The Azimi Attenuation Model
Bill Menke, January 5, 2016

Amplitude attenuation model: The amplitude A(w, x) declines exponentially with distance x,
according to an attenuation function a(w), or equivalently, the quality factor Q (w) or tee-star t*(w):

wt*(w):
)

A(w,x) = Ayg(w) exp{—a(w) x} =A,(w) exp {— %} = Ay(w) exp {—

Here w is angular frequency, A, (w) is the initial amplitude at x = 0, and c(w) is phase velocity. In
some seismological settings, the quality factor Q (w) is only weakly frequency-dependent, and one can
speak, approximately, of a constant-Q attenuation model (with quality factor Q). Similarly, while the
phase velocity is dispersive, in some settings it is only weakly so, and one can speak of a hon-dispersive
model (with velocity cy). When dispersion is negligible, the attenuation function and quality factor are
related by:

and Q(w) =

W W
a(w) ~ 2¢0Q(w) 2cpa(w)

Propagation Model: A harmonic wave with angular frequency w, initial amplitude Aq(w) and time
dependence exp{—iwt} is propagates to a position x via:

Ap(w) explikx — iwt} = Ayg(w) expliow[s(w)x —t]}
Here s(w) = k/w = 1/c(w) is the phase slowness.

Causality requires that the attenuation function a(w) and phase slowness s(w) be related through an
integral equation called the Kramer-Kronig Relationship. It can be shown that no constant-Q model can
satisfy this relationship. Azimi found an (e, s) pair that satisfies the relationship and is approximately
constant-Q, at least for frequencies much less than some corner frequency wy:

2a, Inazw
(1 — aw?)

a(w) = and As(w) =s(w) —sy = with w =0

2
1+azw

Here a, and a are constants. Note that when we set a, = 1/(2¢,Q,) and a; = 1/wy, the attenuation
function obeys:

w 1

a(w) = a,w and Q(w) = =Q, for w <K w,

2cpa(w) - 2cpa,

That is, it is constant-Q for frequencies much less than the corner frequency.



A real displacement pulse u,(t) = u(x = 0,t) can be attenuated and propagated to the position x in the
following steps”

Step 1: Fourier transform u, (t) to i, (w) and focus on the non-negative frequency values of %iy(w) only.
Step 2: Multiply iy (w) by exp{—a(w) x} exp{iws(w)x} to obtain &i(w).
Step 3: Set @i(w = 0) to unity.

Step 4: Form the negative frequency values of i(w) by taking the complex conjugate of the positive
frequency values.

Step 5: Inverse Fourier transform i(w) back to u(t).

Sometimes, it may be convenient to replace s(w) with As(w) in Step 2, so that the pulse is only delayed
by the deviation in phase velocity. In this way, several pulses can be aligned on the same plot.

Note that ¢, and Q, appear only in the constant a, «< 1/(c,Q,) , and not in a; and that a, appears in
a(w) and As(w) only as a leading multiplicative factor. Thus, both decay rate a(w)x and phase delay
As(w)x are proportional to x/(cy Qo) = tg. Therefore, the pulse shape contains only enough information
to determine t; and not enough to determine x and Q, individually.

Sample Q(f)’s for f, = 2mw, = 50 Hz, Q, = 10 (red) and 20 (green) and ¢, = 4.5 km/s.
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Sample c(f)’s for f = 2mw, = 50 Hz, Q, = 10 (red) and 20 (green) and ¢, = 4.5 km/s.
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Sample u(x, t) for and x = 100 km and u,(t) a length N = 1024 time-series with a sampling interval of
0.1 s and a unit spike at position N /2:
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The differential attenuation between the two Azimi pulses (black) and the best-fitting log-linear model

(red).
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The true differential ¢* and the one estimated via the linear fit:

Dtstartrue 1.111111 Dtstarest 1.100142




MATLAB CODE

clear all;

(o)

$ azimi atte

nuation model has

% spectral ratio of two azimi pulses

2 parameters
low frequencies

low frequencies

cO,
cO,

azimi( N, Dt,

Dt,

Xy

azimi ( N, X,

2 )7
2 );
2 );

o1,
Qz,

is approximately constant

f0
f0

title('azimi pulses for two different amounts of attenuation');

Q1 = 20; % quality factor at

Q2 = 10; % quality factor at

f0 = 50; % frequency below which Q(f)
N=1024; % number of samples

Dt=0.1; % sampling interval

c0=4.5; % low frequency velocity
x=100; % propagation distance

[ £, pulse0, pulsel, f, Qfl, cwl ] =
[ £, pulse0, pulse2, f, Qf2, cw2 ] =
% plot Azimi pulses

figure (1),

clf;

hold on;

axis( [40, 70, 0O, 0.171 );

plot( t, pulseO, 'k-', 'LineWidth',
plot( t, pulsel, 'g-', 'LineWidth',
plot( t, pulse2, 'r-', 'LineWidth',
xlabel ('t");

ylabel ('u');

% plot frequency-dependent quality factors

figure (2);

clf;

hold on;

axis( [f(1), f(end), 0.5*Q2, 2*Q1
plot( £, Qfl, 'g-', 'LineWidth',
plot( £, Qf2, 'r-', 'LineWidth',
plot( [£(1), f(end)], [0Q1l, Q1],
plot( [£(1), f(end)], [0Q2, Q2],
title('Q(f)

xlabel ('f');

ylabel ('Q");

]
2
2
k:

)
)
)

lk:l,

’
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, 'LineWidth', 2
'LineWidth', 2

) ;
) ;

associated with the two azimi pulses');

) ;
) ;



(o)

figure (4);
clf;

hold on;
axis( [f(1),
plot (
plot (
plot (
title (
xlabel (
ylabel ('

, cwl,
cw2,

f
t,
[£(1),
'c(f

\J \J

4

(
(f)
£');
c')

Q

fny = f(end);
Df =

N2 = N/2+1;

% compute

f (end),
'g_'l
lr_|,

f(end)],

% standard fft setup

£(2)-£(1);

0,

[cO,

spectral ratio

) ;

) ;

pulselt = fft( pulsel
pulselt = pulselt (1:N2);
Al = abs( pulselt );
pulse2t = fft( pulse?
pulse2t = pulse2t (1:N2);
A2 = abs( pulse2t );

= A2 ./ Al;

(L)y=1; %

% confine

4

fc = 0.5;

Nc = floor (fc/Df)+1;
f = £(1:Nc);

r = r(1l:Nc);

logr = log(r):;

2*c0]
'LineWidth',
'LineWidth',

c01,

analysis to f<fc band

) ;

2);
2);
lk:|,

reset zero-frequency value

% plot frequency-dependent quality factors

'LineWidth',

associated with the two azimi pulses');

% fit straight line to log spectral ratio

G =
mest =
b =

[ones (Nc,

mest (2) ;

1)y, £1;

logrpre = G*mest;

A =
b =

o o°

[o)

Dtstarest =
Dtstartrue =

-pi tstar

A0 exp( -w x/2Qc )
tstar

SO

(G'"*G)\ (G'*logr) ;

= -b/pi

% compare true and predicted tstar
-b/pi;

x/(Q2*c0) - x/(Q1l*cO0);

AQ exp( —-f pi tstar )

2

)7



fprintf ('Dtstartrue %$f Dtstarest %$f\n', Dtstartrue,

% plot spectral ratio and straight line fit
figure (3);

clft;

hold on;

axis( [0, fc, -2, 11 ):;

plot( £, logr, 'k-', 'LineWidth', 2 );
plot( f, logrpre, 'ro', 'LineWidth', 2 );
title('log spectral ratio (solid) of the two pulses
(circles) ') ;

xlabel ('f'");

ylabel ('pulse2 (f) / pulsel(f)'):

function [ t, pulse(O, pulse, f, Qw, cw ] = azimi( N,

)

input parameters:

f0 corner frequency of Azimi Q model, in hz (e.g.
c0 base velocity in km/s (e.g. 4.5);

X propagation distance in km (e.g. 100)

Q low frequency quality factor (e.g. 10)

N number of samples in pulse (e.g. 1024);

00 o0 o° o° o° o° o°

Dt sampling interbal (e.g. 0.1)

returned values

t time array

pulse0 input pulse, a unit spike at time N/2
pulse attentated pulse

f frequencies in Hz

Qw frequency dependent quality factors

o o0 o° o° o° o° o°

cw frequency dependent phase velocities

time series

= Dt*[0:N-1]";
pulse0 = zeros(N,1);
pulse0 (N/2)=1;

o°

-

% standard fft setup
fny = 1/(2*Dt);

N2 N/2+1;

daf fny / (N/2);

f = df*[0:N2-1]";

w = 2*pi*f;

Dtstarest );

with linear fit

pt, x, c0, Q,

50)
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ds

Cw

dt
dp
dp
dt
fr

pu

en

— 2%pi*f0;

attenuation factor
exp( —a(w) x ) = exp( - wx / 2Qc )

propagation law with velocity c=w/k and slowness s=1/c=k/w
exp{ i(kx - wt) } = exp{ iw(sx - t) }

propagation law

exp( iwsx )

Azimi's second law en.wikipedia.org/wiki/Azimi Q models

a(w) = a2 |w|l / [ 1 + a3 |w| ]
note that for w<<wl0 a(w) =

s(w) = s0 + 2 a2 1In( a3 w ) / [ pi (1 - a3%2 w*2 ) ]

now set a3 1/w0 where wO is a reference frequency

and set a2 1 / (2Qc0) where c0 is a reference velocity
so that

a(w) = (1/20c0) |wl / [ 1 + |w/wO| ]

so for w/w0 << 1

a(w) = w/(20c0) and Q(w) = w/ (2 a c0)
=1/ (2*Q*c0);

= a2*w ./ (1 + a3.*w );

=w ./ (2.%a.*c0);

(1) = Qs

= -2*a2*log(a3*w) ./ (pi*(1-(a3"2).*(w."2 )));
(1)=0;

1./( (1/c0) + ds );

= fft (pulsel);

= dt(1:N2);

= dp .* exp(-a*x) .* exp(-complex(0,1)*w.*ds.*x);
new = [dp(1l:N2);conj(dp(N2-1:-1:2))1; %

equencies

lse = ifft (dtnew);

fold out negative

d



