gdal4 03
This code parallels "Method Summary 2, Nonlinear Least Squares"
clear all;

%
%

% global necessary to use biconjugate gradient solver
global F;

Step 1: State the problem in words.

This is a simple modification of the data smoothing
solve in the example for Methods Summary 1, Least
Squares. As before, the the model parameters are

a discretized version of a function m(x) (at equal
increments Dx). But now the the data are nonlinear
functions of each model parameter d(i) = erf(m(i)).
The effor function erf(z) is sigmoidal in shape. Near
the origin, erf(z)~z, but for large |z| it asymtopes
to +/- 1. It thus squeezes the larger model parameters
into a small range. The derivative is d erf(z) / dz

= (2/sqt(pi)) exp(-z"2)

0 0° 0° 0% O° A° O O° O° O o° o°

% set up the auxiliary variable, x

Nx=101;
xmin = -10;
xmax = 10;

XL = (xmax-xmin);

Dx = xL/(Nx-1);

Dx2i = 1/(Dx"2);

X = Xmin + Dx*[0:Nx-1]1"';

% Step 2: Organize the problem in standard form

% number of model parameters = number of data = Nx
% and the data kernel is the identity matrix, G=I
N=NXx;

M=N;

% this is a synthetic test, so there is no real data

% the true model is a "ringy" function peaked at x=0

% the observed data is the true model plus random noise
Atrue = 1.9; % amplitude

Ltrue=6.21; % wavelength

b=4; % decay parameter
mtrue=Atrue*exp(-2*pi*abs(x)/(b*Ltrue)).*cos(2*pi*x/Ltrue);
dtrue = erf(mtrue);

sigmad = 0.1; % noise level of the observations

sigma2d = sigmad”2;

dobs = dtrue+random('Normal',0,sigmad,N,1);

Establish the accuracy of the data

In this case, we know the data has accuracy
sigmad, because it was specified when the
synthetic data were created. I'm going to use
this "correct" value

o o° o o° o°

Plot the data
When you examine the plot, you should take notice of:
the overall shape of the curve
the noise level
the shape of the central peak, which is rather flat
(which is due to the nonlinearity; information about

o o° o° o o° o°

% the height of the central peak is being lost, and
% that will limit the success of the inversion).
figure(l);

clf;

set(gca, 'LineWidth',3);

hold on;

axis([xmin, xmax, -1, 11);

plot(x, dobs, 'ko', 'LineWidth', 2);

xlabel('x"');

ylabel('d(x)"');

title('observed data');

observed data
1 % o

0.8 o0

% Figure 1: The observed data samples a smooth curve d(x)

tate the prior information in words.
e assume that the function is smooth, meaning
hat its second derivative is small

o® o o°
+ = WU

Organize the prior information in standard

form, H is a first differnce operator, h=0. There
are two few rows in H than there are model parameters
M-2;

= Dx2i*ones(M,1);

= spdiags([z, -2*z, z], [0, 1, 2], K, M);

= zeros(K,1);

Establish the accuracy of the a priori information

Suppose that I know that the function is roughly sinusoidal
with an amplitude of about A and a wavelength of about L.
Then if the function were a cosine wave m = A cos(2 pi x / L)

its second derivative would be d2m/dx2 = -A (2 pi/ L)"2

cos(2 pi x / L). The variance of the second derivative

would therefore be about 0.5 A”2 (2 pi/ L)™4 (since the
average value of cos”™2 is 0.5). So I'm going to use this
amount as an estimate of the variance of the prior information;
that is, the second derivative is zero +/- sigmah.

= 2.0;

=6.0;

sigma2h = 0.5 * (A™2) * ((2*pi/L)"4);

sigmah = sqrt(sigma2h);

™ I 0° o° o° o o° o°

% Step 3: Decide up a reasonable trial solution
% Let's try zeros
mk = zeros(M,1);

% Step 4: Linearized the data equation
% iterations

Niter = 100; % Maximum number of iterations
for iter = [1:Niter]

% perturbations in data and prior information
Dd = dobs - erf(mk);

Dh = h - H*mk;

% The data kernel G is diagonal

dddm = (2/sqrt(pi)) * exp(-mk.”2);

G = spdiags(dddm, 0, N, M);

Step 5: Form the combined equation

Set up the matrix F and vector f
=spalloc(N+K,M,3* (N+K)) ;

=zeros (N+K,1);

=1; % this is a trick to count rows of F
or 1:N] % the G, dobs part

,1) = dddm(i)/sigmad;

) = Dd(i)/sigmad;

for i=[1:K] % The H, h=0 part
F(k,i) = Dx2i/sigmah;
F(k,i+1l) = -2*Dx2i/sigmah;
F(k,i+2) = Dx2i/sigmah;
f(k) = Dh(i)/sigmah;
k = k+1;

end

% Step 6: Iteratively improve the solution

% solve F Dm = f by biconjugate gradients

Dm = bicg(@weightedleastsquaresfcn, F'*f, le-5, 4*(N+K));
% update solution

mk = mk + Dm;

% Step 7: Stop iterating
terminate for very small Dm
Sm = (Dm'*Dm)/M;
Smlimit = 1E-6;
if(Sm < Smlimit)
break;
end

end % next iteration

solution with relative residual 8.8e-06.
solution with relative residual 9.8e-06.
solution with relative residual 5.8e-06.
solution with relative residual 6.4e-06.
solution with relative residual 5.8e-06.

bicg converged at iteration 31 to
bicg converged at iteration 59 to
bicg converged at iteration 75 to
bicg converged at iteration 76 to
bicg converged at iteration 76 to

QU 9 9

mest = mk;

o®

Step 8: Examine the results

plot the solution

note that the solution is not able to fit
the true central peak very well
figure(2);

clf;

set(gca, 'LineWidth',3);

hold on;

axis([xmin, xmax, -5, 5]);

plot(x, mtrue, 'k-', 'LineWidth', 3);
plot(x, mest, 'r-', 'LineWidth', 2);
xlabel('x");

ylabel('m(x)"');

title('true model (black), estimated model (red) and 95% confidence error bars');

o o° o°

Confidence interval calulation

The covariance matrix is [cov m] = inv(F'*F)

However, we do not necessarily need to compute the complete

matrix. The code here solves for the k-th column, say ck,

(or row, since it is symmetric). The idea is to solve the equation
(F'F) ck = s, where s is a vector that is all zeros except

a1l in row k. Then ck is the k-th column of inv(F'*F)
varlist=[1:floor(N/20):N]; % list of values of x at which

% to calculate error bars

o 0° o° o° o° o° o°

for k = varlist
% solve (F'F) ck = s
s = zeros(M,1);
s(k)=1;
ck = bicg(@weightedleastsquaresfcn, s, le-5, 4*M);

% variance of estimated model parameters is k-th element of ck
sigmamest = sqrt(ck(k));

% 95% confidence interval
mlow = mest(k)-2*sigmamest;
mhigh = mest(k)+2*sigmamest;

% plot error bars
plot([x(k), x(k)Il, [mlow, mhigh], 'b-', 'LineWidth', 3);

end

solution with relative residual 9.4e-06.
solution with relative residual 9.8e-06.
solution with relative residual 9.4e-06.
solution with relative residual 9.5e-06.
solution with relative residual 9.4e-06.

bicg converged at iteration 35 to
bicg converged at iteration 35 to
bicg converged at iteration 37 to
bicg converged at iteration 42 to
bicg converged at iteration 51 to

QU O 9 Q

bicg converged at iteration 61 to a solution with relative residual 9.4e-06.
bicg converged at iteration 75 to a solution with relative residual 8.4e-06.
bicg converged at iteration 75 to a solution with relative residual 5.7e-06.
bicg converged at iteration 75 to a solution with relative residual 8.5e-06.
bicg converged at iteration 76 to a solution with relative residual 9.8e-06.
bicg converged at iteration 75 to a solution with relative residual 8.1le-06.
bicg converged at iteration 77 to a solution with relative residual 6.3e-06.
bicg converged at iteration 76 to a solution with relative residual 6.2e-06.
bicg converged at iteration 70 to a solution with relative residual 8.8e-06.
bicg converged at iteration 55 to a solution with relative residual 7.8e-06.
bicg converged at iteration 47 to a solution with relative residual 9.4e-06.
bicg converged at iteration 44 to a solution with relative residual 7.9e-06.
bicg converged at iteration 39 to a solution with relative residual 6.9e-06.
bicg converged at iteration 37 to a solution with relative residual 8.6e-06.
bicg converged at iteration 35 to a solution with relative residual 8.9e-06.
bicg converged at iteration 36 to a solution with relative residual 7.3e-06.

o o° o o° o°

0 0° 0° o° o° o° o°

true model (black), estimated model (red) and 95% confidence error bars
5

Figure 2. The true function d(x) (black) and the reconstructed
function m(x) (red), together with 95% confidence

error bars (blue). Note that the error bars scale with the size of
the solution. That's due to the erf() nonlinearity,

that makes difficult distinguishing a m, say, of 2 from a m say of 3.

Step 9: Examine the model resolution

The resolution matrix is RG = GMG * G

with GMG = inv(F'F) G' inv(covd)

However, as with covariance, one does not need to
compute every row. This code just does a few rows.
Note that the plot shows that the resolution is
mostly peaked along the main diagonal.

reslist=[1:floor(N/9):N]J;
Nres=length(reslist);

figu
clf;
axis

re(3);

ij;

set(gca, 'LineWidth', 3);

hold

on;

% do these rows

axis([xmin, xmax, xmin-(xmax-xmin)/Nres, xmax+(xmax-xmin)/Nres]);

xlab
ylab

el('x");
el('x");

title('resolution matrix');
vard = sigma2d * ones(N,1);

[*)

for

end

bicg
bicg
bicg
bicg
bicg
bicg
bicg
bicg
bicg
bicg

k = reslist

<)
)

variance of data

% (the code can handle the case where it varies)

% compute k-th row of the resolution matrix
% first: compute column of inverse of F'F

note F'F symmetric, so column is also row
= zeros(M,1);

(k)=1;

second:
gi =
% third:

row of generalized inverse GMG(k, :)=gi

((ck')*(G'))./(vard");
row of the resolution matrix
r row = gi*G;

sc = -((xmax-xmin)/Nres)/max(r_row);
, 'LineWidth', 3);

plot(x, sc*r row'+x(k),

converged
converged
converged
converged
converged
converged
converged
converged
converged
converged

at
at
at
at
at
at
at
at
at
at

iteration
iteration
iteration
iteration
iteration
iteration
iteration
iteration
iteration
iteration

35
37
54
74
76
77
69
43
37
34

Ik_

to
to
to
to
to
to
to
to
to
to

Q0 O 99 Y YV Y Y VY Q

solution
solution
solution
solution
solution
solution
solution
solution
solution
solution

with
with
with
with
with
with
with
with
with
with

relative
relative
relative
relative
relative
relative
relative
relative
relative
relative

s
s
ck = bicg(@weightedleastsquaresfcn, s, le-5, 4*M);

residual
residual
residual
residual
residual
residual
residual
residual
residual
residual

W 00 N © O 0V VW Vv

.4e-06.
.2e-06.
.le-06.
.4e-06.
.7e-06.
.3e-06.
.9e-06.
.8e-06.
.7e-06.
.3e-06.

resolution matrix

Figure 3. Selected rows of the model resolution matrix. They
are peaaked along the main diagonal (good) but have small negative
sidelobes (bad).

o o° o°

o®

Examine the individual errors

% Plot prediction error
dpre = G*mest;

e = dobs-dpre;
figure(4);

clf;

subplot(2,1,1);

set(gca, 'LineWidth', 3);

hold on;

axis([xmin, xmax, -10, 101);

plot([xmin, xmax]', [0, O]', 'b:', 'LineWidth', 2);
plot(x, e/sigmad, 'ko', 'LineWidth', 3);
xlabel('x"');

ylabel('e/sigmad');
title('normalized prediction error');

% plot a priori error
hpre = H*mest;

1 = h-hpre;
subplot(2,1,2);

set(gca, 'LineWidth', 3);

hold on;
axis([xmin, xmax, -2, 2]);
plot([xmin, xmax]', [0, O]', 'b:', 'LineWidth', 2);

plot(x(2:N-1), 1/sigmah, 'ko', 'LineWidth', 3);

xlabel('x");
ylabel('l/sigmah');
title('normalized a priori error');

normalized prediction error

iy
[

n

e/sigmad

I/sigmah

Figure 4. (Top) The ormalized prediction error. Note that it is
much larger than unity, and not uniform with x, indicating that
that the model is not fitting the data very well. (Bottom) The
model is fitting the priori information is a little better, since
the size of the normalized error is closer to unity. However, it
is not not uniform in x, being largest around x=0. Our assumptions
on the size and uniformity of sigmah is not quite right.

0° o° 0 o° o° o° o°

Step 12: Examine the total error phiest
in order to address the null hypothesis
that departure from the expected value of
nu is due to random error.

o® o 0P o°

fpre = F*mest;
phiest = (f-fpre)'*(f-fpre);

nu = N+K-M;

pl = nu - 2*¥sqrt(2*nu);
p2 = nu + 2*¥sqrt(2*nu);
figure(5);

clf;

set(gca, 'LinewWidth',3);
hold on;

pmax = max([phiest,p2]);
axis([0, 1.1*pmax, 0, 1]);
plot([pl, pl]', [0, 0.2]', 'r-', 'LineWidth', 2);

plot([p2, p2]', [0, 0.2]', 'r-', 'LineWidth', 2);

plot([phiest, phiest]', [0, 0.4]', 'k-', 'LineWidth', 3);
xlabel('phi');

title('total error phi (black) and confidence bounds (red)');

total error phi (black) and confidence bounds (red)

0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2

0.1

0 200 400 600 BOO 1000
phi
Figure 5. The total error phiest (black) is way above the 95%

confidence interval (red bars), indicating that the high total
error is unlikely to be due to random variation

o® o o°

o°

We have only one model, so a F-Test is not relevant

