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This derivation is motivated by Yuan, YO, FJ Simons, E Bozdag, Geophysics 80, R281-R302, 2015, but
is derived independently. (Also, this derivation is for the squared envelope, while theirs is for the
envelope).

The squared envelope of a signal w(t, m) is defined as:
v(t,m) = [u(t,m)]?> + [Hu(t,m)]?

where H is the Hilbert transform (an anti-self-adjoint operator that phase shifts a signal by /2 radians).
Here m is a model parameter. Differentiating with respect to the model parameter and evaluating at
m = m, Yields:
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Here a subscript 0 implies that a quantity is evaluated at m,; for example, u, = u(m,). Note that the
adjoint of Wj is:

W, = 2uq — 2H[Huy]

where we have used the fact that the functions 2u, and [Hu,] are self-adjoint. Now let the squared
envelope error be:

E = (ee) with e=vS—vp

The derivative of the error with respect to the model is:
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Here we have used the rule:
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(This rule is based on applying the Born approximation to the differential equation Lu = f, where L(m)
is a differential operator and f is a source term). We now manipulate the inner product using adjoints:
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Here A is an adjoint field. The adjoint differential equation has source term:

WoTeo = 2ug eg — 2H {[Hu,] €0}
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% MatLab code used in the example below

N = 1024;

Dt = 0.8;

t = Dt*[0:N-17";

dm = 0.2;

t0 = t(end)/2;

t2 = t(end)/2+t (end)/20;

s0 = t(end)/20;

u0 = exp( - ((t-t0).”2) / (2*s0*s0) ) - 0.5*exp( -((t-t2).72) / (2*s0*s0) );

HuO0 = imag(hilbert (u0));

v0 = u0.”2 + Hu0."2;

tl = t(end)/2+t (end) /40;

sl = t(end)/30;

dudm = exp( - ((t-tl).”2) / (2*sl*sl) );
Hdudm = imag(hilbert (dudm)) ;
du = dudm*dm;

Hdu = imag(hilbert (du));

u = ulO+du;

Hu = imag (hilbert(u));

v = u.”2 + Hu.”"2;

vobs = zeros(N,1);
e0 = vobs - vO0;
e = vobs - v;

dEdml = Dt* (e'*e-e0'*e0) /dm;
dEdm2 =-2*Dt* (e0) "* (2*ul0.*dudm+2*HuO.*Hdudm) ;
dEdm3 = -2*Dt* (2*ul0.*e0 - 2*imag (hilbert (HuO.*e0))) '* (dudm);
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Figure 1. (Top) Sample signal uy(t) (black) and u(t) = uy(t) + méu(t) (blue) and their Hilbert
transforms Hu (t) (red) and Hu(t) (green). (Middle) Perturbation du(t) and its Hilbert transform
Héu(t). (bottom) Squared envelope functions v, (t) (black) and v(t) (red).
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Figure 2. Derivative dE/dm/,, for m, = 0 and v°Ps =, calculated in three ways: finite differences
(black), inner product without adjoint manipulation (red) and inner product with adjoint manipulation
(green). The calculation starts with du/dm|,, , treated as known, and does not substitute in the Born
approximation. The perturbation §u(t) is the same as in Figure 1, except that it is centered at variable
position t;.



