Gradient of a parameter in a nonlinear differential equation: Example
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The nonlinear differential equation for the field u(t):
u' +bu+cebu?=0 with u(t=0)=1
(where prime denotes differentiation with respect to t) has solution:
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This solution can be verified by direct substitution into the differential equation:
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and by noting that it satisfied the boundary condition u(t) = 1 for all values of c.

Now consider the case ¢ = ¢y + dc and u = u, + du. Since we know the solution, the partial
derivative of the field with respect to the parameter ¢ can be calculated directly:
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The derivative can also be computed by solving the differential equation associated with the
Born approximation. We insert ¢ = ¢, + 6c and u = u, + du into the differential equation and
keep only terms up to first order in small quantities:
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Subtracting out the unperturbed equation yields a differential equation for du:
Su' + (b + 2coePtuy)du + Sc ePtui =0 with Su(t=0)=0
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That the solution to this equation is:
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can be verified by substitution:
Su' + béu + 2cyePtuydu + Sc ePtud =
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Now suppose that we have u°?s(t) and define and error E(c) = (e, ) with e = u°bs
find,
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with £LT1 = e, and noting that df,/dc = df,/ddc, since c, is constant.
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