Large-scale erosional landforms

Lecture 3

striations, grooves, furrows

Somewhere in Colorado

l6z/data=!4m6!3m5! 80% ☆

Ou X

🔰 stump 🛛 🗱 San Ju

⊠ a s .*

×

tarn = cirque lake

cirque lake cirque lake

Terrain View topography and elevation

Somewhere in Colorado

Bald Mountain

Terrain

striations, grooves, furrows **U-shaped valley** cirque (valley at head of glacier) cirque stairway (nested cirques) cirque lake (tarn) arête (ridge between two cirques) horn (peak between several cirques)

U-shaped valley

U-shaped valley

U-shaped valley

fjord = flooded U-shaped valley Q

Question:

How long do glaciers need to make this topography?

and

Weathering

breaking down rock

and

Erosion transporting it way

Glaciation

mainly mechanical weathering

breaking rock into smaller and smaller pieces (sediments)

How to estimate number of sheep?

Steps

- 1. randomly select and mark 100 sheep with chalk
- 2. let them mix back into flock
- 3. randomly select a bunch sheep and determine fraction F marked
- 4. total sheep = 100 / F

If only two sheep are marked then the herd is fifty times bigger than the initial group of 100

¹⁰Be unstable with half-life of 1.6 ma, produced by cosmic rays hitting atmosphere ⁹Be stable, naturally occurs in rock at concentration of about 2.5 ppm

¹⁰Be unstable with half-life of 1.6 ma, produced by cosmic rays hitting atmosphere marked sheep ⁹Be stable, naturally occurs in rock at concentration of about 2.5 ppm unmarked sheep

Really only estimate the flux of ⁹Be, so you must know ⁹Be concentration in rock to determine the flux of sediments

Check method against sediment flux estimated directly by measuring sediment being transported by the river

1 mm/yr is a large denudation rate for rivers

glaciated

0.25 mm/yr

2.6 my ago

Average Erosion since start of Ice Age

2,600,000 years

0.25 mm/yr

650,000 mm

650 meters

Average Erosion since start of Ice Age

2,600,000 years

0.25 mm/yr

650,000 mm

650 meters

(but locally may be smaller or larger)

