

Skaftafelljokull (glacier)

Glacier: Flowing mass of ice

Glacier: Flowing mass of ice

What force drives the flow?

Gravity

Force of Gravity

Force = density x acceleration of gravity x height x area

Force of Gravity

stress = force per unit area

Force = density x acceleration of gravity x height x area

$$\frac{f}{A} = \rho g z$$

stress = σ = force per unit are

Force = density x acceleration of gravity x height x area

 $r = \frac{r}{\Lambda} = \rho g z$

frozen water bottle

z = 0.2 m

$\sigma \approx 9 \times 0.2$ kpa ≈ 2 kpa

What else besides gravity do you need for flow?

compressive stress of gravity shear stress of gravity

 $p = \rho g z \cos \theta$ $\tau = \rho g z \sin \theta \quad \text{drives flow}$

Z

shear stress increases with depth in the glacier

steeper the slope the faster the increase shear stress causes the ice to flow flow

ice is moving

ice has a velocity

 ${\cal V}$

measured in m/s

Lab experiments

Glen flow law

shear stress causes the ice to flow

Lab experiments

Glen flow law

 $\frac{d\nu}{dz} = A\tau^3$

Lab experiments

Glen flow law

 $\frac{dv}{dz} = A\tau^3$

double the stress velocity increase is eight times bigger

very idealized glacier of constant thickness h

very wide, so edges of glacial valley unimportant

on hill of constant slope

top has zero shear stress

bottom frozen to bed, so velocity is zero

Glen flow law

 $\frac{dv}{dz} = A\tau^3$

warm ice has an A that is orders of magnitude bigger than cold ice

Glaciers behave differently in different climates

Glaciers behaves differently during the Ice Age (when it was 11°C colder)

A was about three times smaller

Atmospheric lapse rate important

very idealized glacier of constant thickness h

very wide, so edges of glacial valley unimportant

on hill of constant slope

top has zero shear stress slides on bed not bottom frozen to bed, so velocity is zero

basal sliding law not so well known

one simple law is the linear law

$$v_{basal} = C\tau$$

Sliding is a frictional process that generates heat and can lead to melting at the base of the glacier

Basal Thermal Regime

How close is the base of the glacier to melting?

- (A) Net basal heating: ice melts at base
- (B) Equilibrium
- (C) Net basal cooling: water freezes at base

Mass Balance

New snow added everywhere, but

Net addition of ice at high elevations because cold temperatures suppress melting

Net loss of ice at low elevations because warm temperatures facilitate melting

At equilibrium,

a glacier maintains a constant shape

because flow from higher to lower elevations is

is balanced

by addition of snow at higher elevations and melting at lower elevations

equilibrium is only an idealization

because

in reality many glaciers are either

advancing or retreating

Crevasse: tension crack in surface of glacier

bad to fall into

bad to drive into

need extensional horizontal stress to open crevasse

case 1: Compressing glacier

case 1: Glacier thickens

I	1
1	
	1
1	
1	i
l I	
1	
1	i

case 2: Extending glacier

case 2: Extending glacier Crevasses form

form when horizontal stress is tensional

(but their dynamics are not a subject of this class)

But for an analysis, see

https://www.ldeo.columbia.edu/~menke/www_users_menke/SED23/SED23_Lec26.pdf

meltwater can deepen them