print(\"(middle) hear stress tau as s function of depth z, for different glacial\");\n", "print(\"thcknesses (colors, increasing from blue to red). (right) velocity v as a\");\n", "print(\"function of depth z for different glacial thickneses (colors, increasing\");\n", "print(\"from blue to red). Bottoms of glaciers are also shown (dotted).\");\n", "\n" ] }, { "cell_type": "code", "execution_count": 22, "id": "aed5613b-7cfd-4ed1-b0f1-7f6cdd61adcb", "metadata": { "tags": [] }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "0.5634577597623731\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkYAAAHFCAYAAAAXETaHAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAACHlklEQVR4nO3dd3xUVfrH8c9kWnolhdBBepGmAkoTwYqoPxUFXay7ig11ZcGKDRTLqqCgrisoFta1LyggChaKiCDSeye09DqZmfP7485MEkrKzCR3yvPeF6+ZTGZOnmSPk2+ec+69BqWUQgghhBBCEKF3AUIIIYQQgUKCkRBCCCGEiwQjIYQQQggXCUZCCCGEEC4SjIQQQgghXCQYCSGEEEK4SDASQgghhHCRYCSEEEII4SLBSAghhBDCRYJRCDMYDLX6t2TJkmrHyc3NpVGjRnz88ccnfe6nn37i2muvpUmTJlgsFhISEujXrx8zZsygqKgIgPLyctq0acMrr7xSD9+lCBXLli1j0qRJ5ObmNsjX27FjB1arleXLl9fpdQMGDGDcuHH1U5QQwC233MJFF11Up9csXryY2NhYDhw4UE9VhQ+DXBIkdK1YsaLKx08//TQ//PAD33//fZXHO3XqRHx8/GnHuf/++1m8eDF//PEHBoPB8/gTTzzBU089Rb9+/bj11ltp06YNxcXFLFu2jLfeeotRo0bxz3/+E4DZs2dz//33s23bNlJSUvz4XYpQ8eKLL/LQQw+xa9cuWrZsWe9f78orr6S8vJz//e9/dXrd0qVLGTp0KH/++Sft27evp+pEuFqzZg29e/dm5cqV9O7du06vPf/882nWrBmzZ8+up+rChBJhY8yYMSomJqZOrzl+/LiKiopSM2fOrPL4f/7zHwWoW2+9VTmdzpNel5+frxYsWOD5uKysTCUnJ6tnn33Wu+JFyHvhhRcUoHbt2lXvX2vjxo0KUN9++61Xr+/SpYu6/fbb/VyVEEpde+21qk+fPl699r///a8yGo1q7969fq4qvMhSmqjWrFmzsNvtjBw5ssrjTz31FElJSbz22mtVukhucXFxDBs2zPOxxWJh5MiRvPXWWyhpUooTTJo0iYceegiAVq1aVVnmnTt3LsOGDaNx48ZERUXRsWNHJkyY4FmqdRs0aBCDBg06aeybbrrppA7UjBkzyMjIYOjQoZ7HlixZctrl5hNff+ONN/Lhhx9SUFDgl+9fhLYvvvgCg8HA4sWLT/rcjBkzMBgMrFu3jsOHD/P5559z4403VnnOoEGDTjs3Z82a5Xne8OHDiY2N5e23367vbymkSTAS1Zo3bx49evQgMTHR89ihQ4dYv349w4YNIzo6utZjDRo0iD179rB+/fp6qFQEs9tuu4177rkHgM8++4zly5ezfPlyevbsybZt27jkkkt45513+Pbbbxk3bhz/+c9/GD58uNdfb968eQwYMICIiIq3wJ49e3q+rvvfe++9h9lspnPnzlVeP2jQIIqKimrcnycEwGWXXUZaWhrvvvvuSZ+bNWsWPXv2pFu3bixcuJDy8nIGDx5c5TlvvPHGSXPzggsuwGg0VlnOtVgs9OvXj3nz5tX79xTKTHoXIALbihUr+Mtf/lLlsb179wLaX/Z10bNnTwB++eUXunbt6p8CRUho2rQpzZs3B6BHjx5VOjSPPvqo575SinPPPZeOHTsycOBA1q1bR7du3er0tY4cOcLOnTv561//WuXx+Ph4+vTpU+V5o0ePpl27dnzwwQdVntujRw8MBgO//PKLTwFNhAeTycQNN9zAjBkzyMvLIyEhAYBNmzbx66+/Mm3aNACWL19OVFQUHTp0qPL6Tp06Vfn4xRdf5LvvvuOtt96ib9++VT7Xs2dPpkyZQlFRETExMfX4XYUu6RiJ08rNzaW4uJi0tDS/jOceR46aEHWxc+dORo0aRUZGBkajEbPZzMCBAwHtF0tdHTx4EKDaeV1UVMSll15KaWkp33zzTZWOKYDZbCYxMVHmsqi1W265hZKSEubOnet57N1338VqtTJq1ChAm5upqamn3J7g9tFHHzF+/HgeffRRbr/99pM+n5aWhtPpJCsry//fRJiQYCROq6SkBIDIyMgqj7v/st+1a1edxnOP4x5XiJoUFhbSv39/Vq5cyTPPPMOSJUtYtWoVn332GeDdXDrdvHaz2+1cffXVbN26lfnz59OsWbNTPi8yMlLmsqi1zp07c9ZZZ3mW0xwOB3PmzGHEiBEkJycD2tw83bwE+OGHH7jpppv4y1/+wtNPP33K58j7rO9kKU2clvuw+uzs7CqPN27cmK5du7Jw4UKKi4trvc/IPU6jRo38W6gIWd9//z0HDx5kyZIlni4RcMpzHUVGRpKXl3fS48eOHavysXv+nTiv3f7617+yePFi5s+fz5lnnnna2nJycmQuizq5+eabGTt2LJs2bWLnzp0cOnSIm2++2fP5Ro0a8fvvv5/ytevWreOKK65g4MCB1W6ulvdZ30nHSJyWxWKhdevW7Nix46TPPfbYY+Tk5HDvvfee8iizwsJCFi5cWOWxnTt3AievlwsBYLVagap/6bqXFNyfc3vzzTdPen3Lli3ZunUrZWVlnseOHz/OsmXLqjyvRYsWREVFnXJeP/roo7z77rv861//4oILLjhtrQcPHqS0tFTmsqiT66+/nsjISGbNmsWsWbNo0qRJlaN3O3TowPHjx08K+Hv37uXiiy+mdevWfPrpp5jN5tN+jZ07d5KSkkJ6enq9fR+hTjpGolqDBg3im2++Oenxa665hscee4ynn36azZs3VznB48qVK3nzzTcZOXJklf/oV6xYgdFoZMCAAQ35LYgg4d6Q/+qrrzJmzBjMZjPdunUjKSmJO+64gyeeeAKz2cwHH3zAH3/8cdLrb7zxRt58801uuOEGbr/9do4fP87UqVNPOnmpxWKhb9++J50A9ZNPPuHZZ5/l6quvpl27dlU+b7Va6dGjh+dj9+dOPHpIiOokJiZy5ZVXMmvWLHJzc/n73/9e5cjIQYMGoZRi5cqVVd47L774YnJzc5k+fTobNmyoMmabNm1ITU31fLxixQoGDhxY7T4lUQN9T6MkGpI3J3hcvHixAtSvv/56ys8vXbpUXX311apx48bKbDar+Ph41bdvX/XCCy+o/Pz8Ks/t37+/Gj58uNf1i9A3ceJElZmZqSIiIhSgfvjhB7Vs2TLVt29fFR0drVJTU9Vtt92mfv/9dwWod999t8rrZ8+erTp27KgiIyNVp06d1Ny5c9WYMWNUixYtqjzvnXfeUUajUR08eNDz2BNPPKGAU/478fU33nij6tq1az39FEQoW7hwoWdebd26tcrnHA6HatmypRo7dmyVx083L0/8b2D79u0KUJ9++mlDfCshSy4JImrUrVs3zj33XGbMmOH1GDt27KBt27YsWLCgykn1hNBDaWkpzZs358EHH+Qf//hHnV6bn59PZmYm//znP095VJAQvnjppZd49tlnOXDgAFFRUXV67WOPPcZ7773Hjh07MJlkQchbEoxEjb799luuvPJKtm3bRtOmTb0a4+abb2b//v0sWrTIz9UJ4Z0ZM2YwadIkdu7cWafzvTz55JPMnTuXdevWyS8f4XelpaV07NiRu+66i7///e+1fl1ubi6tW7dm2rRpjB49uh4rDH2y+VrU6KKLLuKFF16o8+H5bna7nTZt2vD666/7uTIhvPfXv/6VcePGeQ4KqK34+HhmzZoloUjUi8jISN5///2TDjioya5du5g4caLnnEjCe9IxEkIIIYRwCZmO0RtvvEGrVq2IjIykV69e/PTTT3qXJEStyNwVwUrmrghFIRGM5s6dy7hx43jkkUdYs2YN/fv35+KLL/Zc00uIQCVzVwQrmbsiVIXEUto555xDz549qxw11bFjR6644gqmTJmiY2VCVE/mrghWMndFqAr63YM2m43Vq1czYcKEKo8PGzbspDPeupWVlVU5O67T6SQ7O5uUlBQ5KZbwmlKKgoICMjMzq5y07XRk7opAIXNXBKu6zt3aCPpgdOzYMRwOx0mnP09PTz/t1YWnTJnCk08+2RDliTC0b9++Wp3WQOauCDQyd0Wwqu3crY2gD0ZuJ/7FoZQ67V8hEydO5IEHHvB8nJeXR/Pmzdm3b99Jlw8Qweeyu9/ip/ePE981jX0/39pgXzc/P59mzZoRFxdXp9f5Y+4m9ZrC7u/H1r1oIdB37gbb+26rVq+SnV3MihW3sdOUyqhPoXcmLP4LzOUjtrONS7iMHvSsfqCPukLBXhixGNJ7e13Pv/r04eimTVz35Ze0GjTI63GClbdztzpBH4waNWqE0Wg86a+UI0eOnPYielar9ZTniIiPjw+q/0DFqUXHRANFKBWly/+ftV0W8OfczfmjiN379tOts1zUVHhPj7kbbO+7ERGRgJPY2DiiTfEQCaYoiI+HKKKwYiWWWOKp4XuKigA7EBejvdhLUUYjkUBcTExQ/Rz9zZ/LsUF/VJrFYqFXr14nnVF50aJF9OvXT6eqhJ4srrjvsAf2cQV+nbt2O3e/8IMfqxPi9OR9V4SyoO8YATzwwAPceOON9O7dm759+/LWW2+xd+9e7rjjDr1LEzqItGh/OShHYAcj8O/cXbHYid1ulzMyiwYh77siVIXEO+jIkSM5fvw4Tz31FIcOHaJLly7Mnz+fFi1a6F2a0IHVrAUjZ4B3jMCPc9dopHx/NlPf+piHx95QP8UKUYm874pQFRLBCGDs2LGMHSubT0VFxygYghH4Z+4mdW9Ezuo8Xv9PEQ/Lfwaigcj7rghFQb/HSIgTRVmNACi7U+dKGs71l2p/4xxcns2OOl4UVQghRAUJRiLkeIKRI3yC0dP3jSIiNQFsNu587lu9yxFCiKAlwUiEnChL+HWMTCYTPc63ALB0UXAsIQohRCCSYCRCTkyktqwUTsEI4MV7e0BEBLbdx3j13bl6lyOEEEFJgpEIOTFRWudE2R06V9KwBvXrS2KPVABe/jBH52qEECI4STASIScm0nV23TDaY+Q28jLtP+m9P+ey/+ABnasRQojgI8FIhJy4mEjtThgGo1cfHkNEUhyUlnHnlC/1LkcIIYKOBCMRcpLiY7Q7Dru+hejAarHSaXAUAN/JwWlCCFFnEoxEyImPdQUjBcXFxfoWo4Opd3UCg4HS7Uf510df6F2OECGp8kVL/Xj9UhEAJBiJkJMYH+e5n50bfpuQLz5/IHFd0wCY8l5WDc8WQghRmQQjEXKSEhM993Py8vUrREdXXKLd7vwpnyNHj+pbjBBCBBEJRiLkxMfHe+7n5BXoWIl+Xn/kBgzxMVBUwtjJ/9W7HCGECBoSjETIMZlMYNSmdlFxic7V6CMuNpb2A7W9Vt8u0LkYIcKMbDkKbhKMRGgyapcFyS8o0rkQ/Tx5eyswQNGmI8z9cr7e5QghRFCQYCRCkysYFRTbdC5EP9cOv4iYjtom7Mff2atzNUIIERwkGImQZHAtpeUXlepcib4uuUi73ba0kILCQn2LEUKIICDBSIQmkza1S23hd5LHymY+MhJDbDQqv4ixz8zRuxwhxInkJEgBR4KRCEkGVzAqKg3vYJScnEzr/tp5nWSbkRBC1EyCkQhJ7qW04jKHzpXo77GbMwEoWH+Erxf9oHM1QggR2CQYiZAU4eoYldnC70KyJxpzzeVEtU0FpXh45ma9yxFC1AODLMn5jQQjEZIMJu1NosQmHSOACy7Ubjf8UBKW148TQojakmAkQlKEKxiV2pTOlQSGtx65CqIiUTkFjJsqm7CFEOJ0JBiJkGSQYFRFRkYGLc5LAOCTr2V5UQghTkeCkQhJRqMWjML8aP0q/n5DIwBy1x5lybLlOlcjhBCBSYKRCEkRZlcwKte5kABy91+uxtqqETidPPjaGr3LEUKIgCTBSIQko0m7lWBU1cCh2u3axTbsdmmnCSHEiSQYiZDk3nxdJsGoihkTLwOrBeexPB56Ybbe5QgRdJRSle77NJLPtYj6IcFIhCSTq2MkTZGqWrdsQWbfJADe/1J+OEIIcSIJRiIkuZfSyu1y0rMT3TNSu0TI8d+O8uvvstdICCEqk2AkQpLRpLWpy6UpcpIJd4zG3DQZHA7u+6ccnSaEEJVJMBIhyb2UVl4uHaNTOXeYEYBV35XLJmwhgpjybaOTOAUJRiIkyR6j6r3xjyFgNuPIyuWJ1+RM2ELUVeVLk53851dd/iDz0x9vcq00v5FgJEKS2az9FSXB6NQ6tmtP+tkpALzzWZnO1QghROCQYCRCksm1x8guS2mndetVVgAO/3qMdRs26lyNEMGh8srViYtYSg7BDwkSjERIsriW0hwOfesIZE/eewOmxklQbueeF5foXY4QQgQECUYiJFnM2q3TLn/BnY7JZOKsIVqCXP6dQzZhCyEEEoxEiHIHI4f8rq/WtAfPBZOR8v3ZTH3rY73LEUII3UkwEiHJ4tpj5JBLglSrV/czSemVCsDr/ynSuRohwoi/DrOXw/X9ToKRCEkWi7bp2umQN42a/GWEtpx2cHk2O3bu1LkaIYKDodLh8SceKW+oyyH4fjrM3iCH6/uNBCMRkqyui8jKHqOaTX1oDBGpCWCzcedz3+pdjhBC6EqCkQhJke6OUbkEo5qYTCZ6nG8BYOki+XkJIcKbBCMRkjzBSDpGtfLivT0gIgLb7mO8NusTvcsRImBVvgSHb9t7/PPeJJcE8T8JRiIkRVm0a4Eph1PnSoLDoH59SeyhbcJ+6YPjOlcjROCr/pIgdRrJx0rcw8geI3+RYCRCUpRVm9pKOka1NvIy7We29+dc9h88oHM1QgihDwlGIiRFW10dI7t0jGrr1YfHEJEUB6Vl3DH5S73LESIg+e+SIHK4fqCSYCRCUlSkdgi6kmuC1JrVYqXT4CgAvl+oczFCBDg5XD90STASISkmSrtAqnSM6ua5OzuCwUDJtqP8e+4XepcjhBANToKRCElxUdrh58jm6zq59IJBxHVNA2DyrCydqxFCiIYnwUiEpNhorWOEXZbS6uqKS7TbHT/lc+ToUX2LESLA+O1wfT/tDZLD9f1PgpEISXEx0dodpwSjunr9kRswxMdAUQljJ/9X73KECEhyuH7okmAkQlJ8nDsYKYqLi/UtJsjExcbSfmAMAN8u0LkYIYRoYBKMREhKSkjw3M/Pz9exkuD05O2tACjadIS5X87XuRohhGg4EoxESKocjI7m5OhYSXC6dvhFxHTUNmE//s5enasRInDIeYxCnwQjEZISEuI994tkKc0rl1ys3W5bWkhBYaG+xQgRYPx2HiM/7TGS8xj5jwQjEZKsFitEaNM7v0CCkTdmPjISYqJQ+UWMfWaO3uUIERDkqLTQJ8FIhC6jdlmQ3IIinQsJTsnJybQZoHXeZJuREBpZSgt9EoxE6DJq07uk1KZzIcHrsZszAShYf4R53y3RtxghAojfDtf31xKYLKX5jQQjEbIMJq1jVFAiwchbY665nKi2qaAUE2Zs0rscIXTnt6U0EbAkGInQ5eoYFRaX6VxIcBtyoXa78YcSymzysxQCZPN1KJNgJEKWwaRN74Licp0rCW4zJo6ASCvOnALumzxb73KE0JXf9hjJ5uuAJcFIhCx3MCorl8uC+KJpZhOan5cIwNz/yUV5hQB/7DFSJw/kC+kY+Y0EIxGyDEbtjaK4TH6Z++rB0SkA5K45ypJly3WuRgj9BNweo4AoIrRIMBIhK8LdMZJg5LN7b7oGa6tG4HTy4Gtr9C5HCN35vsfIHWhkj1GgCehgNGXKFM466yzi4uJIS0vjiiuuYMuWLVWeo5Ri0qRJZGZmEhUVxaBBg9iwYYNOFYtAYjC5Oka2hg9GoTh3Bw7VbtcutmG32/UtRtSrUJy//iJ7jEJfQAejpUuXctddd7FixQoWLVqE3W5n2LBhFBVVnLBv6tSpvPzyy0yfPp1Vq1aRkZHB0KFDKSgo0LFyEQgiXMHIpsPv8FCcuzMmXgZWC85jeTz0gmzCDmWhOH/9zW/nMfK1Y6T8vFdJgAoiR44cUYBaunSpUkopp9OpMjIy1HPPPed5TmlpqUpISFAzZ86s9bh5eXkKUHl5eX6vWegnptMbCiapS+96vUG+XnXzKFTmbuagGQomqZRzal+jCHw1zaP6mL/B+r5rtT6tYJLasydXvf+HUjyp1ND3tc+9o95Wj6mH1Z9qXc0D/StFqekodXyDT/X8s0ULNQnU/pUrfRonWNXHPArojtGJ8vLyAO1SBQC7du0iKyuLYcOGeZ5jtVoZOHAgy5YtO+04ZWVl5OfnV/knQo+nYxQA53cMlbl7z8g4AI7/dpRff5e9RuHCH/NX77nrbwHTMfIMIx0jfwmaYKSU4oEHHuC8886jS5cuAGRlZQGQnp5e5bnp6emez53KlClTSEhI8Pxr1qxZ/RUudGM0abdlOp/GKJTm7oQ7RmNumgwOB/f9U45OCwf+mr96z11/CbQ9RnJUmv8FTTC6++67WbduHR999NFJnztxN75Sqtod+hMnTiQvL8/zb9++fX6vV+jPHYzKdd4nHGpzt99Q7VIrqxaVyybsMOCv+RsIc9cflCuIGAyG027vqdNRaT52eirXI/wjKILRPffcw1dffcUPP/xA06ZNPY9nZGQAnPQXypEjR076S6Yyq9VKfHx8lX8i9BjN2q2ewSgU5+60hwaD2YzjcC6Pv/p+g3990XD8OX8DYe76Q+UwdOIB93XqGPnrcH3ZfO13AR2MlFLcfffdfPbZZ3z//fe0atWqyudbtWpFRkYGixYt8jxms9lYunQp/fr1a+hyRYAxuk7waCtv+DeMUJ67XTt2JP1s7YSP73wu104LRaE8f33lt46RnwKNdIz8z6R3AdW56667+PDDD/nyyy+Ji4vz/HWSkJBAVFQUBoOBcePGMXnyZNq2bUvbtm2ZPHky0dHRjBo1Sufqhd5MJu0Nw67DFUFCfe7eepWVyb/AkV+Ps27DRrp17qR3ScKPQn3++kI6RqEvoIPRjBkzABg0aFCVx999911uuukmAMaPH09JSQljx44lJyeHc845h4ULFxIXF9fA1YpA41lK06FjFOpz98l7b+D5F17HkZXLvS8tYcm/JRiFklCfv/7g+5mvK57t73qEbwI6GKla7LY3GAxMmjSJSZMm1X9BIqh4OkY67DEK9blrMpk46wIzK+bAskVykd5QE+rz1xeVfzY+HRAmZ74OWAG9x0gIX5hdsd+u8+H6oerV+/uCyUj5/mwmvzFH73KEaBB+X0rztdMjS2l+J8FIhCx3MHI45A2jPpzdswcpvVIBeP0/RTU8W4jQ4rfN1z4upcnma/+TYCRCltmzlCat5vrylxFa+jy4PJsdO3fqXI0Q9avyspV0jEKXBCMRssyuzdcOu7xh1JepD40hIjUBbDbufO5bvcsRol5V3s5z6o6Rq3tTlxM8Ssco4EgwEiHL6g5G5dIxqi8mk4ke51sAWLpIfs4itNXcMarTYCe82uuiKgoSfiHBSIQs9x4jpxw0Va9evLcHRERg232M12Z9onc5QtQbp7Mi+kREGHB/GOHKJKouHSPl1G4Nvv0a9nSMIuTXub/IT1KELIurY+SUjlG9GtSvL4k9tE3YL31wXOdqhKg/9bKU5uuZr51OTz3CPyQYiZDlWUqTzdf1buRl2lvJ3p9z2X/wgM7VCFE/ar+U1nB7jGQpzf8kGImQZTVrbxTKIcGovr368BgikuKgtIw7p3ypdzlC1IvKS2kGQ8VSmuGkpbRa8CylyebrQCPBSISsSIv2RuGUjlG9s1qsdBocBcDiBToXI0Q9qbqUVqlZU/EMTnyk5sGkYxRoJBiJkBVlMQKgJBg1iOfu7AgGAyXbjvLvuV/oXY4Qfld5KS0iwuCJQRWbrzV122Mkm68DjfwkRciKtGjT22l36lxJeLj0gkHEdU0DYPKsLJ2rEcL//LaUVuX6ZrL5OtBIMBIhK8rq6hg5JBg1lCsu0W53/JRPdna2vsUI4WeV80xERMVRaRF1Piqt8pqcj7+GpWPkd/KTFCErLlo7LE1Jx6jBvP7IDRjiY6CohDuenat3OUL4ld/OY6QqvSf5upTm7hhJMPIb+UmKkBUdqZ2RGQlGDSYuNpb2A2MAmP+NzsUI4Wd+O1y/HpbSZPO1/0gwEiErNsrdMZJTXzekJ29vBUDRpiP852u5fpoIHbU/wWONI1UeyMea5HB9f5NgJEJWbHSkdscpHaOGdO3wi4jpqG3CfuLtXTpXI4T/yFJaeJCfpAhZcTHaeXVwSMeooV1ysXa7ZWkRBYWF+hYjhJ9UPSoN/wQjX38Ny+Zrv5OfpAhZ8THaXhccTux2u77FhJmZj4yEmChUfhFjn5mjdzlC+MVpD9d3PaZqe4LHKh0j2WMUaCQYiZAVHx/juZ+fn69jJeEnOTmZNgPiAfhyvs7FCOEn7mBkNLrOqu/KQUbXb1J3MIqocZdR5WBk9LqeKiecNHo/jqhKgpEIWUkJ8Z77R+WcOg3u4TEZABSsP8K875boW4wQfuAORu6NzqfrGNVtj5H3nR7l9F/nSVSQYCRCVnJikud+Xn6BjpWEp1tGXkFU21RQigkzNuldjhA+c3doIlybik6+JEhtg1Hlw/W9/zVcORjJHiP/kZ+kCFnR0dGed6zcfNkArIchF2q3G34oobi4WN9ihPBRRcfI9fFpLglSi5Eq7vqpYySH6/uPBCMR2lzr7oXFpToXEp5mTBwBkVZUTgHjpsombBHcHA73HiPtV6f7akPGE4JRRE2/Wp2VjpT1ZY9RpSNuDbLHyG8kGInQ5nqzKCiSYKSHpplNaH5eIgCffC3nkxLB7XSbr307j5GfOkaylOY38pMUoc31l11RaZnOhYSvB0enAJC79ig//LxM52qE8J47GLn3GHmOSjspGNX0q9V9iL1vXZ7KwUiOSvMfCUYipBlcwaigWIKRXu696RosLRuB08nfp6/VuxwhvHa6YHTiHqMae0DKP+cekqPS6ocEIxHSDCZtipeUydmv9TRwqPamvXaxTU62KYKWw7WpyLPH6ISOkdPVCaqxY+TeY+Rjx8hZaY+RdIz8R4KRCGmeYGSTYKSnGRMuAqsF57E8Hnphtt7lCOGV0y6leXuCRz8upcnma/+RYCRCmnsprbhEgpGe2rRuTWZf7bxS738pHSMRnNxHpbmDkcPbzdeejpGPF5CtfFSaLKX5jQQjEdKkYxQ47hkZB8Dx347y6+9rdK5GiLo7XceozsHI0zHyMRi5OkZyRJp/yU9ThLQIk/YGVWqr7YnXRH2ZcMdozE2TweHgvn8u17scIeqsYo+Rq2N0wnmMGnqPkScYyTKaX0kwEiFNglFg6TdUewNf9V25bMIWQeekEzxW2mOkXP+DWpzgUfl387VsvPYvCUYipLmDUZldglEgmPbQYDCbcGTl8sRrciZsEVyqW0qrfDmQWp/gUZbSApL8NEVIcwejcmlOBISuHTuSdrZ2wsd3PpNzS4ngUt1SWt2CkZ+W0lwdI1lK8y8JRiKkRZi0W1u5dIwCxW1XRQJw+Ndj/Llpk87VCFF71S2lOStdGLbWS2kRspQWiCQYiZBmdHWMbOVyKGugePLeGzBmJEK5nXte+EHvcoSoNb91jPy1+Vo6RvVCgpEIaUZXx6jMpm8dooLJZOKsC8wALFskp1EQwcPvHSPZfB2QJBiJkOYORrLHKLC8en9fMBop35/NczM/0LscIWrFbtfCj8l1fjTXh5jqHIxcb0jutX4vOV1HdkaYfBtHVCXBSIQ0k0n7k67cLktpgeTsnj1I6Z0KwLS5BTpXI0TtyFJaeJBgJEKaSVuxwS7BKODcOEL7K/fg8hx27NypczVC1CzgltLcHSMJRn4lwUiENHeHubxc3zrEyV54aAwRjRKgzMbY57/RuxwhalR9x0j7oMZQBH7fYyQdI/+SYCRCmnspzSF7fAOOyWSi+xALAEsX6VyMELXg3mNkNmtBxL3HyGys6BjVKhg5XXuMjGaf6nF3jIxm38YRVUkwEiHN3TGSq08Eppfu7QEREZTtOsZrsz7RuxwhqlWxlObqGLmX0gzgrO3lQEBO8BjgJBiJkGYxuzpGch6jgDSoX18Se2ibsF/64LjO1QhRPXfHyL3HyN0xqrzHqMaN11DRMZI9RgFJgpEIaWZXx0iW0gLXyMu0t6G9P+ey/+ABnasR4vTce4zMZtfma/dSWkTFHiMjtQgpnjNf+7iU5j6PkSyl+ZUEIxHSLO49RnIR2YD18vgbMCTFQWkZY6d8qXc5QpxWeXnV8xiVVzqPkaNOe4xcR4P4eh4j11Elch4j/5JgJEKa2XVJEIcclRawoqOj6Tw4CoDvFuhcjBDVqP4Ej67uTV02X8sJHgOSBCMR0iyuDrNTLiIb0J67syMYDJRsO8rsT77SuxwhTum0e4wMlfcY1SEYyR6jgCTBSIS0SO1ocJwOCUaB7NILBhHXJQ2Ap989qHM1QpxaxeH6VYNR5cP1jbU6Ks3dMfLP4fqyx8i/JBiJkGa1aEtpTjlcP+Bdcal2u+PHfLKzs/UtRohTqM210mQpLfhJMBIhzWp2ByNnDc8Uenv9kRswxMdAUQl3PDtX73KEOEl5ubaPyN0x8nnztcG3QOOQzdf1QoKRCGlRFm2KKzkqLeDFxcbSfmAMAPPlCiEiAEnHKDxIMBIhLcqqbUp0OqRjFAyevL0VAEWbjvCfr7/VuRohqnIfru++JIirgYS5ylFptdgI7Tlc38c9Rq6OkVwSxL8kGImQJh2j4HLt8IuI6ahtwn7i7V06VyNEVadbSjMbweEKRrU6waOfgpFnKU2CkV9JMBIhLTpSe8NQ0jEKGpdcrN1uWVpEQWGhvsUIUcnpltLMXi+lyUVkA5EEIxHSoq3uq8jKNUGCxcxHRkJMFCq/iLuenaN3OUJ4nHYprcrh+g2/lCYdI/+SYCRCWmy0diIj6RgFj+TkZNr0jwfgi/k6FyNEJaddSouoWEqr2yVBZCktEEkwEiEtISZSuyOH6weVh2/KAKDgzyPM+26JvsUI4WKzuYOREaWqnuCxbnuMbNqtr8HIpo0jS2n+JcFIhLTYmGjtjkPO8BhMbhl5BVFtU0EpJszYpHc5QgCVl9IiPN0iqHpUmiylBT8JRiKkxcW6g5ETu13CUTAZcqF2u+GHEoqLi/UtRggqgpHFYvTsLwKwGCtO8FinYGS0+FSPeynNaPFtHFGVBCMR0hLjYj33C4vkCKdgMmPiCIi0onIKeGCqbMIW+nMvpVksRmwnBaM6dIwc7qU0H4OReylNgpFfSTASIS0xPs5zPzsnT8dKRF01zWxC8/MSAZj7P9kjJvTn3nxtsRirLKWZIrw8j5GPHSOndIzqRVAFoylTpmAwGBg3bpznMaUUkyZNIjMzk6ioKAYNGsSGDRv0K1IElKSkJM/9nNxc3eqQueudB0enAJC75ihLli3XuZrwJHO3QuXN17ZKZ702GOp6VJpsvg5kQROMVq1axVtvvUW3bt2qPD516lRefvllpk+fzqpVq8jIyGDo0KEUFBToVKkIJFGRkaBdR5YCnfapyNz13r03XYOlZSNwOnnwtTV6lxN2ZO5W5Q5GVmtFMHKfKs0djEzU4rpl7qU0o9WnejzByOrbOKKqoAhGhYWFjB49mrfffrtKB0ApxSuvvMIjjzzCVVddRZcuXZg9ezbFxcV8+OGHOlYsAoXJZAKj1trOy2/4YCRz13cDh2rJdu1im2ygb0Ayd09WVlaxlFbmmooW18qZA9dZqGu1x6hMu/V183VZmWsYWUrzp6AIRnfddReXXnopF1xwQZXHd+3aRVZWFsOGDfM8ZrVaGThwIMuWLTvteGVlZeTn51f5J0KYKxjlFjR8MJK567sZEy4CiwXnsTweemG23uWEDZm7JzvV5uuKYOTNeYz8tPlaltL8KuCD0ccff8zvv//OlClTTvpcVlYWAOnp6VUeT09P93zuVKZMmUJCQoLnX7NmzfxbtAgsJu2NqrTM1qBfVuauf7Rp3ZrMvskAvP+ldIwagszdU6tYSjNVLKWdFIxkKS3YBXQw2rdvH/fddx9z5swhMjLytM8zGAxVPlZKnfRYZRMnTiQvL8/zb9++fX6rWQQeg1Gb5oWl5Q32NWXu+tdd18YAcPy3o/z6u+w1qk8yd0+vzLV+ZrEYKTuhY2T3ZinNx46RXZbS6kVAB6PVq1dz5MgRevXqhclkwmQysXTpUl577TVMJpPnL5YT/0o5cuTISX/NVGa1WomPj6/yT4QudzAqLmm4YCRz17/G//U6zE2TweHgvn/K0Wn1Sebu6flt87XTvx0jk3SM/Cqgg9GQIUP4888/Wbt2redf7969GT16NGvXrqV169ZkZGSwaNEiz2tsNhtLly6lX79+OlYuAorJ1TEqa7hlGJm7/mUymeg3VPtLfNV35bIJux7J3D296jdf1+UEj37efC3ByK9qEW31ExcXR5cuXao8FhMTQ0pKiufxcePGMXnyZNq2bUvbtm2ZPHky0dHRjBo1So+SRQCKMEXgBErLGu4kgTJ3/W/aQ4PpNuczHFm5PDXtA566f4zeJYUkmbun515Ks1pNnqU06wlLaaY6BSPfAo17KU06Rv4V0MGoNsaPH09JSQljx44lJyeHc845h4ULFxIXF1fzi0VYMBi1fQ8llS9uFABk7tZN144dSTs7hSO/HOatz0p56n69Kwpf4Tp3S0vdwchIaYn22InBqFabr+2l2q2vwai01DWMBCN/CrpgtGTJkiofGwwGJk2axKRJk3SpRwQ+g2sprSE7Rqcic9d3t15pZcovcHjlcf7ctImuHTvqXVJYkLmrcS+lRUaaKHNdejHS9Vu0omNUmz1G7o7R6Te314ZDOkb1IqD3GAnhDxEmrWNUalM6VyJ89dR9N2LMSITycu598Qe9yxFhxOFwYrdrf1xZrSbPHqOKzdd1CEZ+XkqTjpF/STASIc8djGzlEoyCnclkovcQ7WR2vyySC8uKhuPuFoHWMXKtqtW9Y6RUpaU03zpG7qU0UzWnVRB1J8FIhDyjKxiVNdzR+qIevXL/OWA0Ur7vOM/N/EDvckSYKKt0VKvVajzF5utanuDRaQdcf6T5eri+eylNgpFfSTASIS/C9T5lk2AUEvr06kVK71QAps0N7YuWisDh3ngdEWHAZIo4bcfIXFMwcpRW3Dd5H2iU01lxHiMJRn4lwUiEvAjpGIWcG0dov3wOLs9hx86dOlcjwkHlI9IMBoMnGFk9wUh7g6mxY1Q5GPnQMXLvLwLZfO1vEoxEyDOZtLZ1uZwTMGS88NAYIholQJmNsc9/o3c5Igy4g1FUlLbHzR2MouraMXLvL4qwgMH7X8Hu/UUApqgor8cRJ5NgJEKeeylNglHoMJlMdB+inTV46aIaniyEH5SUuIOR9oZScppgZKKGK907XCdAMvkWZuwl2jgGoxGjuYavKepEgpEIeSaz+6i001/gUgSfF+/uDhERlO06xvT3/qt3OSLEVSylaUmo8lKaE2ftr5Xm55M7yjKa/0kwEiHPvZTmkI5RSBl8Xj8Su2ubsF+cc0znakSoK3FdhNrTMXLtWYwyVXSLoDbByD8do3JXx0iW0fxPgpEIeSbX4bTl0jEKOdcM197C9vycd9LV3oXwp4qlNG3ZyrOUZoZyKo7sMDfwUppZgpHfSTASIc/oep+yB9al0oQfvDL+BgxJcVBSyl+f/UzvckQIq75j5D4izUhETb9W3R0jo3SMApUEIxHyLGbXUWlyuH7IiY6OpvNg7RfDdwt0LkaEtOo7RnW4HIifltKkY1R/JBiJkGeWPUYh7bk7O4LBQMm2o8z+5Cu9yxEhyt0xio6uGoyiK3WMalxGg0rBKNqnetwdI3O0b+OIk0kwEiHP7PojzinBKCRdesEg4rqkAfD0uwd1rkaEquLiqsHI9SHRZrB5gpGl5oHsxdqtr8GoWBtHgpH/STASIc/i3mNkl83XoWrEJdrtjh/zyc7O1rcYEZIqgpH2l1blYFRep46RKxiZJRgFKglGIuRVLKUpnSsR9eWNR2/AEB8DRSXc8excvcsRIcgdjNx7jNzBSNtjpF2zrMazXkNFMPJ187UrGMnma/+TYCRCnsV1gkclS2khKy42lrYDYwGY/63OxYiQVFSkJaGYmKrBKKZKx6gOS2nmGJ/qcQcjS4xv44iTSTASIc/i3mPkkI5RKHv69pYAFG08wn++lnQk/MvdMYqJsaBUpWBkqQhGltoEo3L/BiOTLKX5nQQjEfIiLVrHyFEuwSiUXTv8ImI6apuwn3h7l87ViFDj7hhFR5spc4DT9XYSXWUprTZ7jIq0W183Xxdp48geI/+TYCRCntW1lOaUPUYh75KLtdstS4soKCzUtxgRUoqKtPATE2PGdVf7uNJRabXrGLmDkW8dI5srGMlSmv9JMBIhLypSm+bK7tS5ElHfZj4yEmKiUPlF3PXsHL3LESGkYo+RBdddrEYwRoDNm46Rr0tp7mAUG+vTOOJkEoxEyIsyaxdLU7LHKOQlJyfTpn88AF/M17kYEVIqd4wKXR2jGFeDyB2MatcxcnUy/RSMzNIx8jsJRiLkRVu1ae6UjlFYePimDAAK/jzCvO+W6FuMCBlVOkbuYORqEFXsMZKltFAgwUiEvGir67A0hwSjcHDLyCuIPCMVlGLCjE16lyNCRKGrTRQba/F0jGJ96hj5tgRmc+2hk6U0/5NgJEJetOuEbLLHKHxccJF2u/GHEspsZfoWI0JC9cFIm2NWCUYhQYKRCHmxka5gJB2jsDFj4giItOLMKeC+ybP1LkeEAPceo9jYis3XFcHIfVSateaB3EtpPgYj2XxdfyQYiZAXE+16s7I79C1ENJimmU1ofl4iAHP/J4FY+MbpVJ49RrGxFgpO6BiVuTpGtVtKK9BufQxGZQXaOBKM/E+CkQh5cdGuawk5JBiFkwdHpwCQu+YoS5Yt17kaEczcy2gAcXEWClyrs3EnLKXV2DFyOiouCWKJ86kmmzsYxfk2jjiZV8Ho/PPP58knnzzp8ZycHM4//3yfixLCn+JjK4LR4MGDZe6GiXtvugZLy0bgdPL319boXY7P5H1XP+5gFBFhIDLSdNrN1zXuMXKfwwh86hg5HY6Ka6VJx8jvvApGS5YsYfr06VxxxRUUFVX8H22z2Vi6dKnfihPCHxITtPPaoGDp0qUyd8PIwKHaWc/XfG/Dbg/uqwjL+65+Clwtorg4CwaDwbOUFnfSUloNHSObaxnNYARjpNf12Cqd1d0qHSO/83op7bvvviMrK4s+ffqwe/duP5YkhH8lnPDGIXM3fMyYcBFYLDiP5jH+heDfhC1zVx8FriQUF6cFH08wsoJC1b5j5N5fZIkDg8HretzLaBEmE0ZrLTZ8izrxOhg1btyYpUuX0q1bN8466yyWLFnix7KE8J/kpIQqH8vcDR9tWrcms28yAO99GdwdI5C5q5f8fK0jFB+vhRDXh8RboZxynGgb/K3U0AWy5Wu35nif6inL18axxsdj8CFgiVPzKhi5/4+wWq188MEH3HfffVx00UW88cYbfi1OCH+IjalYg5e5G37uulY7M/Dx347y6+/Bu9dI5q5+Ki+lAVU2X7u7RVCLa6XZKnWMfFAmG6/rlcmbFylV9ZpTjz76KB07dmTMmDF+KUoIfzKZTGA0gsMhczcMjf/rdUyaMoPy/dnc98/lLH+/h94leUXmrn7cHSP3Upq7YxRnhTJKAe1Q/Yiaeg3l7o6Rj8HI3TGSYFQvvApGu3btIjU1tcpj//d//0eHDh347bff/FKYEH7lCkavvflvmbthxmQy0W+okaXvwqrvyrHb7VpYDjLyvqufvDwtCSUkaMHI9SEJVih1BaPImpbRAMrytFtrQvXPq2kYdzBK8G0ccWpeLaW1aNHilOuanTt3lr9eRGAyaVM9MjZR5m4YmvbQYDCbcGTl8tS0D/Quxyvyvqsfd8fIHYzyKwWjMs/lQGoRjNx7jCz+CUaREozqhZzgUYQFQ4Q21fOLSnWuROiha8eOpJ2tnfDxrc9kDoi6ycvT5ox783Vepc3X7o6RtTaXA7G5OkYWHzdf52njWON9G0ecmgQjER5cHaOiknKdCxF6ufVK7RfX4ZXH2bR1i87ViGBSsZQWiVKVOkaRFR2jWi2leYKRb52eUncwko5RvZBgJMKCwWQEoMQW/IdsC+88dd+NGNMTobycsc8v1rscEUTcwSgxMZLicrC7Lr+XGFnHPUbuYGRN9Kked8coMtG3ccSpSTASYcFg0vZmlNjkgqLhymQy0fsC7XDqXxbKdfNE7bmX0hITIz3LaEYDxJi93Hzta8coNxeQjlF9kWAkwkKEeymtTH4hhrNX7j8HjEbK92fz3Mzg3IQtGl5urhZ+EhKsuO6SEKmdvLpuHaNc7dZPwUg2X9cPCUYiLBiMWseoTDpGYa1Pr16k9GoEwLS5BTpXI4KFOxglJkZ6glGiKweVUgJAJFE1D1SWq936uJTmCUaylFYvJBiJsODuGJWVqxqeKULd6Mu15bSDy3PYsXOnztWIYOAORklJUZ5glOQJRtoDUbVaSsvVbq1JPtXjCUZJvo0jTk2CkQgLEa7z+ZXZJBiFu6kP3UBEo3goszH2+W/0LkcEgZycio5Rzgkdo5I6dYxytFtfO0Y52jjSMaofEoxEWIhwbb4uk6P1w57VYuXM87VD95cu0rkYEfBKS+2UlmpHsyYmRpKj5aBTLKXV0DFSqtIeo0SfaiqRYFSvJBiJsOAORjYJRgJ46Z7uEBFB2a5jTH/vv3qXIwJYjisJRUQYiI+3ejpGya4GUYlnKa2GjlF5IThdpwuJTPa6HqfD4TlcPyrZ+3HE6UkwEmHB6FpKs8keIwEMPq8fCWdq1x17cc4xnasRgazyMlpEhMHTMUo6oWNUYzByL6NFWMAU7XU97lAEECV7jOqFBCMRFoxmV8fIfvK1pkR4uuYybS7s+TmPrKwsnasRgcrdMUpyJaGcSpuvHTgqnfm6lsHImqQd5+8l9zKaOSYGo8Xi9Tji9CQYibBQ0THStw4ROF6dcCOGpDgoKeWvz36mdzkiQGVnu4ORFnyy3R2jqIoj0qAWe4xKs11P9K3LU5KtjSPdovojwUiEBaNJW0Irl46RcImOjqbTIO2X3XcLdC5GBKzjx7UklJKizRXXh6REQTHFgBaKjBirH6j0uHYbmeJTPSXHtXGiUnwbR5yeBCMRFkyujpFdLpUmKplyZwcwGCjZdpTZn3yldzkiALk7Rikp2r6g7ErBqMQVjKKoxZ6hMlfHyOpjMHJ1jKIlGNUbCUYiLFQEI+kYiQrDhw4mrksaAE+/e1DnakQgOn5cCz8ndYyiKzpG0bU5h5GfOkbF0jGqdxKMRFhwB6Ny2WMkTjDiEu12x4/5ZLv+GhfCzb2UlpwchVIVHaPkqIqTO9aqY+QJRr4dYu9ZSpND9euNBCMRFkyuPUYOuYasOMEbj96AIT4Gikq449m5epcjAsyxY1pXKDU1mrwysLsut9goGoooAiCGmJoHKnWdFiIq1ad6io9p40Q3auTTOOL0JBiJsGB2BSN7uSyliariYmNpOzAWgPnf6lyMCDjuYNSoUTSuu8RaINJUeSmtFh2jElcwivQt0Egwqn8SjERYMLuW0hxygkdxCk/d2hyAok1H+HSeHKImKriDUUpKRTBybTei2NUxqt1SmjsY+bjHyBWMZI9R/ZFgJMKCRbugOg6HdIzEyUaOuISYjmmg4NG3dupdjgggR49WLKUd1XIQqa6Vs+K6LKWVHNVu/bSUFpPq2zji9CQYibDgCUZ26RiJU7voQu12y5IiCgoL9S1GBASnU3mOSktNjcGVkUh1NYiKXEtpDRqMjmrjREswqjcSjERYsLj2GDnlPEbiNN54+GqIiULlF3H35Dl6lyMCQE5OCQ6H9t7RqFH0KYKR1jGKrikYOcqgvEC7H+l9oFFKUeQKRtIxqj8SjERYsFi0JTSndIzEaaSlptKmfzwAX8zXuRgRENzLaPHxViwWo2cprZErGFUspdWwx8jdLTIYwZrgdT1l+fk4XecckY5R/ZFgJMKC1STBSNRswl8yAMhfd4Rvvl+qczVCb0eOaMEnPV3rCB1xdYzSY8CO3XOttBhiqx+o5Ih2G5UGBu9/7RYd0caxxMVhjqrFSSWFVyQYibAQKR0jUQu3XX8FkWekglJMeGOj3uUInbmDUVqaKxi5OkZpMRXLaBFE1HwB2eJKwcgHRYcPAxCT5ts4onoSjERY8AQjhwQjUb0hrk3Y678vocxWpm8xQlfVByNtg34MMUTU9KvU3TGK9jEYuTpGEozqV8AHowMHDnDDDTeQkpJCdHQ03bt3Z/Xq1Z7PK6WYNGkSmZmZREVFMWjQIDZs2KBjxSIQRVm0K1+rcmeDfU2Zu8Fp5sMjINKKM6eA+6e8p3c5upH5C4cPa+HHHYwOVwpGhZWCUY2KtU6Prx2jQukYNYiADkY5OTmce+65mM1mvvnmGzZu3MhLL71EYmKi5zlTp07l5ZdfZvr06axatYqMjAyGDh1KQUGBfoWLgBNl1aa6aqCOkczd4NU0swnNzk0E4OOvw/MaMjJ/NVlZWvjJyIjFqcCVk8iIrQhGscTVPFBxlnYbneFTPYVZ2jixGb6NI6pn0ruA6jz//PM0a9aMd9991/NYy5YtPfeVUrzyyis88sgjXHXVVQDMnj2b9PR0PvzwQ/72t781dMkiQEVHalNd2RumYyRzN7g9ODqJcYsPk7PmKEuWLWdQv756l9SgZP5qDrtaRBkZsWSXgPvvqrQY2OkJRjVsvAYocXeM0n2qx7PHKN23cUT1Arpj9NVXX9G7d2+uueYa0tLS6NGjB2+//bbn87t27SIrK4thw4Z5HrNarQwcOJBly5addtyysjLy8/Or/BOhLcYTjBqmAyBzN7jdd/NILC0bgdPJ319bo3c5Da4+5m8wzl13xyg9PQbXXZKjwGKs3DGqRTByL6VF+ycYxUowqlcBHYx27tzJjBkzaNu2LQsWLOCOO+7g3nvv5b33tHX/LFdbMf2ESZKenu753KlMmTKFhIQEz79mzZrV3zchAkJMlAUA5WiYjpHM3eA3cKi2YX/N9zbs9vA6M2h9zN9gnLvuYNS4cZwnGDV25aBCtCXD2i2lHdJuYxr7VE/BIW2c2Ma+jSOqF9DByOl00rNnTyZPnkyPHj3429/+xu23386MGTOqPM9gqHr9K6XUSY9VNnHiRPLy8jz/9u3bVy/1i8ARE2nV7jRQMJK5G/xmTLgILBacR/MY/8JsvctpUPUxf4Nt7iqlOHTIHYxiOXRCMCpwBaO42gSjIlcwivYt0BS6glGcBKN6FdDBqHHjxnTq1KnKYx07dmTv3r0AZLg2oJ34F8qRI0dO+kumMqvVSnx8fJV/IrTFxbjOM+JomKU0mbvBr03r1mT2TQbgvS/Dq2NUH/M32OZuTk4pNpv2fpGREcsh157yxq4cVFjbYOQog7Js7b4PHSOlVMXmawlG9Sqgg9G5557Lli1bqjy2detWWrRoAUCrVq3IyMhg0aJFns/bbDaWLl1Kv379GrRWEdjiY11niW2gPUYyd0PDXddqh2IfX32U1Wv/0LmahiPzFw65klBSUiRWq8nTMcpwHZ1fUNultCJXeIywgDXZ63pKsrNx2Gza15Sj0upVQAej+++/nxUrVjB58mS2b9/Ohx9+yFtvvcVdd90FaG3ccePGMXnyZD7//HPWr1/PTTfdRHR0NKNGjdK5ehFI4mNd72ZKUVxcXO9fT+ZuaBj/1+swN00Gu4N7XvpF73IajMxfOHhQCz5NmmidLdeHNImHMsqwoYWUGjtGxQe125hMqGaZvCYFB7Vxohs1wmS1ej2OqFlAH65/1lln8fnnnzNx4kSeeuopWrVqxSuvvMLo0aM9zxk/fjwlJSWMHTuWnJwczjnnHBYuXEhcXC3WfUXYSIivmA/ZuTlER9dw0UcfydwNDSaTib4XGPlxFqxabMdut2MyBfTbpl/I/K0IRpmZ2vfjDkaZcVCAdkSd1fW/ahVVCkY+cAejuEzfxhE1C/j/wi+77DIuu+yy037eYDAwadIkJk2a1HBFiaCTlFBxReucvHyaZjap968pczc0TB8/mG4ffIb9UA5PvDaHZx+4Se+SGkS4z9+TgpFrKS0zFvI9+4tqsU9KglHQCeilNCH8JSGh4g0sJy90zswr6l/Xjh1JOzsFgHc+l2unhYsDB9zBKBal4IDrtEuVO0a1OyLtgHbrazA6oI0TK8Go3kkwEmHBarFChDbdi4pLdK5GBJtbr9SWSw6vPM6mrVtqeLYIBfv3a+GnadN4jpdAmeu4jSbxkEceAAkknO7lFQr3a7cxTX2qJ3+/Nk58U9/GETWTYCTCh1G7kGxBkQQjUTdP3XcjxvREKC9n7POL9S5HNIDKwch1l7QY7azX+a5gFF+bpTR3MIqVYBQsJBiJ8GHUpnt+YanOhYhgYzKZ6H2BGYBfFjXMSUKFvk4VjJq6clC+ayktvi4dIwlGQUOCkQgbBpPWMSouK9e5EhGMXnugLxiNlO87zvNvfqB3OaIelZXZPReQbdo0nn3uYOTaUpRX246RUlDkp2DkOlO4BKP6J8FIhA9Xx6i41KZzISIYnd2zBym9GgEwbW6hztWI+uTeeB0ZaaJRo2j2aTmIZq4GUX5t9xiVHNXOfI0BYrw/Era8uJiSbO3s2QlBcI25YCfBSIQNg8kVjErC6/IOwn9GX64tpx1Yls2OnTt1rkbUl32uJNS0aTwGg8HTMWoWD+WUU4TWTUogsfqBCl3Xg4tOB6PF63ryXN0iS2ws1oRaLN8Jn0gwEmHDHYwKSyUYCe9MfegGIhrFQ5mNsc9/o3c5op7s3asFo2bNtKWyve6OUXxFt8iMmSiiqh+oULu2HLG+dXnyXNeoi2/WrNqLTAv/kGAkwobBqL2hlJbL5lnhHavFypnna4fuL11Uw5NF0HIHoxYtErWPXR2jFgmQ61lGS8RADSGlwBWM4lr4VI87GCW28G0cUTsSjETYiDBr072sTIKR8N5L93SHiAjKdh3jtVmf6F2OqAd79riDUQIOJ56j0lokQh45ACTWtIwGULBHu/U1GO3RxkmQYNQgJBiJsBFhcneMlM6ViGA2+Lx+JJyZCsDLHx7XuRpRHyoHo4MFYHeCKQIax0IuuYAEo1AmwUiEDYMrGJXYpGMkfHPNZdpc2vNzHllZWTpXI/xtz55cQFtK21Npf5ExoiIY1bjxGvwWjHJdwUiW0hqGBCMRNoyuPUY22XstfPTqhBsxJMVBSSl3TP5M73KEHzmdit27cwFo1SqRXdpdWiVqtzmupbQkkmoeLH+Xdhvfyqeacndp4yS28m0cUTsSjETYiDC7gpGcxkj4KDo6mk6DtCOSFi7QuRjhV4cPF1JW5iAiwkDTpvG4MhItE7XbiqW0GoKRLR/KtHMPEdfS63oc5eWes14ntvR+HFF7EoxE2IgwabfSMRL+MOXODmAwULL1KLM/+VrvcoSf7HK1iJo1i8dsNlbpGDlweA7Xr7FjlL9bu41MAUuc1/Xk79uHcjoxRUYSm5Hh9Tii9iQYibBhdO0xkiuCCH8YPnQwcV3SAHhm1gGdqxH+snOntlTW0tUicn1Iy0StW6RQmDARQ0z1A+W7TgDqQ7cIIMd1ItGEFi3kHEYNRIKRCBtGk3Y0WrkEI+EnIy7RbrcvzSfbdckGEdzcwahNG60j5A5GbZIgB+3/4ySSiajp16c7GCW08akedzBKbuPbOKL2JBiJsOHefF1ul7+6hH+88egNGOJjoKiEO56dq3c5wg8qglEyZfaKcxi1Sa4IRskk1zyQOxjF+ycYJUkwajASjETYMJm1jpFNOkbCT+JiY2k7MBaA+d/qXIzwix07tGDUqlUiu3NBATFmSI2GbE/HqBZHpOXt0G59PCItZ4c2jhyR1nAkGImwYXJtvrY79K1DhJanbm0OQNGmI3w6Tw5RC3bbt2vh54wzknHdpU0yGAyQjXZCz2RSah4ob7t2m3CGT/Vkb9fGST7Dt3FE7UkwEmHDE4xkKU340cgRlxDTMQ0UPPrWTr3LET4oLLSRlVUIuIKRa39RW9fK2XFXxyilpmDkKIeC3dr9xLZe16OU8gSjlLbejyPqRoKRCBtm11KaQ5bShJ9ddKF2u2VJEQWFhfoWI7y2Y4cr+KREkZQU5ekYnZEETpyV9hjVEIwK94LTDsZIiMn0up6iI0ewFRaCwSBLaQ1IgpEIGybXUWnSMRL+9sbDV0N0JCq/iLsnz9G7HOEl9zJamzZai6jyUlohBZRTTgQRNV8nzb2MFt8aDN7/mnV3ixKaNcNktXo9jqgbCUYibFhcS2kOh1xEVvhXWmoqrfonAPDFfJ2LEV7bulXbQ9S+vdYR2uoKRu1T4Jhrf1ESSRgxVj9Q7lbtNqm9T/Uc36qNk9Let3FE3UgwEmHD7A5GspQm6sHDY7SzEuevO8I33y/VuRrhja2uJNSuXQpldjyXA2mXAsc5BkAKjWoeyB2MEtv5VI8nGLXzbRxRNxKMRNjwBCO5JIioB7ddfwWRZ6SCUkx4Y6Pe5QgvuDtG7dqlsDMHnAriLJAe42UwSvAt0GRLMNKFBCMRNixm7VY6RqK+DHFtwl7/QwlltjJ9ixF1tmWLFn7atUthi5aRaJeiHap/zBWMGtXmUP3cLdqtjx2jY1u0cSQYNSwJRiJsWC3arVP2GIl6MvPhERBpxZldwP1T3tO7HFEHx44Vc/x4CaAFo81aDqKDq0F0jKMANCK1+oHKi6Fgj3Y/qYPX9TjtdrK3bdO+ZgfvxxF1J8FIhA2rWTsazWmXYCTqR9PMJjQ7NxGAj7+WM4kGk82uJNS8eQLR0WY2uzpG7VPAjp0ctJMaNappKc29jGZNhqhaLLudbpjdu3HYbJgiI0lo3tzrcUTdSTASYSPSHYzKJRiJ+vPgaO1yETlrjvLjil91rkbUljsYdXC1iCp3jI5zHIXCipVY4qofKHezdutDtwjg2GZtnJR27TBEyK/qhiQ/bRE23MFIyVKaqEf33TwSS4sUcDp58NXf9C5H1NKmTdpSWYcOKSgFm9zBKAWOcgTQltEM1HAetOxN2q2PwejoJm0cWUZreBKMRNiwWrXp7rQ7da5EhLoBw7S59vtiG3a7HAYZDDZu1JJQ585pHCyA/DIwGrTN1+5glEZazQPluI5ITO7sUz3HNmrjpHb2bRxRdxKMRNiIdgUj6RiJ+jZzwkVgseA8msf4F2brXY6ohY0btY5Rp06puO5yRjJYTXDUtfE6tTbBKNsVjJI6+VSPu2OU2sm3cUTdSTASYSPadeprJR0jUc/atG5N4z7aZSXe+1I6RoGuoKCMvXvzAC0YbXAFo06uA9COcBioRcfIYYM81+brZO8DjVKKo66OUaOOHb0eR3hHgpEIG9FREoxEwxl7bQwAx1cfZfXaP3SuRlTH3S1q3DiW5OQoTzDqkqodkeY+h1Ea6dUPlLtNu3isOQ5im3ldT97evdgKCogwm0lp29brcYR3JBiJsBEd6TqRkUOCkah/E/52HeYmyWB3cM9Lv+hdjqjG+vXaHqIuXbSOkOtDuqRBNsdx4sSKlQQSqh8oe712m9JFOyukl46s18Zp1L49RovF63GEdyQYibCREKNdnVrZ5fwyov6ZTCb6XKC9xa5abJdN2AGscjBSCta7O0ZpcNizjJZeiyPSXMEouYtP9biDUVoX38YR3pFgJMJGbLQWjHBIMBINY/pDg8Fswn4oh6emfaB3OeI0/vyzIhjtyYNCG1iM0Da5cjCqxcbr439qt74Goz+1cVIlGOlCgpEIG3Ex0dodWUoTDaRb506knqWdMPCtz0p1rkacilKKP/7Qws+ZZ6azTrtLp1QwG+EwWQBk0LjmwY6v024bdfOppsPrtHEyzjzTp3GEdyQYibARH+cKRk6nXOBTNJhbr9T2iBxeeZxNW7foXI040eHDRRw7VkxEhIFOnVI9waibq0HkDkbpZFQ/kC0f8ndp91O6el2Pw2bjmOtQ/fRuvgUs4R0JRiJsJMTFeu7nZOfoWIkIJ0+PuxFjeiKUlzP2+cV6lyNO8McfWvBp1y6FqCgzf7iDUTqUUkouuQCk13REmnsZLaYJRKZ4Xc/RTZtw2u1YExKIb+b9kW3CexKMRNhIiq84oiSvsFDHSkQ4MZlM9L7ADMAvi2QZN9C4l9G6ddOCzx+VOkZZHAIggUSiiKp+oGOuUzKk+LiM9oc2Tnq3bhh8OLJNeE+CkQgb8fHxnvs5eXk6ViLCzSv3nwNGI+X7jvP8m7IJO5CsXat1jHr0yKCgDLZna493z6gIRo1rs7/o2FrtNrWHT/VkrdXGyejh2zjCexKMRNiIjo6GCO0vsPyCYp2rEeGkT69epPTSNmFPmyvdykCyZo0WjLp3z2DdYVBAkzhIjYFDrmBUq43Xx9Zot418DEZrtHEaSzDSjQQjEV6MRgByC4p0LkSEm9GXa8tpB5Zls3P3Hp2rEQBFRTa2bj0OaMForWsZrbtrn/Wh2naMnPaKPUaNuntdj1KqomPU3ftxhG8kGInw4gpGJaU2nQsR4WbqQzcQ0SgeymyMfX6e3uUItP1FTqeiceNYMjJiWa3lIHpmQDnlnmukNSaz+oGyN4KjDCzxkNDa63pyd+2iNDcXo8UiF4/VkQQjEV6M2pQvKJFgJBqW1WLlzPO1k4wuWaB0rkYArF59EIBevbTg4w5GvTK1C8c6cRJNdM2XAjm6WrtN7QkG73+tHlytjZPerZtcCkRHEoxEWDGYtClfVCLnMRIN76V7ukNEBGW7jvHG+//Vu5ywt9qVhHr1akxJOWxwXSOtV2M4yAEAMmlS86VAPMGol0/1HHIFo4yePX0aR/hGgpEIKwbXUlpRsVy3SjS8wef1I+HMVACmvn9M52pE5WC07jA4FKTFaJuvD6J1kzJrWkYDOOLfYJTZy7dxhG8kGImw4u4YlZbL9dKEPq65TOs+7Pklj6ysLJ2rCV+FhTY2btSuFtu7dya/ajmI3o3BYID97Ae0jlG1HLaKI9LSentdj3I6ObBqlfY1zzrL63GE7yQYibBiMGm/lErK5ER7Qh+vTrgRQ1IcFJdyx+TP9C4nbP3++yGcTkWTJnE0bhzHKlcwOisTbNg4irau1oSm1Q+UvV7beG1NhIQzvK4ne/t2yvLyMEVGkiYXj9WVBCMRVtwdo+JS6RgJfURHR9NpkHYW5YULdC4mjK1ape0hOussrSNUORgd4hBOnMQSSzzxpxtCc1jr8pDaW2s1ecndLcro3h2j2ez1OMJ3EoxEWIkwam9cZXY5KkjoZ8qdHcBgoGTrUWZ/8rXe5YSllSu1YHT22ZnklsJm15avs5rAfvYB0JSmNW+8PrxSu00/26d6DqzUxsk827dxhO8kGImwEuFaSiu1STAS+hk+dDBxnbXLtz8z64DO1YQndzDq06cpruYRrZO0zdcHXPuLmtK85oE8waiPT/W4g1HTPr6NI3wnwUiElQizdIxEYLj8Eu12x48FZGdn61tMmDl0qIC9e/MwGLSN1ytcwegc1z7rfZU6RtUqy4OcTdr99HO8rsdeWsoh16VAmp7j/TjCPyQYibDi7hiVyWmMhM6mP3wdhrhoVGExY6fM1bucsLJihdYR6tw5jbg4K64POacJFJBPHrkYMNR8RNqRXwEFcS0hOs3reg6tWYOzvJzo1FQSW7XyehzhHxKMRFgxmrRbOVpf6C0xIZG2A+MA+N98nYsJM8uWaR2hfv2a4lSw3BWM+jWFvewFII10IomsfqCs5dptRj+f6tm/XBunWd++GHzYwC38Q4KRCCvuYGQr17cOIQCeuk3bw1K06QifzpND1BrKsmVaEurXrxlbjkFOKUSZtIvH7nMFo+a12V+UtUy7bexbMNq3TBunaT/fxhH+IcFIhBX3UpoEIxEIRo64hOgOaaDg0bd26l1OWCgrs/Pbb9qx+eee2xxXRuLsJmA2VnSMmtOi+oGUs1LH6Fyv61FKse+XX7Svea734wj/kWAkworJ3TGSK4KIAHHRRdrtliVFFBQW6ltMGPjtt4PYbA5SU6Np0yaJn7UcRN+mUE45h1yXAmlGs+oHOr4ebPlgjoUU70/ImLtrF4VZWUSYzTSWS4EEBAlGIqwYTdrRaHa7rOOLwDDj4ashJgqVX8Tdk+foXU7I+9mVhM47rzkGg4Gfte1G9G+uXQbEgYM44kgiufqBDv2k3Wb0hQiT1/Xs+UkbJ7N3b8xRUV6PI/xHgpEIK+6OUXm5BCMRGNJSU2l1nnZ25S9kE3a9++knLRj179+crELYng0GoF8z2MNuAFrQsuYTOx50BaPG/X2qZ68rGDXv79s4wn8kGImw4g5GdllKEwFkwl+0Q73z1x3hm++X6lxN6HI6Fb/8orWI+vdvgSsj0TUdEiMrglHN+4tURceo8Xk+1eQJRuf5No7wn4AORna7nUcffZRWrVoRFRVF69ateeqpp3A6Ky4AqpRi0qRJZGZmEhUVxaBBg9iwYYOOVYtAZnIvpdXz5muZu6Iu/jrqKiLbpIJSTHhjo97lhOz8/fPPw+TmlhIba6F79wx+3KM93r85OHB4jkhrUVMwyt8JRQchwuzTiR0Ls7I4vnUrGAyy8TqABHQwev7555k5cybTp09n06ZNTJ06lRdeeIFp06Z5njN16lRefvllpk+fzqpVq8jIyGDo0KEUFBToWLkIVO6OkcNRv0tpMndFXQ1xbcJe/0MJZTZ9z0AaqvN3yZLdgLa/yGSKYIkrGA1qAQc5iA0bUUSRTkb1Ax1Yot2mnw3maK/r2b1U6w6md+tGVHINe5pEgwnoYLR8+XJGjBjBpZdeSsuWLbn66qsZNmwYv/32G6D9xfLKK6/wyCOPcNVVV9GlSxdmz55NcXExH374oc7Vi0BkMWsdI0c9L6XJ3BV1NfPhERBpxZldwP1T3tO1llCdv0uXaklo4MAWHCuG9Ue0xwe0gN3sArT9RRE1/Wo86FruzBzkUz17XMGo5SDfxhH+FdDB6LzzzmPx4sVs3boVgD/++IOff/6ZSy7RLjK0a9cusrKyGDZsmOc1VquVgQMHssx1wqxTKSsrIz8/v8o/ER7MDbTHSOauqKummU1odm4iAB9/re+p2etj/uo9d51O5QlGgwa19CyjdU7VLhzrDkYtqeGSHEpVdIyaDPKppt1LtHEkGAUW748xbAD/+Mc/yMvLo0OHDhiNRhwOB88++yzXX389AFlZWQCkp6dXeV16ejp79uw57bhTpkzhySefrL/CRcCyuPYYOev5IrIyd4U3HhydxLjFh8lZe5QfV/zKgD5n61JHfcxfvefuunWHyc4uITbWQq9ejZnznfb4oJba/iL3xutWNQWjvB1QuE/bX5TR1+t6Cg4d4timTWAw0GLAAK/HEf4X0B2juXPnMmfOHD788EN+//13Zs+ezYsvvsjs2bOrPO/Ea8sopaq93szEiRPJy8vz/Nu3b1+91C8Cj8WszYv6XkqTuSu8cd/NI7G0SAGHkwdf/U23Oupj/uo9dxcv1s4sPmBAC8xmI4u1BhFDWmnnL7JhI5romvcX7V+s3Wb0BXOM1/Xs+v57ABr36CH7iwJMQHeMHnroISZMmMB1110HQNeuXdmzZw9TpkxhzJgxZGRoEzgrK4vGjRt7XnfkyJGT/pKpzGq1YrVa67d4EZAsZu22vjtGMneFtwYMi+C7t2HN9zbsdjsmU8O/TdfH/NV77n7//W4Azj+/JQcLYPMx7fxFA1vAOnYA0IrWNe8vOqAFGpqc71M97mDU8nzfxhH+F9Ado+LiYiIiqpZoNBo9h4y2atWKjIwMFi1a5Pm8zWZj6dKl9JOL8YlTsLqCkaOeg5HMXeGtmRMuAosFx5E8Jrw0u+YX1INQm782m4MfXZuKzj+/ladb1KMxJEfBjkrBqFrKCftdwaip94FGKcWuxVrnqZUEo4AT0B2j4cOH8+yzz9K8eXM6d+7MmjVrePnll7nlllsArY07btw4Jk+eTNu2bWnbti2TJ08mOjqaUaNG6Vy9CERWi9bmV/W8lCZzV3irTevWNO6TzKEfs5j9hZ0X/9HwNYTa/F2xYj+FhTZSU6M588wM/vmV9vjQVlBGGfvRlvXacEb1Ax1bC6XHtOujpffxup7sbdvI27MHo8Ui+4sCUEAHo2nTpvHYY48xduxYjhw5QmZmJn/72994/PHHPc8ZP348JSUljB07lpycHM455xwWLlxIXFycjpWLQBXlCkZOu7OGZ/pG5q7wxdhrY3jsRzj221FWr/2DXt3PbNCvH2rzd9EirSN0wQWtMRgMLNK2GzGsjXY0mgMHSSSRXNP10fa5OmRNBoPR7HU9O1ydtmb9+mGJ8X6fkqgfBqVU/a4pBIH8/HwSEhLIy8sjPj5e73JEPRr75NvMmHQQc9NkbPvu8evYeswjmbuhyW63E91yBuUHsul7QyrL3h9br18v1OfuOef8i19/PcC7746g18Xd6fYmRJkgZzwsNv2PFSynN2dxOVdUP9AXQ7Q9Rv2nQbe7va7n4yuuYMuXX3L+5Mn0nzjR63FE/cyjgN5jJIS/RVq0Ke8sr9+OkRC+MJlM9LlAm6urFtuxy8X9vHb8eDGrVh0AYOjQ1izQmkcMbAFWE2xnG1CLZTRbIRz6WbvfbKjX9ThsNs/G6zZDvR9H1B8JRiKsRFmNAChH2DdKRYCb/tBgMJuwH8rhqWkf6F1O0Fq0aCdKQdeuaTRpEs+3rmB08RmQQzbHOEYEETUHo4NLwGmD+FaQ2M7revYtX46toIDo1FQa9+zp9Tii/kgwEmElJlLbVqcc0jESga1b506kntUIgLc+K9W5muD1zTfbAbjoojMotMFP2nViueiMim5RM5oTSWT1A+39VrttfhFUc66xmmz/5hsAzrjwQgwR8is4EMn/KyKsxES5NkyW63vJBSFq49YrLQAcXnmcTVu36FxN8HE6FQsWVASjH3aBzQGtEqFtMmxDu+TJGbStfiClYI8WaGh+kU81eYLRxRf7NI6oPxKMRFiJidROMCcdIxEMnh53I8b0RCgvZ+zzi/UuJ+isXn2Qw4eLiI21cO65zZinZSQuPgPshnLP+YvaUcPSWO4WyN8JERafTuyYt28fh9etA4OBNpWuMycCiwQjEVbiorW/wHFIx0gEPpPJRK8hWpfzl0US5utq3jxtqWzYsDZYLCZcH3JZW9jNbsopJ444MmhczSjA7nnabZNBYIn1up5t8+cD0KxvX6IbNfJ6HFG/JBiJsBIbE63dkWAkgsSrD5wDRiPl+47z/JuyCbsu/vc/bansssvasu4w7M+HaDMMbgVb2QxAezpgoIY9Q3v+p922vMynerb9Txun7WW+jSPqlwQjEVbiYt3ByCmHQIug0KdXL5J7pgIwbW6hztUEj0OHCli9+hAAF1/clq+1jMSQVmA1Kba4glE72lc/UGkOHPxJu9/iUq/rKS8uZqfrMiDtLvV+HFH/JBiJsJIYV9EGz8/P17ESIWrvhhHa0ZQHlmWzc/cenasJDl99pW1WP/vsJmRkxPKlKxgNbweHySKXXEyYaE2b6gfaMx+UA5I6QUIN11Krxo5Fi7CXlJDQogVpXbt6PY6ofxKMRFhJjK+4XEFObq5+hQhRB1MfuoGIRvFQZmPs8/P0LicofPWVloSuuKI9B/Lht4NgQAtGm9kEwBmcgQVL9QPtdl1YrdUIn+rZ8pU2TvvLL8fgw+H+ov5JMBJhJSkpyXM/N79Ax0qEqD2rxUq3wdp5dpYskJOT1qSw0MbixdoF0UaM6OBZRuvTFDJiK4JRBzpWP5DDVnGYvg/ByOlwsPXrrwFoP8K3gCXqnwQjEVbiYmM9J2fLkWAkgsjL954JEQbKdh3jjff/q3c5Ae3bb7dTVubgjDOS6dixEV+4TgE1oj3kkstBDmLAQDs6VD/Q/u+hvACiMyD9LK/r2b98OcVHj2JNSKDFgAFejyMahgQjEX6M2mVBiorLdC5EiNobfF4/Es5MA2Dq+8d0riawffqp1hG66qoO5JYaWLxLe/zKDrCJjQA0pwWx1HDo/c5PtdvWV4LB+1+XGz/Vxml/+eUYzWavxxENQ4KRCD9GbdoXFJfoXIgQdXPNZVq3c88veWRlZelcTWAqLbV7DtO/6qqO/G8b2J3QJQ3apcBGNgDQic7VD+R0wM4vtPutr/K6HqUUmz/7DICOV3k/jmg4EoxE+HEFo/wiuf6UCC6vTrgRQ1IcFJdyx+TP9C4nIC1evJPCQhtNmsRx1llN+ExrHnFVByikkL1oR/V1pFP1Ax36GUqPgTUJMgd6Xc+h338nb+9ezNHRcrbrICHBSIQdg0lbSispk/MYieASHR1Np0FRACxcoHMxAeqTT7Slsiuv7EBRuQHXNWS5qgNsYgMKRSZNSCSx+oF2fKLdthoBRu+XvzZ+oo3T9pJLMEdHez2OaDgSjETYMZi0aV9cUq5zJULU3ZQ7O4DBQMnWo8z+5Gu9ywkoZWV2vvhCO3Hjtdd25uutUObQltC6pcN61gPQhRrOI+R0wHbXBvczrvW6HqUUG/7zHwA6Xev9OKJhSTASYccTjKRjJILQ8KGDieusbcJ+ZtYBnasJLN99t5O8vDIaN47l3HOb42oecW0nKDIUshttF3ZnulQ/0KGfoeSwtozWdIjX9Rz6/Xdyd+3CHB1N20su8Xoc0bAkGImwY3DtMSoqk+ulieB0uet37I4fC8jOzta3mAAyd662sfrqqztRWGkZ7ZpOsJH1KBRNaEISSdWMAmyfq922ugKMNZwAshob5mrjtL30UiwxMV6PIxqWBCMRdtwdoxIJRiJITX/4Ogxx0ajCYsZOmat3OQGhpKSczz/XltFGjuzM55u1ZbSOjaBrGqxjHQBd6Fb9QI5y2O7aX9R2pNf1KKeT9R9/DEDnkd6PIxqeBCMRdiJM2iHPpTY5g7AITokJibQdqF3eZt58nYsJEPPmbaOw0EaLFgn069eMj7TtRFzfBfIMuexlDwYMNe8v2r9YOxotKtWnZbR9y5aRv28flrg4WUYLMhKMRNhxB6OycglGIng9dVtzAAo3HeHTeXKI2keuJHTddV04WmzgO+2KIFzfBdbzJwAtaEkCCdUPtO0j7faMayHC5HU9f36kjdPxqqswR0V5PY5oeBKMRNiRjpEIBSNHXEJ0hzRQ8NjbO/UuR1c5OSWekzpef30X5m4Ah4LemXBGMvzBWgC61rSMVl4MO13nh2p7vdf1OGw2z/6iLtd7P47QhwQjEXYijFowsslBaSLIXXSRdrt5SREFhYX6FqOj//53Izabg65d0zjzzAzmaNuJuLErZJHFYbIwYqz5aLRdX0J5IcS3gox+XtezfcECSo4fJyY9ndZDvF+OE/qQYCTCjrs7bpOlNBHkZjx8NURHovKKuHfKHL3L0c3772tJ6IYburHlGPx6EIwGuK5LRbeoHe2JpoYTLG55X7ttd4PnYtPeWPe+Nk7XUaOIMHm/HCf0IcFIhB33Upqt3Ps3PiECQVpqKq36a3tmPpunczE62b07l59+2ovBAKNGdWWOtp2IC9tAoxgnf/IHAGfSvfqBig/DvoXa/fY3el1PaW4uW776CoBuN3o/jtCPBCMRdkwmrVNUZtO5ECH84OExGQDk/3mEhUt+0rmahjd79loAzj+/FZlN4nnPvYzWDXawg3zyiSKKdrSvfqAtc0A5IP0cSGzrdT3r587FUVZGaufOZHTv7vU4Qj8SjETYcS+l2R3SMRLB77brryCyTSo4FQ+9/qfe5TQop1Mxe7bWEbr55u78sAv25kFiJFzRAdbyOwDdOBMT1SxpKQWbZ2n3O9zsU01/zNLG6X7zzRh8WI4T+pFgJMKOyay9WZXL5msRIs6/ULtd/30pZbYyfYtpQD/+uIddu3KJj7dy5ZUdeVfLSFzfBZSphE1o1wTpQc/qBzq6GrLXgzHSp5M6Ht20if0rVmAwGuk2erTX4wh9STASYce9lFYue4xEiJgxYThEWnFmF3D/c+/pXU6DeffdtYB2pmtbhJnPNmmP33Qm/Mk67NhJJ53GZFY/0KZ3tdvWV4I10et61rq6RW0vuYTYjAyvxxH6kmAkwo77IBGHdIxEiGjerBnN+iUC8PHX4XGpm9zcUj75RLs22i239ODDP6HEDp1T4axMWM0qAHrQCwPV/BFUXgxbP9Dud7zF63ocNluVZTQRvCQYibBjdnWM7OHx+0OEiXHXJwKQs+YoP674Vd9iGsAHH6yjpMROly5pnH12E95eoz1+e084ZDjAIQ5hxEh3elQ/0I5PwJannbuo6fle17Pl668pOnKEmPR02l12mdfjCP1JMBJhx2TWbu12WUoToeOB267D0iIFHE4efPU3vcupV0op3n5b21h9++09WZNlYG0WWI3a0Wir0b7/TnSu+dxFG/+l3Xa8FQze/0pc8y9tnO4334zRbPZ6HKE/CUYi7Hg6RuU6FyKEnw0Ypr2l/77Yht0eumvFq1Yd5I8/DmO1Grnhhm68qWUkruoIMVFlrHOdu6gXvasf6PgGOPQzGIzQ0fvlr5xdu9i+QLteXY9bvF+OE4FBgpEIO2bXHiOnXc58LULLzAkXgcWC82geE16arXc59WbmTK0jdM01nTFGR/Gh6ywFf+sJf/IHZZSRQgotaVX9QBve1G5bDoeYGjZoV+P3t98GpWg1ZAgpbb0/B5IIDBKMRNixyFKaCFFtWremcZ9kAGZ/EZodo5ycEj7+eD0Ad97Zmzl/QlE5dEqF/i0Uv6Ltr+rN2URU9yuuvAi2uMJjlzu9rsdhs7HmnXe0r3mn9+OIwCHBSIQdi+eoNOkYidAz9toYAI79dpTVa//QuRr/e++9PygpsdOtWzp9+jRl5mrt8Tt6wQHDfrI4hAlTzecu2vYx2PIhvg00u8DrejZ9/jlFR44Q27gx7S+/3OtxROCQYCTCjrtj5JSLyIoQNOFv12Fukgx2B/f98xe9y/Erp1Px+uvaYfh33NGLn/YaWH8Eos3aputfWQFAF7pWv+laKfhzuna/89982nS9aro2Ts/bb5dN1yFCgpEIO1Z3MJLD9UUIMplM9LlAe2tfucgeUpuwFy7cwbZt2cTHW7nxxjOZpmUkbuwGpshC1qNtNjqHPtUPdOgXOLZWO9N1p1u9ridr7Vr2/vwzESYTvf/2N6/HEYFFgpEIOxbXJUFk87UIVdMfGgxmE/ZDOTzz+gd6l+M306Zp+4duvrk7OQ4LX2zWHr+rN/zGrzhw0JRmNKFp9QP9OU27bTcaIpO9rmflNG2cjv/3f8Rler95WwQWCUYi7ERaXMGo3KlzJULUj26dO5F6ViMAZv63ROdq/GP79my++WYbAHfddRYzfgOHgkEtoGO6nVWuTdc1dosKD8DOz7T73e7xup7iY8dY/+GHAJx9j/fjiMAjwUiEnUirNu2VQzpGInTdeqUFgMMrs9m0dYvO1fju1VdXoBRccklbmrRM8Zy76N5zYAPrKaCAWGLpTJfqB/pzOjjtkDkAGp3pdT2/vfkm9tJSGvfsSbN+/bweRwQeCUYi7MRYjYAEIxHanh53I8b0RCgv566p3+ldjk9yc0s9F4y9//4+vPcHZJdA6yQY3k6xHG2T+dn0wYTp9AOVF1Wcu+jM+72ux2Gzser11wHoc//9GAxy6o9QIsFIhJ0oizbtnXZZShOhy2Qy0WuIdqTBz4uC+4+At99eTVFROV27pjH4/Fa8slJ7/N6zYX/EHg5yEBMmzuLs6gfa8h6U5UB8a+2kjl5aP3cuhYcOEdu4MZ2vvdbrcURgkmAkwk50pPbLQkkwEiHu1QfOAaOR8r3HeeGtD/Uuxyvl5Q5ee03bPzRuXB++2W5gy3GIt8It3WEZPwNwJt2JIeb0AzkdsPaf2v1u90GE0at6lFKsePllAM6++26MFotX44jAJcFIhJ1oq/sMjxKMRGjr06sXyT1TAXjt43ydq/HOxx+vZ//+fDIyYhk9uisvLNMe/1tPKLUeZQvaoWn9OK/6gXZ/BXnbwJoEHb2/ntnO774ja+1azDEx9L7jDq/HEYFLgpEIO7HR2l94yi4nMhKhb/QIrTOyf1kOO3fv0bmaulFK8YIrCd133zmsPWrix71gjoD7ztG6RQpFBzqSSmp1A8HvU7X7XcaCJdbrmpZN1cbpceutRCV7f6i/CFwSjETYiY2xanekYyTCwAsP3UhESjyU2Rj7/Dy9y6mTBQt28OefR4iNtXDHHb15Ybn2+OiuEB9fwFrWAHAu/asf6NAvcHgFGK0+HaJ/aM0adn73HQajkb73e795WwQ2CUYi7MRFuy4VIB0jEQasFivdzo8EYMmC4NqEPWWKtn/o9tt7kmWP5LNN2uN/7wvL+QUHDprRnBa0qH6g36dot+3/AtHpXtfzy3PPAdD5mmtIbNnS63FEYJNgJMJOXIz2SwKHI6QulyDE6bxwd1eIMFC26xhvvP9fvcuplZ9/3suPP+7BbI7gwQf78vwvoIAR7aF1Wgm/oh2aNoCB1Q90dC3sma9dD63HeK/rOb51Kxs++QSA8yZO9HocEfgkGImwkxAX57lfWFSoYyVCNIwLBpxHQrc0AKa+f0znamrH3S266abuOGLjmaNdBo2J58JKlmPDRjoZtKN99QO5u0VnjITEM7yu5+fnnwelaHfZZaR36+b1OCLwSTASYadyMDp+PFvHSoRoOFdfpp2EcM8veWRlZelcTfXWrs1i/vxtREQYGD/+XF5YBnYnnN8SujctYwXaZqP+DMBANSdXzN0K27UuDz0neF1P3t69rHv/fQDOe/hhr8cRwUGCkQg7yUkJnvv5RcU6ViJEw3lt4o0YEmOhuJQ7Jn+mdznVeuqppQBce21notOTedt1+Y+Hz4NfWUkxxSSTUvPlP357BlDQ8jJo5H2X5+fnnsNZXk7LQYNo1rev1+OI4CDBSISd2JiKQ3XzCgp0rESIhhMdHU3HQdqBBwsX6FxMNdatO8znn2/GYIDHHhvA879AmQPObQbntbJ5Tug4kEEYqeYkjbnbYOsH2v2znvC6nvz9+1nzzjva13zC+3FE8JBgJMKOyWQCo/aGWlBUqnM1QjScyX9rBwYo2XqU2Z98rXc5p1S5W5TULJW3XN2iSQNhlWElRRSRTDLdqOECsKufBeWEFpdAWm+v6/n5uedw2Gy0GDCAloMGeT2OCB4SjER4cgWjvIIinQsRouGMuGgIsZ21w9WfmXVA52pOtm7dYT79dFNFt2gZlNqhX1Po38rGL/wEwIAau0XbYcsc7b6P3aLf//UvQLpF4USCkQhPJm3qF5fadC5EiIZ1+cXa7Y4fC8jODqyDD554YgkA11zTmYRmacz8TXt80kD41bDC0y06k+7VD7TqSVAOaH4xpNdwYdlq/PjsszjKymjevz8tBw/2ehwRXCQYibBkMGpTv7BYgpEIL68/ch2G2GhUYTFjp8zVuxyP3347yBdfbCYiwsCTTw7i2Z+0vUUDmsN5rUv5mR8BGMT51XeLsjdW7C0652mv68nZtYs1rm7R+c88g8FQzdFvIqRIMBLhyaS9sRaXyQkeRXhJTEik7SDtlBXz5utcTCWPP/4DADfc0I3IjEa8o13tg6cHwwrDMkoooRGpNe8t+nUSoKD1lZDWy+t6fnz6aZx2O62HDqXFgAFejyOCjwQjEZbcHaOiknKdKxGi4T1xWzMACjcd4dN5+h+i9tNPe/jmm+0YjQYef3wATyyBcicMbQ29WhR5jkQ7nyFEVPdr68hq2PEJYICzn/S6nqObNvHH7NkADH7qKa/HEcFJgpEISxFmbeqXlsuFZEX4GTXiUqI7pIGCx97eqWstSin+8Y/vAO2aaMWxyby/Tvvcs4PhR5ZSRhmNaUwnOlc/2ArXpTrajYKUrl7X9P0jj6CcTtqPGEHTPn28HkcEJwlGIiwZjNp+gZIyuZCsCE8XXaTdbl5SREGhfpfG+eab7Sxfvp+oKBOPPTaQR37Qrol2dUdo2ySXX1kBwAVcWH23aN9i2LcIIsxwtvddnv0rV7L5888xRERw/rPPej2OCF66BqMff/yR4cOHk5mZicFg4IsvvqjyeaUUkyZNIjMzk6ioKAYNGsSGDRuqPKesrIx77rmHRo0aERMTw+WXX87+/fsb8LsQwcjgPiqtzLuOkcxdEazcc/eXj54EJqHyfmP8yxWbsBt67j755BIAxo3rw057HF9vBaMBnhkMP7AYBw5a0ZozqOY6Z8pZ0S3q/DdIaO1VLUopFk/QLh1y5l/+QlrnGjpUIiTpGoyKioo488wzmT59+ik/P3XqVF5++WWmT5/OqlWryMjIYOjQoRRUOlvxuHHj+Pzzz/n444/5+eefKSws5LLLLsPhkE6AOL0Ik9YxKrUpr14vc1cEK/fcfeONNzyPfV1pm1FDz93Nm4+RlBTJQw+dy98XaY/d0gMSGh1iLdoO7AsYVv010bb/B46sAnMs9H60zjW4bZs3j91LlmC0Whn0pPd7lESQUwECUJ9//rnnY6fTqTIyMtRzzz3neay0tFQlJCSomTNnKqWUys3NVWazWX388cee5xw4cEBFRESob7/9ttZfOy8vTwEqLy/P929EBIXoDm8omKRG3PO6z2O55657HuXm5srcFUEBUDBSYZio29yFCerll5epueuV4kmlYiYrdTBfqVnq3+ox9bCaqz6qfiB7qVKzWyo1HaV+fapuP4BKHOXlanqHDmoSqIXjx3s9jmhY9fEeGLB7jHbt2kVWVhbDhg3zPGa1Whk4cCDLli0DYPXq1ZSXl1d5TmZmJl26dPE8R4hTcXeMyurhoLTdu3fL3BVBw5yRAErrnOoxd1u2TOLWv57FxO+1jx/qB4Vx29jBdowYuYBh1Q+wbjoU7IaYTOj+QJ2/vtvv77zDsc2biUpJof/EiV6PI4KfSe8CTicrKwuA9PT0Ko+np6ezZ88ez3MsFgtJSUknPcf9+lMpKyujrKzM83FeXh4A+fn5fqldBD6DoQQopbioxC//vxcXF3vGOXz4MCBzVwSHTl1s/JGlzSk95u748b15fUUxOw9BWizc2tnJR/mfU0YZZ9MHEybyOc38Ls2Gn5+GMuCsh6HEASV1/2+hrKCAbx99lFKg//jx2CIisMl/U0HB/d6nlHfbIk4lYIOR24lnG1VK1XgG0pqeM2XKFJ48xfpxs2bNvCtSBK0f34eE9//u8zijR4/23He/4cvcFcHgj+9mee7rMXfHjh3iuX8EaPZILYo+pbtd/3zz3D/+Af/4h8/jiIZ1/PhxEhIS/DJWwAajjIwMQPvrpHHjxp7Hjxw54vlrJiMjA5vNRk5OTpW/Xo4cOUK/fv1OO/bEiRN54IGKlqvT6SQ7O5uUlJQGO+17fn4+zZo1Y9++fcTHxzfI19RDOHyfCQkJfPDBB/Tv35/mzZvTtm1boGHmbm5uLi1atGDv3r1+e1MINeEwB70lczewydytWV5eHs2bNyc5OdlvYwZsMGrVqhUZGRksWrSIHj16AGCz2Vi6dCnPP/88AL169cJsNrNo0SKuvfZaAA4dOsT69euZOnXqace2Wq1YrdYqjyUmJtbPN1KD+Pj4sJjwof59RkdHe97cG3rugvYLLpR/vv4Q6nPQWzJ3A5/M3ZpFRPhvy7SuwaiwsJDt27d7Pt61axdr164lOTmZ5s2bM27cOCZPnkzbtm1p27YtkydPJjo6mlGjRgHaf1C33norDz74ICkpKSQnJ/P3v/+drl27csEFF+j1bYkwcKq5u26ddrpeg8Egc1cELJm7QtTAb8e3eeGHH35wHa5Z9d+YMWOUUtoh+0888YTKyMhQVqtVDRgwQP35559VxigpKVF33323Sk5OVlFRUeqyyy5Te/fu1eG7qZtwOcw6VL/P081d9/faUHM3VH++/iQ/o6pk7gYP+RnVrD5+RgFzHqNwU1paqp544glVWlqqdyn1Kly+T6X0+V7D6efrLfkZ1UzmbmCSn1HN6uNnZFDKj8e4CSGEEEIEsYA9waMQQgghREOTYCSEEEII4SLBSAghhBDCRYKREEIIIYSLBCMdlZWV0b17dwwGA2vXrq3yub179zJ8+HBiYmJo1KgR9957LzabTZ9CvbB7925uvfVWWrVqRVRUFG3atOGJJ5446XsI9u/T7Y033qBVq1ZERkbSq1cvfvrpJ93GXrp0Kb169SIyMpLWrVszc+ZMv9USqOryM1qyZAkGg+Gkf5s3b27AihvOjz/+yPDhw8nMzMRgMPDFF1/U+Bp/zSGZuzWTuXt6us1dvx3fJurs3nvvVRdffLEC1Jo1azyP2+121aVLFzV48GD1+++/q0WLFqnMzEx1991361dsHX3zzTfqpptuUgsWLFA7duxQX375pUpLS1MPPvig5zmh8H0qpdTHH3+szGazevvtt9XGjRvVfffdp2JiYtSePXsafOydO3eq6Ohodd9996mNGzeqt99+W5nNZvXf//7X51oCVV1/Ru7z+GzZskUdOnTI889utzdw5Q1j/vz56pFHHlGffvqpAtTnn39e7fP9NYdk7tZM5m719Jq7Eox0Mn/+fNWhQwe1YcOGk4LR/PnzVUREhDpw4IDnsY8++khZrdagPtHX1KlTVatWrTwfh8r3efbZZ6s77rijymMdOnRQEyZMaPCxx48frzp06FDlsb/97W+qT58+PtcSqOr6M3L/csnJyWmA6gJLbX65+GsOydytmczd2mvIuStLaTo4fPgwt99+O++//z7R0dEnfX758uV06dKFzMxMz2MXXnghZWVlrF69uiFL9au8vLwqF/oLhe/TZrOxevVqhg0bVuXxYcOGsWzZsgYfe/ny5Sc9/8ILL+S3336jvLzcp3oCkS8//x49etC4cWOGDBnCDz/8UJ9lBhV/zCGZuzWTuet//ppDEowamFKKm266iTvuuIPevXuf8jlZWVmeK1m7JSUlYbFYyMrKaogy/W7Hjh1MmzaNO+64w/NYKHyfx44dw+FwnPR9pKen+/w9eDP2qX6m6enp2O12jh075lM9gcibn1Hjxo156623+PTTT/nss89o3749Q4YM4ccff2yIkgOeP+aQzN2aydz1P3/NIV0vIhtKJk2axJNPPlntc1atWsWyZcvIz89n4sSJ1T7XYDCc9JhS6pSPN6Tafp+VQ9/Bgwe56KKLuOaaa7jtttuqPDdQv8+6OrFef34PdR37VM8/1eOhpC4/o/bt29O+fXvPx3379mXfvn28+OKLDBgwoF7rDBb+mkMyd2smc9e//DGHJBj5yd133811111X7XNatmzJM888w4oVK7BarVU+17t3b0aPHs3s2bPJyMhg5cqVVT6fk5NDeXn5SWm4odX2+3Q7ePAggwcPpm/fvrz11ltVnhfI32dtNWrUCKPReNJfeEeOHPH5e/Bm7IyMjFM+32QykZKS4lM9gchfP/8+ffowZ84cf5cXlPwxh2Tu1kzmrv/5aw7JUpqfNGrUiA4dOlT7LzIyktdee40//viDtWvXsnbtWubPnw/A3LlzefbZZwHtr4D169dz6NAhz/gLFy7EarXSq1cvXb4/t9p+nwAHDhxg0KBB9OzZk3fffZeIiKrTLZC/z9qyWCz06tWLRYsWVXl80aJF9OvXr8HH7tu370nPX7hwIb1798ZsNvtUTyDy189/zZo1NG7c2N/lBSV/zCGZuzWTuet/fptDddqqLfxu165dpz1cf8iQIer3339X3333nWratGlQHcZ+4MABdcYZZ6jzzz9f7d+/v8qhpW6h8H0qVXHI7TvvvKM2btyoxo0bp2JiYtTu3bvrfewJEyaoG2+80fN89+Gq999/v9q4caN65513wuaQ59r+jP75z3+qzz//XG3dulWtX79eTZgwQQHq008/1etbqFcFBQVqzZo1as2aNQpQL7/8slqzZo3nkPD6mkMyd2smc7d6es1dCUY6O1UwUkqpPXv2qEsvvVRFRUWp5ORkdffdd6vS0lJ9ivTCu+++q4BT/qss2L9Pt9dff121aNFCWSwW1bNnT7V06dIGGXvMmDFq4MCBVZ6/ZMkS1aNHD2WxWFTLli3VjBkz/FZLoKrLz+j5559Xbdq0UZGRkSopKUmdd955at68eTpU3TDch3if+G/MmDFKqfqdQzJ3ayZz9/T0mrsGpVw7k4QQQgghwpzsMRJCCCGEcJFgJIQQQgjhIsFICCGEEMJFgpEQQgghhIsEIyGEEEIIFwlGQgghhBAuEoyEEEIIIVwkGAkhhBAN4J133mHYsGF6l+Exffp0Lr/8cr3LCDgSjESNjh8/TlpaGrt3767T6+Q/OiGE0JSVlfH444/z2GOP+WW8kpISoqOj2bx5s9dj3H777axatYqff/7ZLzWFCglGYcJgMFT776abbjrta6dMmcLw4cNp2bJllcc//fRTBg0aREJCArGxsXTr1o2nnnqK7OxsQP6jCzeDBg1i3Lhx9Tr+zJkzWbJkCQaDgdzc3Hr7WkL426effkpsbCz9+/f3y3iLFi2iWbNmdOjQoc6vVUpht9uxWq2MGjWKadOm+aWmUCHBKEwcOnTI8++VV14hPj6+ymOvvvrqKV9XUlLCO++8w2233Vbl8UceeYSRI0dy1lln8c0337B+/Xpeeukl/vjjD95//30A+Y9O+E12djbLli1j+PDhepciwtybb75JkyZNcDqdVR6//PLLGTNmzGlf9/HHH5/UQb/pppu44oormDx5Munp6SQmJvLkk09it9t56KGHSE5OpmnTpvz73/8+abwvv/ySyy+/nN27dxMREcFvv/1W5fPTpk2jRYsWKKU8f0wsWLCA3r17Y7Va+emnnzx1f/HFF5SUlHj7Iwk9Pl7jTQShd999VyUkJNTquZ9++qlq1KhRlcdWrlypAPXKK6+c8jU5OTme+0uWLFEWi0UVFxd7W64IAmPGjDnpQo/bt29Xt9xyi2rZsqWKjIxU7dq1O2nODBw4UN13331VHhsxYoTnIpFu7733nurdu7fnosuc4oKS33zzjTr33HNVQkKCSk5OVpdeeqnavn27Zwz3BSkrz0/3Vbt37dqllKr4b+Prr79W7dq1U1FRUer//u//VGFhoZo1a5Zq0aKFSkxMVHfffbey2+2ecd5//33Vq1cvFRsbq9LT09X111+vDh8+7Pn8k08+qRo3bqyOHTvmeWz48OGqf//+yuFwePETF3o5fvy4slgs6rvvvvM8lp2drSwWi1qwYMFpX5eYmKg+/vjjKo+NGTNGxcXFqbvuuktt3rxZvfPOOwpQF154oXr22WfV1q1b1dNPP63MZrPau3ev53UOh0OlpaWpn376SSml1NChQ9XYsWOrjN2jRw/1+OOPK6Uq5n63bt3UwoUL1fbt2z1zsbCwUBkMBrVkyRLffjAhRIJRGKpLMLrvvvvURRddVOWxe++9V8XGxiqbzVbj6+U/uvCQm5ur+vbtq26//XZ16NAhdejQIVVaWqoef/xx9euvv6qdO3eqOXPmqOjoaDV37lzP62objK6++mr19NNPK7vdrj799FMFqC1btqhDhw6p3NxcpZRS//3vf9Wnn36qtm7dqtasWaOGDx+uunbt6gketQ1GZrNZDR06VP3+++9q6dKlKiUlRQ0bNkxde+21asOGDerrr79WFoulyi+5d955R82fP1/t2LFDLV++XPXp00ddfPHFns/b7XbVt29fdcUVVyillJoxY4ZKSEhQu3fv9vVHL3Rw+eWXq1tuucXz8ZtvvqkyMjKqhOXKcnJyFKB+/PHHKo+PGTNGtWjRoko4bt++verfv7/nY7vdrmJiYtRHH33keeyXX35RjRo18rxu7ty5KikpSZWWliqllFq7dq0yGAyeee2e+1988cUp60tKSlKzZs2qw08gtJkaukMlgsvu3bvJzMys8ti2bdto3bo1ZrO5xtfHxMSQmJjI7t27GThwYH2VKXSWkJCAxWIhOjqajIwMz+NPPvmk536rVq1YtmwZ//nPf7j22mtrPXZZWRkLFizg8ccfx2g0kpycDEBaWhqJiYme5/3f//1flde98847pKWlsXHjRrp06VLrr1deXs6MGTNo06YNAFdffTXvv/8+hw8fJjY2lk6dOjF48GB++OEHRo4cCcAtt9zieX3r1q157bXXOPvssyksLCQ2Nhaj0cicOXPo3r07EyZMYNq0abz11lu0aNGi1nWJwDF69Gj++te/8sYbb2C1Wvnggw+47rrrMBqNp3y+e5kqMjLypM917tyZiIiKXS3p6elV5qvRaCQlJYUjR454Hvvyyy+57LLLPK+74ooruPvuu/n888+57rrr+Pe//83gwYNP2hfau3fvU9YXFRVFcXFx7b75MCB7jES1SkpKTvqPWSmFwWCo9RjyH134mjlzJr179yY1NZXY2Fjefvtt9u7dW6cxvv/+e1JSUujatWu1z9uxYwejRo2idevWxMfH06pVK4A6f73o6GhPKALtF1XLli2JjY2t8ljlX1Rr1qxhxIgRtGjRgri4OAYNGnTS127dujUvvvgizz//PMOHD2f06NF1qksEjuHDh+N0Opk3bx779u3jp59+4oYbbjjt81NSUjAYDOTk5Jz0uRP/wDQYDKd8rPKepq+++ooRI0Z4PrZYLNx44428++672Gw2Pvzwwyph3S0mJuaU9WVnZ5Oamnra+sONBCNRrUaNGp30H3O7du3YsWMH5eXltRpD/qMLT//5z3+4//77ueWWW1i4cCFr167l5ptvxmazeZ4TERGBUqrK606cVyf+Ejid4cOHc/z4cd5++21WrlzJypUrATxfz/3XdeWvd6o5XNdfVEVFRQwbNozY2FjmzJnDqlWr+Pzzz6t8bbcff/wRo9HI7t27sdvtNX5PIjBFRUVx1VVX8cEHH/DRRx/Rrl07evXqddrnWywWOnXqxMaNG33+2tu2bWP37t0nnQ/ptttu47vvvuONN96gvLycq666qlbj7dixg9LSUnr06OFzbaFCgpGoVo8ePU76j3nUqFEUFhbyxhtvnPI1lQ+jlv/owofFYsHhcHg+/umnn+jXrx9jx46lR48enHHGGezYsaPKa1JTUzl06JDnY4fDwfr16z0fK6X4+uuvqxzNY7FYPM91O378OJs2beLRRx9lyJAhdOzY8aRA7w7nlb/e2rVrffiONZs3b+bYsWM899xz9O/fnw4dOlTpJrnNnTuXzz77jCVLlrBv3z6efvppn7+20M/o0aOZN28e//73v6vtFrldeOGFfjl1yZdffskFF1xAdHR0lcc7duxInz59+Mc//sH1119PVFRUrcb76aefaN26dZUuabiTYCSqdeGFF7Jhw4Yqv2TOOeccxo8fz4MPPsj48eNZvnw5e/bsYfHixVxzzTXMnj3b81z5jy58tGzZkpUrV7J7926OHTvGGWecwW+//caCBQvYunUrjz32GKtWrarymvPPP5958+Yxb948Nm/ezNixY6sE69WrV1NUVMSAAQM8j7Vo0QKDwcD//vc/jh49SmFhIUlJSaSkpPDWW2+xfft2vv/+ex544IEqX+uMM86gWbNmTJo0ia1btzJv3jxeeukln7/v5s2bY7FYmDZtGjt37uSrr746KfTs37+fO++8k+eff57zzjuPWbNmMWXKFFasWOHz1xf6OP/880lOTmbLli2MGjWqxufffvvtzJ8/n7y8PJ++7pdffnnaDuqtt96KzWY75TLa6Xz00UfcfvvtPtUUcvTd+y30UJej0pRSqk+fPmrmzJknPT537lw1YMAAFRcXp2JiYlS3bt3UU089VeWon2HDhqkpU6b4oWoR6LZs2aL69OmjoqKiFKA2b96sbrrpJpWQkKASExPVnXfeqSZMmKDOPPNMz2tsNpu68847VXJyskpLS1NTpkypclTao48+qkaPHn3S13rqqadURkaGMhgMnucuWrRIdezYUVmtVtWtWze1ZMkSBajPP//c87qff/5Zde3aVUVGRqr+/furTz755JSH61f2xBNPVKlZKe1oohEjRng+/vDDD1XLli2V1WpVffv2VV999ZUC1Jo1a5TT6VRDhgxRF154oXI6nZ7X3H///apNmzaqoKCgrj9qEaSuueYaNXnyZK9ff/ToUWUymdShQ4dO+flnnnlGdenSpdbj/fnnnyotLc1zZKfQGJQ6YYFfiBPMnz+fv//976xfv77K0RM1Wb9+PUOGDGHr1q0kJCTUY4UiVHXr1o1HH320TkexCRGo9uzZw1dffcU999zj1eu3bt3KggULTnp9YWEhmzZtYvjw4Tz99NO17gAtXLgQpRQXXnihV/WEKglGolZeffVVrrrqKpo1a1br18h/dMIXNpuNKVOm8MADDxAXF6d3OUIErJtuuomPPvqIK664gg8//PC0pw0QtSPBSAghhBDCRTZfCyGEEEK4SDASQgghhHCRYCSEEEII4SLBSAghhBDCRYKREEIIIYSLBCMhhBBCCBcJRkIIIYQQLhKMhBBCCCFcJBgJIYQQQrj8PwT0c27LnIiwAAAAAElFTkSuQmCC", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "Caption. (left) temperature T as a functoion of depth z. (middle)\n", "shear stress tau as s function of depth z, for different basal sliding\n", "coefficients (colors, increasing from blue to red). (right) velocity v as a\n", "function of depth z for different glacial glacial sliding coeffficients (colors, increasing\n", "from blue to red).\n" ] } ], "source": [ "# Simulation 5\n", "# This version allows for basal sliding\n", "# using a linear law velocity = C shear stress\n", "# the parameter C is varied\n", "\n", "# parameters that can be varied\n", "theta = 5.0; # slope of glacier in deg\n", "grad = 30.0 / 1000.0 # geothermal gradient in deg C per meter\n", "T0 = -10.0 # initial surface temperature\n", "g = 9.81; # acceeleration of gravity in m/s2\n", "# list myC of basal sliding parameters:\n", "myC = gda_cvec( 0.0, 1.0e-14, 2.0e-14, 5.0e-14, 10.0e-14 );\n", "vmaxplot = 1.0; # maximum velocity plotted in m/yr\n", "Nz = 101;\n", "# end parameters that can be varied\n", "\n", "rho = 917.0; # densitty of ice in kg/m3\n", "zmax = 100.0; # thickness of glacier in m\n", "\n", "# constant A n dv / sz = A tau**3\n", "def AofT(T):\n", " if( (np.min(T)<(-50.0)) or (np.min(T)>0.0) ):\n", " print(\"Error: temperature out of allowable range of -50 to 0\" );\n", " xxxx\n", " NT, i = np.shape(T);\n", " logA = np.zeros((NT,1));\n", " logA0 = -25.0 + 0.88/(5.18/4.0);\n", " C1 = (1.23/(5.18/4.0)) / 10.0;\n", " C2 = (2.75/(5.18/4.0)) / 40.0;\n", " T0 = -10.0; # C\n", " for i in range(NT):\n", " Ti = T[i,0];\n", " if( Ti > (-10.0) ):\n", " logA[i,0] = logA0 + C1 * (Ti-T0);\n", " else:\n", " logA[i,0] = logA0 + C2 * (Ti-T0);\n", " return np.power(10.0*np.ones((NT,1)),logA);\n", "\n", "# seconds in year\n", "sinyr = 60*60*24*365.25;\n", "mytimes = sinyr*sinyr;\n", "\n", "# number of basal sliding coefficients\n", "NC, i = np.shape(myC);\n", "\n", "# z-axis\n", "zmin = 0.0;\n", "Dz = (zmax-zmin)/(Nz-1);\n", "z = gda_cvec( np.linspace(zmin,zmax,Nz) );\n", "\n", "# tables of results\n", "vlist = np.zeros((Nz,NC));\n", "taulist = np.zeros((Nz,NC));\n", "Tlist = np.zeros((Nz,NC));\n", "\n", "for iC in range(NC):\n", "\n", " # basal sliding coefficient\n", " C = myC[iC,0];\n", "\n", " # static temperature\n", " T = T0*np.ones((Nz,1))+grad*z;\n", " \n", " # flow constant\n", " A = AofT(T);\n", " logA = np.log10(A);\n", "\n", " # force of gravity parallel to sloping surface\n", " f = rho*g*sin(pi*theta/180.0)*np.ones((Nz,1));\n", "\n", " # d tau / d z = - f\n", " dtaudz = -f;\n", " tau = gda_cvec( Dz*np.cumsum(dtaudz) );\n", "\n", " # free surface boundary condition tau(z=0)=0;\n", " tau = tau - tau[0,0];\n", " taumax = np.max(np.abs(tau));\n", "\n", " # basal sliding velocity\n", " vbasal = C * taumax;\n", " \n", " # dvdz = A tau^3, and boundary condition v(0)=0\n", " dvdz = np.multiply(A,np.power(tau,3));\n", " v = gda_cvec( Dz*np.cumsum(dvdz) );\n", " v = v-v[Nz-1,0]+vbasal;\n", "\n", " Tlist[0:Nz,iC:iC+1] = T;\n", " taulist[0:Nz,iC:iC+1] = tau;\n", " vlist[0:Nz,iC:iC+1] = v;\n", "\n", "vmax = np.max(vlist);\n", "print(sinyr*vmax);\n", "taumax = np.max(np.abs(taulist));\n", "Tmax = np.max(Tlist);\n", "\n", "jet = plt.get_cmap('jet') \n", "cNorm = colors.Normalize(vmin=0, vmax=NC-1);\n", "scalarMap = cm.ScalarMappable(norm=cNorm, cmap=jet);\n", "\n", "fig1 = plt.figure();\n", "\n", "ax1 = plt.subplot(1,3,1);\n", "plt.axis( [-50, 0.0, zmin, zmax] );\n", "ax1.invert_yaxis();\n", "plt.xlabel(\"T (C)\");\n", "plt.ylabel(\"z\");\n", "plt.title(\"T (C)\");\n", "for iC in reversed(range(NC)):\n", " colorVal = scalarMap.to_rgba(iC);\n", " plt.plot(Tlist[0:Nz,iC:iC+1],z,'-',color=colorVal);\n", "\n", "ax1 = plt.subplot(1,3,2);\n", "plt.axis( [0.0, 1.0, zmin, zmax] );\n", "ax1.invert_yaxis();\n", "plt.xlabel(\"tau/taumax\");\n", "plt.ylabel(\"z\");\n", "plt.title(\"tau(z)\");\n", "for iC in reversed(range(NC)):\n", " colorVal = scalarMap.to_rgba(iC);\n", " plt.plot(-taulist[0:Nz,iC:iC+1]/taumax,z,'-',color=colorVal);\n", "\n", "ax1 = plt.subplot(1,3,3);\n", "plt.axis( [0, vmaxplot, zmin, zmax] );\n", "ax1.invert_yaxis();\n", "plt.xlabel(\"v (m/yr)\");\n", "plt.ylabel(\"z\");\n", "plt.title(\"v(z)\");\n", "for iC in reversed(range(NC)):\n", " colorVal = scalarMap.to_rgba(iC);\n", " plt.plot(sinyr*vlist[0:Nz,iC:iC+1],z,'-',color=colorVal);\n", "plt.show();\n", "print(\"Caption. (left) temperature T as a functoion of depth z. (middle)\");\n", "print(\"shear stress tau as s function of depth z, for different basal sliding\");\n", "print(\"coefficients (colors, increasing from blue to red). (right) velocity v as a\");\n", "print(\"function of depth z for different glacial glacial sliding coeffficients (colors, increasing\");\n", "print(\"from blue to red).\");" ] }, { "cell_type": "code", "execution_count": null, "id": "ad839714-f86c-461e-aca3-1fb6c1ef0680", "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.11.8" } }, "nbformat": 4, "nbformat_minor": 5 }