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Amplitude attenuation model: The amplitude        declines exponentially with distance   , 

according to an attenuation function     , or equivalently, the quality factor      or tee-star      : 

                                     
  

         
             

       

 
  

Here   is angular frequency,       is the initial amplitude at    , and      is phase velocity.  In 

some seismological settings, the quality factor      is only weakly frequency-dependent, and one can 

speak, approximately, of a constant-  attenuation model (with quality factor   ). Similarly, while the 

phase velocity is dispersive, in some settings it is only weakly so, and one can speak of a non-dispersive 

model (with velocity   ).  When dispersion is negligible, the attenuation function and quality factor are 

related by: 

     
 

       
                

 

       
 

Propagation Model: A harmonic wave with angular frequency  , initial amplitude        and time 

dependence           is propagates to a position   via: 

                                          

Here                 is the phase slowness. 

Causality requires that the attenuation function      and phase slowness      be related through an 

integral equation called the Kramer-Kronig Relationship. It can be shown that no constant-  model can 

satisfy this relationship.  Azimi found an       pair that satisfies the relationship and is approximately 

constant- , at least for frequencies much less than some corner frequency   : 

     
   

     
                          

         

      
    

              

Here    and    are constants.  Note that when we set              and        , the attenuation 

function obeys: 

                     
 

       
 

 

     
                  

That is, it is constant-  for frequencies much less than the corner frequency. 



A real displacement pulse                can be attenuated and propagated to the position   in the 

following steps” 

Step 1: Fourier transform       to        and focus on the non-negative frequency values of         only. 

Step 2: Multiply        by                          to obtain      . 

Step 3: Set         to unity. 

Step 4: Form the negative frequency values of       by taking the complex conjugate of the positive 

frequency values. 

Step 5: Inverse Fourier transform       back to     . 

Sometimes, it may be convenient to replace      with       in Step 2, so that the pulse is only delayed 

by the deviation in phase velocity.  In this way, several pulses can be aligned on the same plot. 

Note that    and    appear only in the constant             , and not in    and that    appears in 

     and       only as a leading multiplicative factor.  Thus, both decay rate       and phase delay 

       are proportional to            
 .  Therefore, the pulse shape contains only enough information 

to determine   
  and not enough to determine   and    individually. 

Sample     ’s for            Hz,       (red) and 20 (green) and            . 



 

Sample     ’s for            Hz,       (red) and 20 (green) and            . 



 

 

Sample        for and          and       a length        time-series with a sampling interval of 

0.1 s and a unit spike at position    : 



 

The differential attenuation between the two Azimi pulses (black) and the best-fitting log-linear model 

(red). 

 

The true differential    and the one estimated via the linear fit: 

Dtstartrue 1.111111 Dtstarest 1.100142 

 

 



 
MATLAB CODE 

 

clear all; 

 

% spectral ratio of two azimi pulses 

 

% azimi attenuation model has 2 parameters 

Q1 = 20;  % quality factor at low frequencies 

Q2 = 10;  % quality factor at low frequencies 

f0 = 50; % frequency below which Q(f) is approximately constant 

 

N=1024; % number of samples 

Dt=0.1; % sampling interval 

c0=4.5; % low frequency velocity 

x=100;  % propagation distance 

 

[ t, pulse0, pulse1, f, Qf1, cw1 ] = azimi( N, Dt, x, c0, Q1, f0 ); 

[ t, pulse0, pulse2, f, Qf2, cw2 ] = azimi( N, Dt, x, c0, Q2, f0 ); 

 

% plot Azimi pulses 

figure(1); 

clf; 

hold on; 

axis( [40, 70, 0, 0.1] ); 

plot( t, pulse0, 'k-', 'LineWidth', 2 ); 

plot( t, pulse1, 'g-', 'LineWidth', 2 ); 

plot( t, pulse2, 'r-', 'LineWidth', 2 ); 

title('azimi pulses for two different amounts of attenuation'); 

xlabel('t'); 

ylabel('u'); 

 

% plot frequency-dependent quality factors 

figure(2); 

clf; 

hold on; 

axis( [f(1), f(end), 0.5*Q2, 2*Q1] ); 

plot( f, Qf1, 'g-', 'LineWidth', 2 ); 

plot( f, Qf2, 'r-', 'LineWidth', 2 ); 

plot( [f(1), f(end)], [Q1, Q1], 'k:', 'LineWidth', 2 ); 

plot( [f(1), f(end)], [Q2, Q2], 'k:', 'LineWidth', 2 ); 

title('Q(f) associated with the two azimi pulses'); 

xlabel('f'); 

ylabel('Q'); 

 



% plot frequency-dependent quality factors 

figure(4); 

clf; 

hold on; 

axis( [f(1), f(end), 0, 2*c0] ); 

plot( f, cw1, 'g-', 'LineWidth', 2 ); 

plot( f, cw2, 'r-', 'LineWidth', 2 ); 

plot( [f(1), f(end)], [c0, c0], 'k:', 'LineWidth', 2 ); 

title('c(f) associated with the two azimi pulses'); 

xlabel('f'); 

ylabel('c'); 

 

% standard fft setup 

fny = f(end); 

Df = f(2)-f(1); 

N2 = N/2+1; 

 

% compute spectral ratio 

pulse1t = fft( pulse1 ); 

pulse1t = pulse1t(1:N2); 

A1 = abs( pulse1t ); 

pulse2t = fft( pulse2 ); 

pulse2t = pulse2t(1:N2); 

A2 = abs( pulse2t ); 

r = A2 ./ A1; 

r(1)=1; % reset zero-frequency value 

 

% confine analysis to f<fc band 

fc = 0.5; 

Nc = floor(fc/Df)+1; 

f = f(1:Nc); 

r = r(1:Nc); 

logr = log(r); 

 

% fit straight line to log spectral ratio 

G = [ones(Nc,1), f]; 

mest = (G'*G)\(G'*logr); 

b = mest(2); 

logrpre = G*mest; 

% A = A0 exp( -w x/2Qc ) = A0 exp( -f pi tstar ) 

% b = -pi tstar  so  tstar = -b/pi 

 

% compare true and predicted tstar 

Dtstarest = -b/pi; 

Dtstartrue = x/(Q2*c0) - x/(Q1*c0); 



fprintf('Dtstartrue %f Dtstarest %f\n', Dtstartrue, Dtstarest ); 

 

% plot spectral ratio and straight line fit 

figure(3); 

clf; 

hold on; 

axis( [0, fc, -2, 1] ); 

plot( f, logr, 'k-', 'LineWidth', 2 ); 

plot( f, logrpre, 'ro', 'LineWidth', 2 ); 

title('log spectral ratio (solid) of the two pulses with linear fit 

(circles)'); 

xlabel('f'); 

ylabel('pulse2(f) / pulse1(f)'); 

 

function [ t, pulse0, pulse, f, Qw, cw ] = azimi( N, Dt, x, c0, Q, f0 

) 

 

% input parameters: 

% f0 corner frequency of Azimi Q model, in hz (e.g. 50) 

% c0 base velocity in km/s (e.g. 4.5); 

% x  propagation distance in km (e.g. 100) 

% Q  low frequency quality factor (e.g. 10) 

% N  number of samples in pulse (e.g. 1024); 

% Dt sampling interbal (e.g. 0.1) 

 

% returned values 

% t time array 

% pulse0 input pulse, a unit spike at time N/2 

% pulse attentated pulse 

% f frequencies in Hz 

% Qw frequency dependent quality factors 

% cw frequency dependent phase velocities 

 

 

% time series 

t = Dt*[0:N-1]'; 

pulse0 = zeros(N,1); 

pulse0(N/2)=1; 

 

% standard fft setup 

fny = 1/(2*Dt); 

N2 = N/2+1; 

df = fny / (N/2); 

f = df*[0:N2-1]'; 

w = 2*pi*f; 



w0 = 2*pi*f0; 

 

% attenuation factor 

% exp( -a(w) x ) = exp( - wx / 2Qc ) 

% 

% propagation law with velocity c=w/k and slowness s=1/c=k/w 

% exp{ i(kx - wt) } = exp{ iw(sx - t) } 

% propagation law 

% exp( iwsx ) 

 

% Azimi's second law en.wikipedia.org/wiki/Azimi_Q_models 

% 

% a(w) = a2 |w| / [ 1 + a3 |w| ] 

% note that for w<<w0 a(w) =  

%  

% s(w) = s0 + 2 a2 ln( a3 w ) / [ pi (1 - a3^2 w^2 ) ] 

 

% now set a3 = 1/w0 where w0 is a reference frequency 

% and set a2 = 1 / (2Qc0) where c0 is a reference velocity 

% so that 

% a(w) = (1/2Qc0) |w| / [ 1 +  |w/w0| ] 

% so for w/w0 << 1 

% a(w) = w/(2Qc0)  and Q(w) = w/(2 a c0) 

 

a2 = 1 / (2*Q*c0); 

a3 = 1 / w0; 

a = a2*w ./ ( 1 + a3.*w ); 

Qw = w ./ (2.*a.*c0); 

Qw(1) = Q; 

ds = -2*a2*log(a3*w) ./ (pi*(1-(a3^2).*(w.^2 ))); 

ds(1)=0; 

 

cw = 1./( (1/c0) + ds ); 

 

dt = fft(pulse0); 

dp = dt(1:N2); 

dp = dp .* exp(-a*x) .* exp(-complex(0,1)*w.*ds.*x); 

dtnew = [dp(1:N2);conj(dp(N2-1:-1:2))]; % fold out negative 

frequencies 

pulse = ifft(dtnew); 

 

end 


