Solid Earth Dynamics
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continuing with
Glacial Dynamics



Part 1

rheology of ice



viscous fluid

stress proportional to strain rate

not a particularly good model
of deformable solids like ice
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Glen’s law is the most commonly used flow law for
ice in glaciers and ice sheets. 0.10

Usually n~3 and A=2.4x 107 Pa3stat 0° C
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But the most appropriate values in reality may
depend on temperature, stress regime, grain size, etc
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Glen’s law

\ Slope indicates n =~ 3

(different lines for
different temperatures)
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another o1 . !

plastic: no . then
strain until
It breaks
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Or one can solve equations numerically
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do dv

Newton’s Law
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Putting Glens law into Newton’s Law
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So solve numerically



Part 2

effect of topography
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topography causes differences in pressure
that can drive flow
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topography causes differences in pressure
that can drive flow

7
0y,
glacier

!

gravity gravity

!



Newton’s Law from last lecture
dynamics
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Newton’'s Law today
dynamics
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dynamics Newton’s Law today
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Part 3

ultra-simplified model of
equilibrium shape of glacial topography



combines ideas
take vertical averages to “get rid of” vertical dimension
assume plastic rheology, ice just short of flowing

assume shear stress is biggest at bottom
(which is true for the stream model from last lecture)

basal stress is just at yield stress of ice
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total pressure force
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po = pgH
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total pressure force
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« F(x + Ax)
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force imbalance

AF = F(x + Ax) — F(x + Ax)
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balanced by shear stress on base of glacier
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Pole 4000 m

East-west profile
at 90°s




East-west profile
at90°s



Part 3
ultra-simplified model of change in bed character

modeled as a change in basal shear stress



0. y (,X' ) position-dependent yield stress

H — HO -+ 5[—] topography a small perturbation on top of flat
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0. y (,X' ) position-dependent yield stress

H — HO -+ 5[—] topography a small perturbation on top of flat
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((6p — 80) when x <0

(0p +60) when x <0
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