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This derivation is motivated by Yuan, YO, FJ Simons, E Bozdağ, Geophysics 80, R281-R302, 2015, but 

is derived independently. (Also, this derivation is for the squared envelope, while theirs is for the 

envelope). 

The squared envelope of a signal        is defined as: 

                              

where    is the Hilbert transform (an anti-self-adjoint operator that phase shifts a signal by     radians). 

Here   is a model parameter.  Differentiating with respect to the model parameter and evaluating at 

     yields: 

   

  
 
  

      
  

  
 
  

           

  
 
  

   
   

  
 
  

 

                         

Here a subscript   implies that a quantity is evaluated at   ; for example,          . Note that the 

adjoint of    is: 

  
              

where we have used the fact that the functions     and       are self-adjoint. Now let the squared 

envelope error be: 

                           

The derivative of the error with respect to the model is: 

   

  
 
  

       
  

  
 
  

          
  

  
 
  

           
   

  
 
  

  

             
     

  
 
  

    

Here we have used the rule: 

   

  
 
  

    
     

  
 
  

   



(This rule is based on applying the Born approximation to the differential equation     , where      

is a differential operator and   is a source term).  We now manipulate the inner product using adjoints: 
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Here   is an adjoint field. The adjoint differential equation has source term: 

  
                          

% MatLab code used in the example below 

 

N = 1024; 

Dt = 0.8; 

t = Dt*[0:N-1]'; 

dm = 0.2; 

t0 = t(end)/2; 

t2 = t(end)/2+t(end)/20; 

s0 = t(end)/20; 

u0 = exp( -((t-t0).^2) / (2*s0*s0) ) - 0.5*exp( -((t-t2).^2) / (2*s0*s0) ); 

Hu0 = imag(hilbert(u0)); 

v0 = u0.^2 + Hu0.^2; 

t1 = t(end)/2+t(end)/40; 

s1 = t(end)/30; 

dudm = exp( -((t-t1).^2) / (2*s1*s1) ); 

Hdudm = imag(hilbert(dudm)); 

du = dudm*dm; 

Hdu = imag(hilbert(du)); 

u = u0+du; 

Hu = imag(hilbert(u)); 

v = u.^2 + Hu.^2; 

vobs = zeros(N,1); 

e0 = vobs - v0; 

e = vobs - v; 

dEdm1 = Dt*(e'*e-e0'*e0)/dm; 

dEdm2 = -2*Dt*(e0)'*(2*u0.*dudm+2*Hu0.*Hdudm); 

dEdm3 = -2*Dt*(2*u0.*e0 - 2*imag(hilbert(Hu0.*e0)))'*(dudm); 

 



 

Figure 1.  (Top) Sample signal       (black) and                    (blue) and their Hilbert 

transforms H      (red) and        (green). (Middle) Perturbation       and its Hilbert transform 

      . (bottom) Squared envelope functions       (black) and       (red).  
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Figure 2.  Derivative          
 for      and       , calculated in three ways: finite differences 

(black), inner product without adjoint manipulation (red) and inner product with adjoint manipulation 

(green).  The calculation starts with          
, treated as known, and does not substitute in the Born 

approximation. The perturbation       is the same as in Figure 1, except that it is centered at variable 

position   . 
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