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1. Definition of the inverse problem. We are given a forward problem     , where a known 

    data kernel   links model parameters   to data    The generalized inverse     turns this 

equation around, linking data   to model parameters   through       . The generalized 

inverse is an     matrix that is a function of the data kernel.  However, at this point, neither 

the method by which it has been obtained nor its functional form has been specified.  We note 

for future reference that the simple least squares solution, obtained by minimizing the prediction 

error 

              
         

is 

       
          

    

has so has generalized inverse          
          

  .  Here   
   is the prior covariance of 

the data. One of the limitations of simple least squares is that this generalized inverse exists only 

when the observations are sufficient to uniquely specify a solution. Otherwise the matrix 

     
       does not exist. 

2.  Definition of model resolution. The model resolution matrix         can be obtained by 

using the fact that an asserted (or “true”) model predicts the data,             and that those 

data can then be inverted for estimated model parameters,            : 

                        

The resolution matrix    indicates that the estimated model parameters only equal the true 

model parameters in the special case where     .  In typical cases, the estimated model 

parameters are linear combinations (“weighted averages”) of the true model parameters.  In 

general,    has no special symmetry; it is neither symmetric nor anti-symmetric.  We note for 

future reference that the simple least squares solution, when it exists, has perfect resolution 

             
          

      

3. Meaning of the  -th row of the resolution matrix. The  -th estimated model parameter 

satisfies: 

  
        

   
    

 

 

and so can be interpreted as being equal to a linear combination of the true model parameters, 

where the coefficients are given by the elements of the  -th row of the resolution matrix.    



Colloquially, we might speak of the estimated model parameters as weighted averages of the true 

model parameters.  However, strictly speaking, they are only thru weighted averages when the 

elements of the row sum to unity, 

    
 

 

      

which is, in general, not the case. 

4. Meaning of the  -th column of the resolution matrix. The  -th column of the resolution 

matrix specifies how each of the estimated model parameters is influenced by the  -th true 

model parameter. This can be seen by setting            with   
   

    ; that is, the all the 

true model parameters are zero except the  -th, which is unity.  Denoting the set of estimated 

model parameters associated with      as        , we have: 

                             
      

     
    

 

    
  

 

Thus the  -th column of the resolution matrix is a “point-spread function”; that is, a single true 

model parameter spreads out into many estimated model parameters. 

5. The generalized least squares solution. Generalized least squares supplements the 

observations with prior information, represented by the linear equation     . Both the matrix 

  and vector    are assumed to be known.  The solution is obtained by minimizing the sum of 

the prediction error and the error in prior information,                : 

              
                          

The parameter    is a known constant that specifies the strength of the prior information relative 

to the data. It can be interpreted as the reciprocal of the variance of the prior information. By 

defining 

     
    

 

  
                 

    
 

  
  

we can write            
        , with   

    , which is in the form of a simple least 

squares minimization problem. The solution is given by the simple least squares formula: 

                                    
  

    
    

     
  

or 



                       

                 
                                        

          

Here      denotes the observed values of the data and      the prior values of the information (that 

is, the values that are asserted).  The combined vector      includes both observations and prior 

information, but we simplify its superscript to “obs”.  The presumption in generalized least 

squares is that the addition of prior information to the problem is sufficient to eliminate any non-

uniqueness that would have been present had only observations been used.  Thus, the inverse of 

  is presumed to exist.  Note that since   is symmetric, its inverse     will also be symmetric. 

6.  Resolution of generalized least squares. Generalized least squares does not distinguish the 

weighted data equation   
           from the weighted prior information equation      

  ; the latter is simply appended to the bottom of the former to create the combined equation 

    .  Consequently, in analogy to the simple least squares case, we can define a generalized 

inverse     and a resolution matrix    as: 

                                                                     

                                                

However, when defined in this way, the resolution of generalized least squares is perfect, since 

                          

In general, the estimated model parameters depend upon both   and  ; that is   

          . Consider, however, the special case of    . (This case commonly arises in 

practice, e.g. for the prior information of smoothness). The estimated model parameters depend 

only upon  ; that is          .  We can use the forward equation to predict data associated with 

true model parameters,            , and then invert these predictions back to estimated model 

parameters,                . Hence, we obtain the usual formula for resolution: 

       
                           

Superficially, we seemed to have achieved contradictory results, as the two resolution 

matrices have radically different properties:  

                      

However, one step in the derivations is critically different.  In the case of   , we asserted that 

      , even though an arbitrary       predicts              .  In the case of   , we made 

no such assertion; the      imbedded in      arises from             and is not equal to zero.   



That the    version is the more appropriate choice can be understood from the following 

scenario: Suppose that the model   represents a discrete version of a continuous function      

and that that one in trying to find an      that approximately satisfies         but is smooth.  

Smoothness is the opposite of roughness, and the roughness of a function can be quantified by 

the r.m.s. value of its second derivative.  Thus, we take   to be the second derivative operator 

(i.e. with rows like             ) and       , which leads to the 

minimization of          , a quantity proportional to the r.m.s. average of the second derivative. Now 

suppose that the true solution is the spike            (that is, zero except for the  -th element, which is 

unity).  We want to know how this spike spreads out during the inversion process, presuming that an 

experiment produced the data             that this model predicts. What values should one use for 

  in such an inversion?  The model predicts            , but these are the actual values of the 

second derivative.  To use them in the inversion would be to assert that second derivatives are known, 

which is stronger prior information than merely asserting that their r.m.s. average is small.  One should, 

therefore, use       , which leads to a solution that is a column of   , not   . 

So far, our discussion has been limited to the special case of       .  We now relax that 

condition, but require that the prior information is complete, in the sense that         exists. 

Then we can solve the prior information equation by least squares, and determine a set of model 

parameters   : 

                 

We now use    as a reference model, defining the deviation of a given model from it as 

       . The generalized least squares solution can be rewritten in terms of this 

deviation: 

                      
           

 
         

         
           

 
             

         
           

 
          

         
           

 
         

                          

               

Thus, the deviation of the model from    depends only on the deviation of the data from that 

predicted by   : 

                                                   

and furthermore 



                                                     

Once again, we can combine               with                into the usual statement 

about resolution, 

                                    

In this case, too,    is the correct choice for quantifying resolution. However, the quantity being 

resolved is the deviation of the model from a reference model, and not the model itself.  

The general case can be approached by adding additional – but very weak - prior information, 

enough that    is uniquely specified. For instance, the choice: 

             
 

       
      

 
   

with        forces any linear combinations of model parameters that is not resolved by 

     to zero while having negligible effect on the others. It leads to a “damped least 

squared” estimate: 

                          

This modification is limited to the definitions of   and   and so does not affect other aspects of 

the derivation, implying that    is the correct choice in the general case, too. 

7. Calculating the generalized least squares solution. In practice, the quantity        is not needed 

when computing an estimate of the model parameters from data; instead, once solves the linear system: 

                  

Furthermore, when an iterative linear equation solver such as biconjugate gradients is used, the matrices 

    
    

   and     need never to be explicitly calculated, since the solver can be configured to use  , 

  
    

 and   directly.  This technique can lead to substantial efficiencies in speed and memory 

requirements, especially when the matrices are very large but sparse. 

8. Calculating the  -th row or column of    . We will first discuss how to calculate the  -th row of 

the damped least squares generalized inverse           without having to compute the others. Note 

that the equation 

                        
  

 

     

can be read as a sequence of vector equations: 

                            
 
       

  
               

 
      



That is,      is the  -th column of     and      is the corresponding column of the identity matrix.  Hence 

we can solve for the  -th column of     by solving the system            .  Furthermore, when an a 

iterative solver such as biconjugate gradients is used to solve this system, the matrices      and     

need never be explicitly calculated; the solver uses   and   directly. Finally, note that since     is 

symmetric, its  -th row is      .  

9. Calculating the  -th row of the generalized inverse. Now notice that: 

            
                            

       
     

 

 

Hence, the  -th row of the generalized inverse     it’s the  -th row of     dotted into      
   . 

10. Calculating the  -th row of the resolution matrix. The resolution matrix is formed from the 

generalized inverse and data kernel through 

 

                        
     

 

 

 

Thus, the  -th row of the resolution matrix is the  -th row of the generalized inverse dotted into the data 

kernel.  We can construct the  -th row of the resolution matrix after having calculated the  -th row of the 

generalized inverse. 

 

10. Calculating the  -th column of the resolution matrix. The Let us define the  -th column of the 

resolution matrix as the vector     ; that is: 

 

  
   

     

 

Then notice that the definition        can be written as 

                     
   

         
  

 

        

 

     
  

 

  
   

  

         
   

        

 

        
   

 

 

As before,      is the  -th column of the identity matrix. The quantity            is the data predicted 

by a set of model parameters               that are all zero, except for the  -th, which is unity.  Thus, 

the two step process  

                               
     



forms the  -th column of the resolution matrix.  In practice, the equivalent linear system       

    
       is solved instead of the equation containing the generalized inverse. 

11. Symmetric resolution in the special case of convolutions.  Let us consider the special case where 

  represents the discrete version of a continuous function      and where   and   represent 

convolutions. That is,    is the discrete version of          , where   is the convolution 

operator. Furthermore, let us assume that the data are uncorrelated and with uniform variance; that is 

  
     

  .  Convolutions commute; that is                    .  Consequently, the 

corresponding matrices will commute as well (except possibly for “edge effects”); that is 

     .  Furthermore, the transform of a convolution matrix is itself a convolution – namely, 

the original convolution backward in time; that is,         .  These properties imply that the 

resolution matrix: 

               
    

is symmetric, since 

       

       
        

       

          

      
               

               

                  

              

 

 

 

 

 


