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In this note, we consider model parameters   and data   that are a discrete version of a continuous 

functions      and     , say with spacing   . The data equation      has unit variance and the prior 

constraint equation        has variance       .  The Generalized Least Squares solution is: 

 

                         

 

where     is the generalized inverse. The corresponding resolution matrix is 

 

                           

 

Note that   is a symmetric matrix and that     (perfect resolution) when     . Now consider the 

case where     (that is the data are direct estimates of the model parameters) and   is a second 

derivative operator, with rows like: 

 

                   

 

This inverse problem can be understood as finding model parameters that are approximately equal to the 

data, but which are smoother (that is, have smaller second derivative).  The degree of smoothing increases 

with  . 

 

When the smoothness constraint is weak            , we can expand the resolution matrix in a Taylor 

Series, keeping only the first two terms: 

 

                              

 

This matrix has rows like: 

 

                                                     

 

In the absence of the constraint (   ), the resolution is perfect; that is: 

 

              

 

As the strength of the constraint is increased, the magnitude of the central value decreases and the nearest 

neighbor values become positive. For example, when              we have: 

 

                               

 

The spread of the resolution has increased.  However, the outermost non-zero values are negative, 

indicating that the smoothing cannot be interpreted as a weighted average in the normal sense. 



 

The quantity       represents a column of resolution matrix when    is set to a column of the 

identity matrix (say a column corresponding to position   ), and the corresponding row is just   , since   

is symmetric. But since    , the corresponding data        is also the same column of the identity 

matrix. Hence,  

 

                                   

 

 

Moving the matrix inverse to the l.h.s. of the equation yields: 

 

            

 

Note that the second derivative operator is symmetric, so that       ; that is, a second derivative 

operator applied twice to yield the fourth derivative operator. Except for the first and last row, where edge 

effects are important, the matrix equation is the discrete analogue to the differential equation: 

 

  
   

   
              

 

The factor of    has been added so that the area under            is the same as the area under   . 

This well-known differential equation has solution: 

 

                                                    

 

with 

  
    

   
                

 

The differential equation can be interpreted as the deflection      of a elastic beam of flexural rigidity    

floating on a fluid foundation, due to a point load at   .  The beam will take on a shape that exactly 

mimics the load only in the case when it has no rigidity; that is,     . For any finite rigidity, the beam 

will take on a shape that is a smoothed version of the load, where the amount of smoothing increases with 

  .  The parameter           gives the scale length over which the smoothing occurs.  Note that the 

formula for      contains oscillating trigonometric functions, so that the smoothing does not correspond 

to a weighted average in the usual sense; some weights are negative. 

 

 

Example:  

 

N=101 data and M=101 model parameters 

       

  =0.1 

      



    

  with rows                    

 

 

Figure: Selected rows of the resolution matrix as a function of  , as determined by the exact formula for 

the generalized inverse  (black curves) and as determined by the flexural approximation (red curves). 
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