gdald 02
This code parallels "Method Summary 1, Least Squares"
clear all;

%
%

% global necessary to use biconjugate gradient solver
global F;

Step 1: State the problem in words.

This is a data smoothing problem where the model
parameters are a discretized version of a function
m(x) (at equal increments Dx) and the data are noisy
measurements of the same model function.

o o° o o° o°

% set up the auxiliary variable, x

Nx=101;
xmin = -10;
xmax = 10;

XL = (xmax-xmin);

Dx = xL/(Nx-1);

Dx2i = 1/(Dx"2);

X = Xmin + Dx*[0:Nx-1]1"';

Step 2: Organize the problem in standard form

number of model parameters = number of data = Nx
and the data kernel is the identity matrix, G=I
N
N

% this is a synthetic test, so there is no real data

% the true model is a "ringy" function peaked at x=0

% the observed data is the true model plus random noise
Atrue = 1.9; % amplitude

Ltrue=6.21; % wavelength

b=4; % decay parameter
mtrue=Atrue*exp(-2*pi*abs(x)/(b*Ltrue)).*cos(2*pi*x/Ltrue);
dtrue = mtrue;

sigmad = 0.03; % noise level of the observations
sigma2d = sigmad”2;

dobs = dtrue+random('Normal',0,sigmad,N,1);
No=floor(7*N/8); % create an outlier in the data
dobs(No) = 0.3;

Step 3: Plot the data
When you examine the plot, you should take notice of:
the overall shape of the curve
the noise level
the existence of an outlier toward the right hand side
figure(l);
clf;
set(gca, 'LineWidth',3);
hold on;
axis([xmin, xmax, -2, 2]);
plot(x, dobs, 'ko', 'LineWidth', 2);
xlabel('x"');
ylabel('d(x)");
title('observed data');

o o° o o° o°

observed data

% Figure 1. The observed data, which sample a smooth curve d(x)

% I'm going to remove the outlier "manually"
% by interpolating nearby points
dobs(No) = 0.5*(dobs(No-1)+dobs(No+1));

Step 4: Establish the accuracy of the data

In this case, we know the sigmad, because it
was specified when the synthetic data were
created. I'm going to use this "correct" value

Step 5: State the prior information in words.
We assume that the function is smooth, meaning
that its second derivative is small

o® o o°

% Step 6: Organize the prior information in standard

% form, H is a first differnce operator, h=0. There

% are two few rows in H than there are model parameters
K=M-2;

z = Dx2i*ones(M,1);

H = spdiags([z, -2*z, z], [0, 1, 2], K, M);

h = zeros(K,1);

Step 7: Establish the accuracy of the a priori information
Suppose that I know that the function is roughly sinusoidal
with an amplitude of about A and a wavelength of about L.
Then if the function were a cosine wave m = A cos(2 pi x / L)
its second derivative would be d2m/dx2 = -A (2 pi/ L)"2

cos(2 pi x / L). The variance of the second derivative

would therefore be about 0.5 A2 (2 pi/ L)"4 (since the
average value of cos™2 is 0.5). So I'm going to use this

0® o° 0 o° o° 0P o° o°

% amount as an estimate of the variance of the prior information;
% that is, the second derivative is zero +/- sigmah.

A=2.0;

L =6.0;

sigma2h = 0.5 * (A"2) * ((2*pi/L)"4);
sigmah = sqrt(sigmaz2h);

% Step 8: Estimate model parameter and their covariance
% set up the matrix F and vector f
F=spalloc(N+K,M, 3*(N+K)) ;
f=zeros (N+K,1);
k=1; % this is a trick to count rows of F
for i=[1:N] % the G, dobs part
F(k,i) = 1/sigmad;
f(k) = dobs(i)/sigmad;

k = k+1;

end

for i=[1:K] % The H, h=0 part
F(k,i) = Dx2i/sigmah;
F(k,i+1l) = -2*Dx2i/sigmah;
F(k,i+2) = Dx2i/sigmah;
f(k)=0;
k = k+1;

end

[*)

% solve Fm=f by biconjugate gradients
mest = bicg(@weightedleastsquaresfcn, F'*f, le-5, 4*(N+K));

bicg converged at iteration 10 to a solution with relative residual 4.2e-06.

% plot the solution

% note that it fits the observations pretty well
figure(2);

clf;

set(gca, 'LineWidth',3);

hold on;

axis([xmin, xmax, -2, 2]);

plot(x, mest, 'r-', 'LineWidth', 3)
plot(x, dobs, 'ko', 'LineWidth', 2)
xlabel('x");

ylabel('d(x) and m(x)");
title('observed data, predicted model and 95% confidence error bars');

’
’

o®

Step 9: (see a little further, below)

Step 10: Confidence interval calulation

The covariance matrix is [cov m] = inv(F'*F)

However, we do not necessarily need to compute the complete

matrix. The code here solves for the k-th column, say ck,

(or row, since it is symmetric). The idea is to solve the equation
(F'F) ck = s, where s is a vector that is all zeros except

a 1l in row k. Then ck is the k-th column of inv(F'*F)
varlist=[1:floor(N/20):N]; % list of values of x at which

% to calculate error bars

o 0° o° o° o° o° o°

for k = varlist
% solve (F'F) ck = s
s = zeros(M,1);
s(k)=1;
ck = bicg(@weightedleastsquaresfcn, s, le-5, 4*M);

end

bicg
bicg
bicg
bicg
bicg
bicg
bicg
bicg
bicg
bicg
bicg
bicg
bicg
bicg
bicg
bicg
bicg
bicg
bicg
bicg
bicg

% variance of estimated model parameters
sigmamest = sqrt(ck(k));

% 95% confidence interval
mlow = mest(k)-2*sigmamest;
mhigh = mest(k)+2*sigmamest;

% plot error bars
plot([x(k), x(k)], [mlow, mhigh], 'b-',

solution with
solution with
solution with
solution with
solution with
solution with
solution with
solution with
solution with
solution with
solution with
solution with
solution with
solution with
solution with
solution with
solution with
solution with
solution with
solution with
solution with

converged at iteration 12 to
converged at iteration 12 to
converged at iteration 12 to
converged at iteration 13 to
converged at iteration 12 to
converged at iteration 12 to
converged at iteration 12 to
converged at iteration 12 to
converged at iteration 12 to
converged at iteration 12 to
converged at iteration 12 to
converged at iteration 12 to
converged at iteration 12 to
converged at iteration 12 to
converged at iteration 12 to
converged at iteration 12 to
converged at iteration 12 to
converged at iteration 13 to
converged at iteration 12 to
converged at iteration 12 to
converged at iteration 12 to

Q9O 9 9 0 9 9 9 0 Y Y Y oV Y oV VOV YV DV OV D

is k-th element of ck

‘LineWidth', 3);

relative
relative
relative
relative
relative
relative
relative
relative
relative
relative
relative
relative
relative
relative
relative
relative
relative
relative
relative
relative
relative

residual
residual
residual
residual
residual
residual
residual
residual
residual
residual
residual
residual
residual
residual
residual
residual
residual
residual
residual
residual
residual

6.3e-06.
7.8e-06.
8.4e-06.
3.1le-06.
le-05.
le-05.
le-05.
le-05.
le-05.
le-05.
le-05.
le-05.
le-05.
le-05.
le-05.
le-05.
le-05.
3.1le-06.
8.4e-06.
7.8e-06.
6.3e-06.

observed data, predicted model and 95% confidence error bars
2

1.5

d(x) and m{x)

o®

Figure 2. Observed data (circles), predicted model (red) and 95% conficence error bars (blue

Note that the error bars are a small fraction of the
overall range of the function, meaning that we haven't
smoothed the function completely away!

o o° o°

Step 9: Examine the model resolution

The resolution matrix is RG = GMG * G

with GMG = inv(F'F) G' inv(covd)

However, as with covariance, one does not need to
compute every row. This code just does a few rows.
Note that the plot shows that the resolution is
peaked along the main diagonal, but that it has a
finite width of about 1 (meaning that there is some
smoothing (but that's what we wanted) and a little
tiny bit of negative sidelobes (which is not so
good, but unavoidable with 2nd derivative smoothing).
reslist=[1:floor(N/9):N]; % do these rows
Nres=length(reslist);

figure(3);

clf;

axis ij;

set(gca, 'LineWidth', 3);

hold on;

axis([xmin, xmax, xmin-(xmax-xmin)/Nres, xmax+(xmax-xmin)/Nres]);
xlabel('x");

ylabel('x");

title('resolution matrix"');

vard = sigma2d * ones(N,1); % variance of data

% (the code can handle the case where it varies)

for k = reslist

0 0° 0° 0° o° d° O° O° o o° o°

o° o o°

(k)=1;

0 un wn

second:

gi = ((ck")*(G"))./(vard");
% row of the resolution matrix
r row = gi*G;

third:

compute k-th row of the resolution matrix
first: compute column of inverse of F'F

note F'F symmetric, so column is also row
= zeros(M,1);

row of generalized inverse GMG(k, :)=gi

k = bicg(@weightedleastsquaresfcn, s, le-5, 4*M);

sc = -((xmax-xmin)/Nres)/max(r_row);
plot(x, sc*r row'+x(k), 'k-', 'LineWidth', 3);
end
bicg converged at iteration 12 to a solution with relative residual 6.3e-06.
bicg converged at iteration 13 to a solution with relative residual 3.4e-06.
bicg converged at iteration 12 to a solution with relative residual le-05.
bicg converged at iteration 12 to a solution with relative residual le-05.
bicg converged at iteration 12 to a solution with relative residual le-05.
bicg converged at iteration 12 to a solution with relative residual le-05.
bicg converged at iteration 12 to a solution with relative residual le-05.
bicg converged at iteration 12 to a solution with relative residual le-05.
bicg converged at iteration 12 to a solution with relative residual 8.6e-06.
bicg converged at iteration 12 to a solution with relative residual 6.4e-06.
resolution matrix
=10
=5
= 0
5
10
=10 -8 i} -4 -2 0 2 4 G 8 10
Figure 3: Selected rowas of the model reolution matrix. Note that

o® o o°

o°

Step 11: Examine the individual errors

it is peaked near the main diagonal (good), but also has a small
negative sidelobes (bad)

Note that the prediction error is of
uniform size of about unity, indicating
that our a priori data variance is about
right. It is also of similar size across
the plot, indicating that our assumption
that the error is uniform is about right,
too. One the other hand, the error

in a priori information is a little less
than unity and not uniform across the
plot, indicating that our assumptions on
the size and uniformity of sigmah is not
quite right.

0 0° 0° 0% O° A° O O° O° O o° o°

o®

Plot prediction error
dpre = G*mest;

e = dobs-dpre;
figure(4);

clf;

subplot(2,1,1);

set(gca, 'LineWidth', 3);

hold on;
axis([xmin, xmax, -2, 2]);
plot([xmin, xmax]', [0, O]', 'b:', 'LineWidth', 2);

plot(x, e/sigmad, 'ko', 'LineWidth', 3);
xlabel('x"');

ylabel('e/sigmad');

title('normalized prediction error');

% plot a priori error
hpre = H*mest;

1 = h-hpre;
subplot(2,1,2);

set(gca, 'LineWidth', 3);

hold on;
axis([xmin, xmax, -2, 2]);
plot([xmin, xmax]', [0, O]', 'b:', 'LineWidth', 2);

plot(x(2:N-1), l/sigmah, 'ko', 'LineWidth', 3);
xlabel('x"');

ylabel('l/sigmah');

title('normalized a priori error');

normalized prediction error

e/sigmad

I/sigmah

Figure 4. (Top) The normalized prediction error randomly scatters
around zero with an amplitude of +/- one (good). The normalized
error in prior information scatters is less random (bas) expecially
near x=0.

o® o 0P o°

Step 12: Examine the total error phiest

in order to address the null hypothesis
that departure from the expected value of
nu is due to random error.

In the plot, total error phiest is usually
close to the minimum bound (sometimes on
one side, sometimes on the other), indicating
that one of the two variances, sigma2d or
sigma2h is overestimated. (Our estimate of
sigma2h is probably too large. Multiplying
it by 0.75 produces a better result).

fpre = F*mest;

phiest = (f-fpre)'*(f-fpre);

0° 0° 0% 0° o° 0 O° O° P o° o°

nu = N+K-M;

pl = nu - 2*¥sqrt(2*nu);
p2 = nu + 2*¥sqrt(2*nu);
figure(5);

clf;

set(gca, 'LinewWidth',3);
hold on;

pmax = max([phiest,p2]);

axis([0, 1.1*pmax, 0, 1]);

plot([pl, pll', [0, 0.2]1', 'r-', 'LineWidth', 2);

plot([p2, p21', [0, 0.2]1', 'r-', 'LineWidth', 2);

plot([phiest, phiest]', [0, 0.4]', 'k-', 'LineWidth', 3);

xlabel('phi');
title('total error phi (black) and confidence bounds (red)');

total error phi (black) and confidence bounds (red)

0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2

0.1

0 20 40 60 80 100 120
phi

Figure 5. The observed phi (black bar), together with the 95%
confidence interval (red bars) in which phi is predicted to lie
presuming that our assumptions about the size of the measurement
error and the error in prior information are correct.

o° o o° o°

Step 13: Two different models, A and B?
We have only one model, so this step is not relevant

o® o°

