Anisotropic Parameter "eta" for a Layered Material Bill Menke, October 2017, corrected October 2018

For reference, we consider an isotropic solid, with 2 constants λ, μ . The Voight elasticity tensor is:

$[\lambda + 2\mu]$	λ	λ	0	0	ן0
	$\{\lambda + 2\mu\}$	λ	0	0	0
		$\{\lambda + 2\mu\}$	0	0	0
			μ	0	0
				μ	0
L.					μJ

In the special case of Poisson solid with $\lambda = \mu$, the tensor becomes:

гЗλ	λ	λ	0	0	ך0
	3λ	λ	0	0	0
].		3λ	0	0	0
			λ	0	0
				λ	0
L.					لړ

In the more general case of a transversely isotropic solid, two commonly-used forms of the tensor are (Love 1927, Dziewonski and Anderson, 1981):

	ra a	– 2 <i>e</i>	b	0	0	ן0			
		а	b	0	0	0			
			С	0	0	0			
				d	0	0			
					d	0			
	L.					e			
v_{pH}^2	$\left(v_{pH}^2-2v_{SHH}^2 ight)$	$\eta(v_p^2)$	н —	$2v_s^2$	VH)	0	0	0]	
.	v_{pH}^2	$\eta(v_p^2)$	н —	$2v_s^2$, VH)	0	0	0	
0.		v_{pV}^2		0	0	0	=		
۴					v_{sVH}^2	0	0		
.						v_{sVH}^2	0		
L.								v_{SHH}^2	

Note that the second form introduces a parameter η . Comparing forms, we derive a relationship for η :

$$\eta (v_{pH}^2 - 2v_{sVH}^2) = b$$
 or $\eta = \frac{b}{(v_{pH}^2 - 2v_{sVH}^2)} = \frac{b}{(a - 2d)}$

We now consider a medium consisting of an alternating sequence of two layers of equal thickness, each consisting of an isotropic Poisson solid. The Lame parameters of the two layers are:

$$\lambda^{(1)} = 1 + \varepsilon$$
 and $\lambda^{(2)} = 1 - \varepsilon$

where $0 < \varepsilon < 1$. Backus' (1962) formulas require the volumetric average $\langle . \rangle$ of various parameters:

$$\langle \lambda \rangle = \frac{\lambda^{(1)} + \lambda^{(2)}}{2} = \frac{1 + \varepsilon}{2} + \frac{1 - \varepsilon}{2} = 1$$
$$\langle \lambda^{-1} \rangle = \frac{\left(\lambda^{(1)}\right)^{-1} + \left(\lambda^{(2)}\right)^{-1}}{2} = \frac{1 - \varepsilon + \varepsilon^2}{2} + \frac{1 + \varepsilon + \varepsilon^2}{2} = 1 + \varepsilon^2$$
$$\langle \lambda^{-1} \rangle^{-1} = (1 + \varepsilon^2)^{-1} = 1 - \varepsilon^2$$

The isotropic Voight tensor of the layers has parameters:

 $a = 3\lambda$ $b = \lambda$ $c = 3\lambda$ $d = \lambda$ $e = \lambda$

And according to Backus (1962) the corresponding long-wavelength Voight tensor of the layered medium is:

$$E = \langle e \rangle = \langle \lambda \rangle = 1$$

$$D = \langle d^{-1} \rangle^{-1} = \langle \lambda^{-1} \rangle^{-1} = 1 - \varepsilon^{2}$$

$$C = \langle c^{-1} \rangle^{-1} = \langle 3\lambda^{-1} \rangle^{-1} = 3(1 - \varepsilon^{2})$$

$$B = \langle c^{-1} \rangle^{-1} \langle bc^{-1} \rangle = \langle 3\lambda^{-1} \rangle^{-1} \langle \lambda (3\lambda)^{-1} \rangle = 3 \langle \lambda^{-1} \rangle^{-1} \frac{1}{3} = 1 - \varepsilon^{2}$$

$$A = \langle a - b^{2}c^{-1} \rangle + \langle c^{-1} \rangle^{-1} \langle bc^{-1} \rangle^{2} = \langle 3\lambda - \lambda^{2}(3\lambda)^{-1} \rangle + \langle (3\lambda)^{-1} \rangle^{-1} \langle \lambda (3\lambda)^{-1} \rangle^{2}$$

$$= 3 \langle \lambda \rangle - \frac{1}{3} \langle \lambda \rangle + 3 \langle \lambda^{-1} \rangle^{-1} \frac{1}{9}$$

$$=\frac{8}{3} + \frac{1}{3}\langle\lambda^{-1}\rangle^{-1} = \frac{8}{3} + \frac{1}{3}(1 - \varepsilon^2) = 3 - \frac{\varepsilon^2}{3} = 3\left(1 - \frac{\varepsilon^2}{9}\right)$$

The fractional P-wave anisotropy f_P and S-wave anisotropy f_S can be quantified by:

$$f_{P} = \frac{\frac{1}{2}\left(v_{pH} - v_{pV}\right)}{\frac{1}{2}\left(v_{pH} + v_{pV}\right)} = \frac{\left(A^{\frac{1}{2}} - C^{\frac{1}{2}}\right)}{\left(A^{\frac{1}{2}} + C^{\frac{1}{2}}\right)} \approx \frac{\left(3\left(1 - \frac{\varepsilon^{2}}{18}\right) - 3\left(1 - \frac{\varepsilon^{2}}{2}\right)\right)}{\left(3\left(1 - \frac{\varepsilon^{2}}{18}\right) + 3\left(1 - \frac{\varepsilon^{2}}{2}\right)\right)} \approx \frac{\left(\frac{\varepsilon^{2}}{2} - \frac{\varepsilon^{2}}{18}\right)}{2} = \frac{8\varepsilon^{2}}{36}$$

$$f_{S} = \frac{\frac{1}{2}\left(v_{SHH} - v_{SVH}\right)}{\frac{1}{2}\left(v_{SHH} + v_{SVH}\right)} = \frac{\left(E^{\frac{1}{2}} - D^{\frac{1}{2}}\right)}{\left(E^{\frac{1}{2}} + D^{\frac{1}{2}}\right)} = \frac{\left(1 - \left(1 - \frac{\varepsilon^{2}}{2}\right)\right)}{\left(1 + \left(1 - \frac{\varepsilon^{2}}{2}\right)\right)} \approx \frac{\left(\frac{\varepsilon^{2}}{2}\right)}{2} = \frac{\varepsilon^{2}}{4}$$

so that $\varepsilon = (36f_P/8)^{\frac{1}{2}} = (4f_S)^{\frac{1}{2}}$. The parameter η is:

$$\eta = \frac{B}{A - 2D} = \frac{1 - \varepsilon^2}{3 - \frac{\varepsilon^2}{3} - 2 + 2\varepsilon^2} = \frac{1 - \varepsilon^2}{1 + \frac{5}{3}\varepsilon^2} = \left(1 - \frac{5}{3}\varepsilon^2\right)(1 - \varepsilon^2) = 1 - \frac{8}{3}\varepsilon^2$$

The $\varepsilon = 0$ case reproduces (as expected) the homogenous, $\eta = 1$ case. A limitation of the layered model is the ratio:

$$\frac{f_P}{f_S} = -\frac{8\varepsilon^2}{36}\frac{4}{\varepsilon^2} = \frac{32}{36} \approx 0.8421 \text{ and } \frac{f_P}{\eta - 1} = -\frac{8\varepsilon^2}{36}\frac{3}{8\varepsilon^2} = -\frac{1}{12} \approx 0.0833$$

are fixed "un-tunable" constants.

For 100 km depth, the Dziewonski and Anderson (1981) PREM model gives $v_{pV} = 7.86732$, $v_{pH} = 8.06410$, $v_{sVH} = 4.32041$, $v_{sHH} = 4.44818$ and $\eta = 0.92987$, implying that $f_P = 0.0124$, $f_S = 0.0146 f_P/f_S = 0.8477$ and $f_P/(\eta - 1) = -0.1761$. The first ratio is similar to the layered prediction, but the second is far off. Furthermore, PREM's f_P value implies $\varepsilon = 0.24$, corresponding to a layered model with $\eta \approx 0.85$ (figure 1), a prediction that is far from PREM's $\eta \approx 0.93$. The layered model does cannot match PREM. Consequently, fine-scale layering cannot be a major source of anisotropy in the Earth's mantle.

Figure 1. The function $\eta(\varepsilon)$ for the layered model.

Note: I have numerically checked the small number approximations against the exact expressions.

References:

Backus, George E, Long-wave elastic anisotropy produced by horizontal layering, J. Geophys. Res. 67, 4427–4440, 1962.

Dziewonski and Anderson, Preliminary reference Earth Model, Phys. Earth and Planet. Interior 25, 297-356, 1981.

Love, AEH, A treatise on the mathematical theory of elasticity, 4ed, Cambridge U. Press, 643pp, 1927.