
Degrees of Freedom of the Natural Solution to an Inverse Problem 

William Menke, December 22, 2018 

inspired by a question from Zach Eilon 

(typo corrected 01/28/19) 

 

The general issue is how to compute the number of degrees of freedom of the natural solution to 

a linear inverse problem; that is, the solution constructed via the singular value decomposition 

(SVD). 

In this discussion, I will use the “full version” of SVD, where the data kernel 𝐆 is represented as: 

𝐆 = 𝐔𝑁×𝑁 [
𝚺𝑀×𝑀

𝟎(𝑁−𝑀)×𝑀
] 𝐕𝑀×𝑀

T  

 

Here 𝐔 is an 𝑁 × 𝑁 orthogonal matrix, 𝐕 an 𝑀 × 𝑀 orthogonal matrix, and 𝚺 is an 𝑀 × 𝑀 

diagonal matrix of non-negative singular values 𝛴𝑖𝑖, sorted by decreasing size. The SVD of the 

data equation 𝐝 = 𝐆𝐦 can be interpreted as a set of rotations in the data and model spaces that 

bring the equation into diagonal form:  

 

𝐝′ = [
𝐝′𝑀

𝐝′
𝑁−𝑀

] = 𝚺𝐦′ = [
𝚺𝑀×𝑀

𝟎(𝑁−𝑀)×𝑀
] 𝐦′    with    𝐝′ = 𝐔T𝐝    and    𝐦′ = 𝐕T𝐦 

 

Presuming that 𝚺𝑀×𝑀 is invertible, the top system can be solved exactly as 𝐦′ = 𝚺𝑀×𝑀
−1 𝐝′𝑀, in 

which case 𝐦 = 𝐕𝚺𝑀×𝑀
−1 𝐔T𝐝. The bottom system cannot be solved at all and represents the 

linear combinations of the data that cannot be fit.  The number of degrees of freedom is clearly 

𝜈 = 𝑁 − 𝑀, equal to the number of data that cannot be fit. 

When 𝚺𝑀×𝑀 is not invertible because 𝑀 − 𝑝 singular values are identically zero, the so-called 

“natural solution” is to keep only the first 𝑝 rows of the top system (those with the non-zero 𝛴𝑖𝑖s) 

and supplement them with 𝑀 − 𝑝 “prior” equations of the form 0 = 𝑚′
𝑖: 

 

[

𝐝′𝑝

𝟎𝑀−𝑝

𝐝′
𝑁−𝑀

] = [
[
𝚺𝑝×𝑝 𝟎

𝟎 𝐈(𝑀−𝑝)×(𝑀−𝑝)
]

𝟎(𝑁−𝑀)×𝑀

] 𝐦′ 

 

Thus, 𝐦′𝑝 = 𝚺−1𝐝′𝑝 and 𝐦′𝑀−𝑝 = 𝟎. More generally, any set of any equations of 𝑀 − 𝑝 the 

form ℎ′𝑖 = ∑ 𝐻′𝑖𝑗𝑚′𝑗+𝑝
𝑀−𝑝
𝑗=1  can be used in place of  0 = 𝑚′

𝑖 to represent other types of prior 

information, where 𝐇′ is an invertible matrix. Then the equation becomes: 



[

𝐝′𝑝

𝒉′𝑀−𝑝

𝐝′
𝑁−𝑀

] = [
[
𝚺𝑝×𝑝 𝟎

𝟎 𝐇′(𝑀−𝑝)×(𝑀−𝑝)
]

𝟎(𝑁−𝑀)×𝑀

] [
𝐦′

𝒑

𝐦′𝑀−𝑝
] 

Thus,  𝐦′𝑝 = 𝚺−1𝐝′𝑝 and  𝐦′𝑀−𝑝 = 𝐇′−1𝐡′𝑀−𝑝. 

Returning now to the natural solution, we consider the prediction error 

𝐸′ = 𝜎𝑑
−2𝒆′T𝒆′     with      𝐞′ = 𝐝′𝑜𝑏𝑠 − 𝐝′ 

Here, the variance of the data is 𝜎𝑑
2.  The errors 𝐞′ are: 

 

𝒆′ = [

𝐝′𝑝

𝒅′𝑀−𝑝

𝐝′
𝑁−𝑀

]

𝑜𝑏𝑠

− [

𝐝′
𝒑

𝒅′
𝑀−𝑝

𝐝′
𝑁−𝑀

] = [

𝒅′
𝑝

𝒅′
𝑀−𝑝

𝐝′
𝑁−𝑀

]

𝑜𝑏𝑠

− [
[
𝚺𝑝×𝑝 𝟎

𝟎 𝚺(𝑀−𝑝)×(𝑀−𝑝)
]

𝟎(𝑁−𝑀)×𝑀

] [
𝐦′

𝒑

𝒎′𝑀−𝑝
] = 

= [

𝒅′
𝑝

𝒅′
𝑀−𝑝

𝐝′
𝑁−𝑀

]

𝑜𝑏𝑠

− [

𝚺𝑝×𝑝𝚺𝑝×𝑝
−1 𝒅′

𝑝

𝟎𝑀−𝑝

𝟎𝑁−𝑀

] = [

𝟎𝑝

𝒅𝑀−𝑝
′𝑜𝑏𝑠

𝒅𝑁−𝑀
′𝑜𝑏𝑠

] 

 

The number of elements in 𝒆′ is 𝑁, but 𝑝 of them are identically zero, so the number of degrees 

of freedom is 𝜈 = 𝑁 − 𝑝.  The total error is in the form of a dot product, which is invariant under 

rotations, so 𝐸 = 𝐸′.  A rotation only mixes linear combinations of 𝐞, so 𝐸 also has 𝜈 = 𝑁 − 𝑝 

degrees of freedom. Whether either 𝐸 or 𝐸′ are chi-squared distributed is unclear to me, since e′ 
does not appear to be guaranteed to have zero mean.  Yet normal practice would be to consider it 

to be chi-squared distributed, with 𝜈 = 𝑁 − 𝑝 degrees of freedom. 

Sometimes, one throws out rows with near-zero singular values as well as rows with zero 

singular values.  This practice merely decreases 𝑝; all the points made above remain unchanged. 

Consider the special case where the prior equations are  𝑚′
𝑖
0

= 𝑚′
𝑖, which reduces to the natural 

solution when 𝑚′
𝑖
0

= 0. The solution is then: 

𝐦′ = [
𝚺𝑝×𝑝

−1 𝟎

𝟎 𝐌(𝑀−𝑝)×(𝑀−𝑝)
−1 ] [

𝐝′𝑀

𝐦′𝑀−𝑝
0 ] =  [

𝚺𝑝×𝑝
−1 𝐝′𝑀

𝐌(𝑀−𝑝)×(𝑀−𝑝)
−1 𝐦′𝑀−𝑝

0 ] 

or 

𝐦 = 𝐕𝑝𝚺𝑝×𝑝
−1 𝐔𝑝

T𝐝 + 𝐕0𝐌(𝑀−𝑝)×(𝑀−𝑝)
−1 𝐦′𝑀−𝑝

0  

Here 𝐔 = [𝐔𝑝, 𝐔0] and 𝐕 = [𝐕𝑝, 𝐕0] have been partitioned into two submatrices, the first of 

which has 𝑝 columns.  This form of the solution emphasizes that the natural solution has a 

“hidden” zero part: 



𝐦 = 𝐕𝑝𝚺𝑝×𝑝
−1 𝐔𝑝

T𝐝 + 𝟎 

Consequently, the covariance 𝐂𝑚 of the solution 𝐦 depends both upon the covariance of the data 

(say 𝐂𝑑) and the covariance of the prior information (say 𝐂0). Furthermore, the so-called 

resolution matrix 𝐑 = 𝐕𝑝𝐕𝑝
T is really a “deviatoric resolution”; that is, the resolution of 

deviations about a prior solution (see Menke (2018) for details). 
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