0 0° o° o o° o o° o°

o o° o o° o°

cl

%
M=
zm
zm
Dz

=

mt
il
i2
ic
zC
mt

%
%

N=
G

cO
fo

en

%

ad

gda06 03

Squeezing example

The data kernel is a series of decaying exponentials in
an auxillary variable z and is underdetermined. Three
models, all that fit the data to similar accuracy, are
constructed: Simple damped least squares; solution
squeezed shallow ("up"), solution squeezed deep ("dn")

Note: Becaue the data are noisy with noise that randomly
varies between runs, you may have to run the scipt a few
times until the least squares solution (black curve in
figure 2 (top) is a good approximation to the true

model (blue curve).

ear all;

auxilliary variable, z
101;

in=0;

ax=10;
=(zmax-zmin)/(M-1);
zmin+Dz*[0:M-1]1";

true solution is a boxcar
rue = zeros(M,1);

floor(5*M/11)+1;
floor(7*M/11)+1;
floor(0.5*(i1+i2));
z(ic);

rue(il:i2) = 1.0;

data kernel is declining exponentials, normalized

so that they compute a weighted average of the model

floor(M/2);

= zeros(N,M);

=0.01;

ri [1:N];
C cO*(i-1);
\Y; exp(-c*z);
vn = sum(v);
G(i,1:M)=v'/vn;

d

draw the data kernel
a_draw(G);

Figure 6.3 Squeezed solutions for a simple inverse problem for model parameters m(z i), whet
(A) The data kernel represents smooth averages of the data and has the form G ij=c j exp#(-
where the c js are constants.

o® o° o°

create synthetic data by adding random noise to the
true data

sd=0.0001;

dtrue = G*mtrue;

dobs = dtrue + random('Normal',0,sd,N,1);

o® o°

% damped least squares

epsilon2 = le-9;

W = eye(M,M);

mest® = (G'*G + epsilon2*W)\(G'*dobs);

e = dobs - G*mestO;

EO (e'*e); % error

Ed (dobs'*dobs); % energy in data, for comparison

squeeze up; the weights are low to the left

of z=zc and high to the right of it. The error
function erf(z) ramps up smoothly from -1 for
z<<0 to +1 for z>>0, so I can use a scaled

and shifted version of it to achieve weights
that smoothly ramp up/down from one constant
value to another at the point z0. (Any
"sigmoidal" shaped function would have sufficed;
Matlab's sigmf() would be fine, too.

0 0° 0 0° o° 0P o° o° o°

epsilon2 = 5e-9;

Wup = diag((B+1)+B*erf((z-zc)/A)); % weights grow with z
mest up = (G'*G + epsilon2*Wup)\(G'*dobs);

e = dobs - G*mest up;

Eup = e'*e;

% squeeze down

epsilon2 = 5e-9;

Wdn = diag((B+1)-B*erf((z-zc)/A)); % weights decline with z
mest dn = (G'*G + epsilon2*Wdn)\(G'*dobs);

e = dobs - G*mest dn;

Edn = e'*e;

% I have adusted all the coefficients by trial and error
% so that EO/Ed is about 10-6 (a very good fit)
% Eup/E@ and Edn/EQ@ are both about 1.05 (almost as good)

fprintf('Normalized error %.2e ratio: up %.3f dn %.3f\n', EO/Ed, Eup/EO, Edn/EO);

Normalized error 4.24e-07 ratio: up 1.081 dn 1.077

% plot true and unsqueezed models
figure(2);

clf;

subplot(3,1,1);

set(gca, 'LineWidth',3);

set(gca, 'FontSize',14);

hold on;
axis([zmin, zmax, -1.2, 1.2]);
plot([zmin, zmax]', [0, O0]', 'k:', 'LineWidth',6 2);

plot(z, mtrue, 'b-', 'LineWidth', 3);
plot(z, mest®, 'k-', 'LineWidth',6 2);
xlabel('z");

ylabel('m(z)"');

% plot unsqueezed and squeezed models
subplot(3,1,2);

set(gca, 'LineWidth',3);

set(gca, 'FontSize',14);

hold on;

axis([zmin, zmax, -1.2, 1.2]1);

plot([zmin, zmax]', [0, O0]', 'k:', 'LineWidth',6 2);
plot(z, mest up, 'r-', 'LineWidth', 2);

plot(z, mest dn, 'g-', 'LineWidth', 2);
xlabel('z");

ylabel('m(z)"');

% plot weights

subplot(3,1,3);

set(gca, 'LineWidth',3);

set(gca, 'FontSize',14);

hold on;

w = diag(Wup);

axis([zmin, zmax, 0, 1.1*max(w)]);

plot(z, w, 'r-', 'LineWidth', 2);
w = diag(Wdn);

plot(z, w, 'g-', 'LineWidth', 2);
xlabel('z");

ylabel('W");

0° o° 0 o° o° o° o°

=

m(z)

Z
20
< 10
0
0 2 4 6 8 10
Z

Figure 6.3 Squeezed solutions for a simple inverse problem for model parameters m(z i), wher
(B) The true model (blue curve) is a boxcar centered at z 0=5.4. The ordinary damped

least squares solution (black curve) is smoother that the boxcar, but has negligible error.
The shallow solution (red curve) and deep solution (green curve) also have negligible error,
at shallow and deep depths, respectively, than the ordinary damped least squares solution. 1
indicate that the data are sufficient to constrain the central part of the solution to the /
(D) The two weight functions (green and red) preferentially penalize shallow and deep struct

