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We study an acoustic problem in which the predicted travel time   depends upon slowness  . 

Here we discuss the use of adjoint methods to compute the partial derivative of the total error 

            with respect to a model parameter   that controls the slowness. 

Derivation of      . 

The Eikonal equation for traveltime   in an acoustic medium with slowness   is: 

                             

This equation indicates that travel time advances according to the local slowness; that is       

  , where    is a unit vector parallel to the “ray” (direction of propagation).  In this problem, all 

function vary with spatial coordinates         but have no time dependence. 

Let the slowness equal a background slowness    plus a small perturbation    , where   is a 

small parameter, and the corresponding travel time equal a background travel time    plus a 

small perturbation    . Then: 

                                  
    

         

Equating terms of equal order in   yields equations for the background travel time and the 

perturbation in travel time: 

          
                 

                                 

The third equation indicates that the component of the     in the direction     direction is   . If 

we define    to be an increment of arc length along the unperturbed ray (the curve   with tangent    ), 

then this is just an equation involving the directional derivative: 

   

  
                                  

 

   

This is exactly the result that we expect from Fermat’s principle. The perturbation in travel time is the 

integral of the perturbation in slowness along the unperturbed ray. We abbreviate the equation for the 

perturbed time    as: 

                         
                

Now suppose that we observe travel time      everywhere in space and define the error   

         The total error is: 

        



where the inner product       is over three dimensional space.  Now suppose that the slowness 

perturbation is a function of a model parameter  ; that is         .  The corresponding travel 

time perturbation and total error are also functions of  ; that is       and       .  .  The 

partial derivative of the total error   is: 

  

  
     

  

  
       

  

  
        

   

  
  

Since   is not a function of  , differentiating        yields: 

 
   

  
 

   

  
           

   

  
      

   

  
 

The partial derivative of the total error is therefore: 

  

  
        

   

  
          

   
   

  
  

Here           . Manipulating this equation using adjoints yields: 

  

  
            

   

  
        

   

  
  

with an adjoint field   that satisfies: 

                            

The operator  , written out in terms of matrix operations, is: 

    
          

   
   

  

   

  

   

  
 

 
 
 
 
 
 
 

  
 

  

 

   
 
 
 
 
 

  

Using the rules       
    

    
  

 and               , we obtain 

            
 

  

 

  

 

  
 

 
 
 
 
 
 
 
   

  
   

  
   

   
 
 
 
 
 
 

   
               

                       
                 

Equivalent forms are: 

                                               



 

When expressed in terms of the arc-length   along the unperturbed ray, this equation has the form of an 

inhomogeneous first order ordinary differential equation: 

  
  

  
                                                     

A closed form for the solution of this equation is known and is reasonably well-behaved. 

When the error is defined only at a single point, say           (where the subscript   

designates an error associated with a point), then        is promoted to an inner product by 

introducing a 3D Dirac impulse function: 

                                    

so that 

   

  
     

  

  
              

  

  
     

   

  
 

and the adjoint field becomes: 

   

  
        

   

  
                                                    

When the error is defined only on a surface (say      , so that: 

                     

(where the subscript   designates an error associated with a surface), then        is promoted to an 

inner product by introducing a 1D Dirac impulse function: 

                                                 

so that 

  

  
     

  

  
                   

  

  
             

  

  
       

and the adjoint field becomes: 

   

  
        

   

  
                                                           

 

 



In both of these case, the error is zero except at the observation point or surface.  In the zero-error region, 

the adjoint equation in homogeneous: 

    
  

 
        

This equation indicates that the fractional change in   in the ray direction     is equal to the negative of 

the divergence of neighboring rays. This is exactly the form of the transport equation for the ray 

theoretical amplitude (see Menke and Abbott, 1989, their equation 8.7.13); the adjoint field behaves 

exactly like geometrical spreading.  The reason for this behavior is illustrated in Part A of the figure 

below, where the error is defined on a surface: 

 

Suppose that the model is parameterized in terms of voxels, so that          inside a voxel and 

zero outside of it.  Then                           , where   is the volume of the 

voxel and    is the average value of the adjoint field inside the voxel.  The light grey voxel in the 

figure subtends a large patch of surface, whereas the dark grey voxel subtends a small patch. 

Although a perturbation    in slowness causes the same perturbation    in travel time, the one 

that subtends the most area results in the largest perturbation    in the error.  The adjoint field 



backtracks the geometrical spreading from the surface of observation to the voxel and gives the 

voxel that subtends the most area of the surface the most weight. 

The formula              is independent of the shape of the voxel and its orientation 

relative to the unperturbed ray paths, even though, intuitively, we might expect some 

dependence.  The perturbation    in travel time, as depicted in part B of the figure, is indeed 

dependent on shape.  However, an elongated voxel aligned parallel to the unperturbed ray has a 

large    but subtends a small patch of the surface, while the same voxel aligned perpendicular to 

the unperturbed ray has a small    but subtends a large patch of the surface.  The two effects 

exactly cancel. 

Plane Wave Example 

Consider an unperturbed plane wave with travel time            . The direction of propagation is 

along the  -axis; that is        
        . This travel time function satisfies the Eikonal equation, 

because    
             .  Consider a perturbation in slowness: 

                      

Here      is the unit boxcar function, which is unity inside the       interval and zero outside of 

it.  This slowness distribution is an idealization of a rectangular heterogeneity.  The perturbed 

travel time satisfies: 

                    
   

  
               

Integration parallel to the direction of propagation, together with the boundary condition that 

     to the left, yields: 

                      

where   is the Heaviside step function.  This function defines a rectangular region of constant 

travel time perturbation to the right of the heterogeneity. 

By direct differentiation, the partial derivative of travel time with respect to model parameter is: 

   

  
             

We first derive the partial derivative of error using a direct method. Suppose that the travel time 

is observed at one station located at        , yielding error                          

  . The partial derivative of error is: 

   

  
        

   

  
                      



                                            

                             

The partial derivative of travel time with respect to the model parameter is zero everywhere, 

except in a rectangular region to the right of the heterogeneity, where it is the constant 

              . The error is perturbed by an amount that is independent of the position of the 

receiver, as long as the receiver is in the “shadow” of the heterogeneity. 

 

Fig.1. Surfaces of equal travel time (dotted vertical lines); heterogeneity (bold vertical bar at   ). 

Region of constant travel time perturbation (grey rectangle); receiver (circle   at   ); line 

segment along which the adjoint field   is non-zero 

---------------- 

We now derive the same result using the adjoint equation: 

                  

   

  
                                

Integration parallel to the direction of propagation, together with the boundary condition that 

    to the right, yields: 



                                

The adjoint field is zero, except on a line segment to the left of the receiver, where it is singular. 

The partial derivative of error is then: 

   

  
        

   

  
  

                                            

                                

This is the same result as was achieved with the direct method. The error is perturbed by an 

amount that is independent of the position of the receiver, as long as the adjoint field, when 

“back-tracked” from the receiver along a ray, intersects the heterogeneity.  

Spherical Wave Example 

Consider an unperturbed plane wave with travel time             . The direction of propagation is 

along radially outward; that is        
        , since                . This travel time function 

satisfies the Eikonal equation, because    
             .  Consider a perturbation in slowness: 

                          

Here        is a two dimensional boxcar function that is unity in the range        and 

     
 
 and zero outside it. This slowness distribution is an idealization of a “rectangular” 

spherical patch at a radius    from the origin.  The perturbed travel time satisfies: 

                    
   

  
                 

Integration parallel to the direction of propagation (that is,     , together with the boundary 

condition that      at     , yields: 

                        

where   is the Heaviside step function.  This function defines a rectangular region of non-zero 

travel time perturbation to the      side of the heterogeneity. 

By direct differentiation, the partial derivative of travel time with respect to model parameter is: 

   

  
               

Now suppose that the travel time is observed at one station located at        , yielding error: 



                                       
                       

      
 

The partial derivative of total error is: 

   

  
        

   

  
                        

                   
                       

      
                 

                                    
  

As in the pane wave case, the derivative is a constant          is the receiver is in the “shadow” of 

the patch, and zero otherwise. 

We now derive the same result using the adjoint equation: 

                  

The divergence obeys the rule                      , so 

       

  
                

                       

    
   

Integration parallel to the direction of propagation, together with the boundary condition that 

    for     , yields: 

                           
               

    
   

The adjoint field is zero, except on a radially-oriented line segment at smaller radius than the 

receiver, where it is singular. The partial derivative of error is then: 

   

  
        

   

  
  

                             
               

      
                

                                       

As in the plane wave case, this is the same result as was achieved with the direct method. The 

error is perturbed by an amount that is independent of the position of the receiver, as long as the 

adjoint field, when “back-tracked” from the receiver along a ray, intersects the heterogeneity.  

Conclusions 



We have successfully used the adjoint method to construct a formula for the partial derivative of 

travel time error with respect to a slowness model parameter.  An analysis of the formula using 

plane wave and spherical wave examples brings out its ray-like character.  However, whether 

this formula has a greater utility than traditional ray-based methods is unclear. 
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