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SYLLABUS 



purpose of the lecture 

apply the idea of covariance 

 

to time series 



Part 1 

 

correlations between random 

variables 



Atlantic Rock Dataset 

Scatter plot of TiO2 and  Na2O 
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d1 

d2 

scatter plot 
idealization as 

a p.d.f. 



d1 

d2 

positive 

correlation 

d1 

d2 

d1 

d2 

negative 

correlation 
uncorrelated 

types of correlations 



the covariance matrix 
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recall the covariance matrix 

C = 
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covariance of d1 and d2 



estimating covariance from data 



di 

dj 

Ddi 

Ddj 

bin, s 

divide (di, dj) plane into bins 



di 

dj 

Ddi 

Ddj 

bin, s with Ns data 

estimate total probability in bin from the data: 
Ps = p(di, dj) Δdi Δdj ≈ Ns/N 



 

 

 
 



 

 

 
 

approximate integral with sum 
and use p(di, dj) Δdi Δdj≈Ns/N 



 

 

 
 

approximate integral with sum 
and use p(di, dj) Δdi Δdj≈Ns/N 

shrink bins so no more than one 
data point in each bin 



“sample” covariance 



normalize to range ±1 

“sample” correlation coefficient 



Rij 
 

-1 

perfect negative correlation 

 

0 

no correlation 

 

1 

perfect positive correlation  
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|Rij| of the Atlantic Rock Dataset 
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|Rij| of the Atlantic Rock Dataset 

0.73 



Atlantic Rock Dataset 

Scatter plot of TiO2 and  Na2O 

0 2 4 6
0

1

2

3

4

5

TiO2

N
a
2
O

R=0.730804

TiO2 

N
a 2

O
 



Part 2 

 

correlations between samples 

within a time series 
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Neuse River Hydrograph 



high degree of short-term correlation 

 

 
what ever the river was doing yesterday, its probably 

doing today, too 

 

because water takes time to drain away 
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Neuse River Hydrograph 



low degree of intermediate-term correlation 

 

 
what ever the river was doing last month, today it could 

be doing something completely different 

 

because storms are so unpredictable 
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Neuse River Hydrograph 



moderate degree of long-term correlation 

 

 
what ever the river was doing this time last year, its 

probably doing today, too 

 

because seasons repeat 
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Neuse River Hydrograph 
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Let’s assume different samples in 

time series are random variables 

and calculate their covariance 



usual formula for the covariance 

assuming time series has zero mean 



now assume that the time series is 

stationary 

 
(statistical properties don’t vary with time) 

 

so that covariance depends only on 

time lag between samples 

 



time series of length N 

 

 

time lag of (k-1)Δt 
 



1 

using the same approximation for the sample 

covariance as before 



1 

using the same approximation for the sample 

covariance as before 

autocorrelation 

at lag (k-1)Δt  



autocorrelation in MatLab 
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Autocorrelation on Neuse River Hydrograph 
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Autocorrelation on Neuse River Hydrograph 

symmetric about zero 

a point in a time series correlates 

equally well with another in the 

future and another in the past 
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Autocorrelation on Neuse River Hydrograph 

peak at zero lag 

a point in time series is perfectly 

correlated with itself 
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Autocorrelation on Neuse River Hydrograph 

falls off rapidly 

in the first few 

days 

lags of a few days are highly correlated 

because the river drains the land over 

the course of a few days 
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Autocorrelation on Neuse River Hydrograph 

negative 

correlation at lag 

of 182 days 

points separated by a half year are 

negatively correlated 
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Autocorrelation on Neuse River Hydrograph 

positive 

correlation at lag 

of 360 days 

points separated by a year are 

positively correlated 
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A) 

B) 

Autocorrelation on Neuse River Hydrograph 

repeating pattern 

the pattern of rainfall 

approximately repeats annually 



autocorrelation similar to convolution 



autocorrelation similar to convolution 

note difference in sign 



Important Relation #1 

autocorrelation is the convolution of a 

time series with its time-reversed self 





integral form of 

autocorrelation 



integral form of 

autocorrelation 

change of 

variables, t’=-t 



integral form of 

autocorrelation 

change of 

variables, t’=-t 

write as 

convolution 



Important Relationship #2 

Fourier Transform of an autocorrelation 

is proportional to the 

Power Spectral Density of time series 



so 

since 



so 

since 



so 

since 

Fourier Transform of a 

convolution is product of the 

transforms 



so 

since 

Fourier Transform of a 

convolution is product of the 

transforms 

Fourier 

Transform 

integral 



so 

since 

Fourier Transform of a 

convolution is product of the 

transforms 

Fourier 

Transform 

integral 

transform of 

variables, t’=-t 



so 

since 

Fourier Transform of a 

convolution is product of the 

transforms 

Fourier 

Transform 

integral 

transform of 

variables, t’=-t 
symmetry properties 

of Fourier Transform 



Summary 

time 

lag 

0 

frequency 0 

rapidly fluctuating 

time series 

narrow 
autocorrelation 

function 

wide spectrum 



Summary 

time 

lag 

0 

frequency 0 

slowly fluctuating 

time series 

wide 
autocorrelation 

function 

narrow spectrum 


