Degrees of Freedom of the Natural Solution to an Inverse Problem

William Menke, December 22, 2018 inspired by a question from Zach Eilon (typo corrected 01/28/19)

The general issue is how to compute the number of degrees of freedom of the natural solution to a linear inverse problem; that is, the solution constructed via the singular value decomposition (SVD).

In this discussion, I will use the "full version" of SVD, where the data kernel **G** is represented as:

$$\mathbf{G} = \mathbf{U}_{N \times N} \begin{bmatrix} \mathbf{\Sigma}_{M \times M} \\ \mathbf{0}_{(N-M) \times M} \end{bmatrix} \mathbf{V}_{M \times M}^{\mathrm{T}}$$

Here **U** is an $N \times N$ orthogonal matrix, **V** an $M \times M$ orthogonal matrix, and **\Sigma** is an $M \times M$ diagonal matrix of non-negative singular values Σ_{ii} , sorted by decreasing size. The SVD of the data equation **d** = **Gm** can be interpreted as a set of rotations in the data and model spaces that bring the equation into diagonal form:

$$\mathbf{d}' = \begin{bmatrix} \mathbf{d}'_M \\ \mathbf{d}'_{N-M} \end{bmatrix} = \mathbf{\Sigma}\mathbf{m}' = \begin{bmatrix} \mathbf{\Sigma}_{M \times M} \\ \mathbf{0}_{(N-M) \times M} \end{bmatrix} \mathbf{m}' \text{ with } \mathbf{d}' = \mathbf{U}^{\mathrm{T}}\mathbf{d} \text{ and } \mathbf{m}' = \mathbf{V}^{\mathrm{T}}\mathbf{m}$$

Presuming that $\Sigma_{M \times M}$ is invertible, the top system can be solved exactly as $\mathbf{m}' = \Sigma_{M \times M}^{-1} \mathbf{d}'_{M}$, in which case $\mathbf{m} = \mathbf{V} \Sigma_{M \times M}^{-1} \mathbf{U}^{\mathrm{T}} \mathbf{d}$. The bottom system cannot be solved at all and represents the linear combinations of the data that cannot be fit. The number of degrees of freedom is clearly $\nu = N - M$, equal to the number of data that cannot be fit.

When $\Sigma_{M \times M}$ is not invertible because M - p singular values are identically zero, the so-called "natural solution" is to keep only the first p rows of the top system (those with the non-zero Σ_{ii} s) and supplement them with M - p "prior" equations of the form $0 = m'_i$:

$$\begin{bmatrix} \mathbf{d'}_p \\ \mathbf{0}_{M-p} \\ \mathbf{d'}_{N-M} \end{bmatrix} = \begin{bmatrix} \mathbf{\Sigma}_{p \times p} & \mathbf{0} \\ \mathbf{0} & \mathbf{I}_{(M-p) \times (M-p)} \\ \mathbf{0}_{(N-M) \times M} \end{bmatrix} \mathbf{m'}$$

Thus, $\mathbf{m'}_p = \mathbf{\Sigma}^{-1} \mathbf{d'}_p$ and $\mathbf{m'}_{M-p} = \mathbf{0}$. More generally, any set of any equations of M - p the form $h'_i = \sum_{j=1}^{M-p} H'_{ij} m'_{j+p}$ can be used in place of $0 = m'_i$ to represent other types of prior information, where $\mathbf{H'}$ is an invertible matrix. Then the equation becomes:

$$\begin{bmatrix} \mathbf{d'}_{p} \\ \mathbf{h'}_{M-p} \\ \mathbf{d'}_{N-M} \end{bmatrix} = \begin{bmatrix} \begin{bmatrix} \mathbf{\Sigma}_{p \times p} & \mathbf{0} \\ \mathbf{0} & \mathbf{H'}_{(M-p) \times (M-p)} \end{bmatrix} \\ \mathbf{0}_{(N-M) \times M} \end{bmatrix} \begin{bmatrix} \mathbf{m'}_{p} \\ \mathbf{m'}_{M-p} \end{bmatrix}$$

Thus, $\mathbf{m'}_p = \mathbf{\Sigma}^{-1} \mathbf{d'}_p$ and $\mathbf{m'}_{M-p} = \mathbf{H'}^{-1} \mathbf{h'}_{M-p}$.

Returning now to the natural solution, we consider the prediction error

$$E' = \sigma_d^{-2} e'^{\mathrm{T}} e'$$
 with $\mathbf{e}' = \mathbf{d}'^{obs} - \mathbf{d}'$

Here, the variance of the data is σ_d^2 . The errors **e**' are:

$$\boldsymbol{e}' = \begin{bmatrix} \mathbf{d}'_{p} \\ \mathbf{d}'_{M-p} \\ \mathbf{d}'_{N-M} \end{bmatrix}^{obs} - \begin{bmatrix} \mathbf{d}'_{p} \\ \mathbf{d}'_{M-p} \\ \mathbf{d}'_{N-M} \end{bmatrix} = \begin{bmatrix} \mathbf{d}'_{p} \\ \mathbf{d}'_{M-p} \\ \mathbf{d}'_{N-M} \end{bmatrix}^{obs} - \begin{bmatrix} \boldsymbol{\Sigma}_{p \times p} & \mathbf{0} \\ \mathbf{0} & \boldsymbol{\Sigma}_{(M-p) \times (M-p)} \end{bmatrix} \begin{bmatrix} \mathbf{m}'_{p} \\ \mathbf{m}'_{M-p} \end{bmatrix} = \begin{bmatrix} \mathbf{d}'_{p} \\ \mathbf{0}_{(N-M) \times M} \end{bmatrix}^{obs} - \begin{bmatrix} \mathbf{D}_{p} \\ \mathbf{0}_{M-p} \\ \mathbf{0}_{N-M} \end{bmatrix} = \begin{bmatrix} \mathbf{0}_{p} \\ \mathbf{d}'_{M-p} \\ \mathbf{d}'_{N-M} \end{bmatrix}$$

The number of elements in e' is N, but p of them are identically zero, so the number of degrees of freedom is v = N - p. The total error is in the form of a dot product, which is invariant under rotations, so E = E'. A rotation only mixes linear combinations of e, so E also has v = N - pdegrees of freedom. Whether either E or E' are chi-squared distributed is unclear to me, since e'does not appear to be guaranteed to have zero mean. Yet normal practice would be to consider it to be chi-squared distributed, with v = N - p degrees of freedom.

Sometimes, one throws out rows with near-zero singular values as well as rows with zero singular values. This practice merely decreases p; all the points made above remain unchanged.

Consider the special case where the prior equations are $m'_i^0 = m'_i$, which reduces to the natural solution when $m'_i^0 = 0$. The solution is then:

$$\mathbf{m}' = \begin{bmatrix} \mathbf{\Sigma}_{p \times p}^{-1} & \mathbf{0} \\ \mathbf{0} & \mathbf{M}_{(M-p) \times (M-p)}^{-1} \end{bmatrix} \begin{bmatrix} \mathbf{d'}_{M} \\ \mathbf{m'}_{M-p}^{0} \end{bmatrix} = \begin{bmatrix} \mathbf{\Sigma}_{p \times p}^{-1} \mathbf{d'}_{M} \\ \mathbf{M}_{(M-p) \times (M-p)}^{-1} \mathbf{m'}_{M-p}^{0} \end{bmatrix}$$

or
$$\mathbf{m} = \mathbf{V}_{p} \mathbf{\Sigma}_{p \times p}^{-1} \mathbf{U}_{p}^{\mathrm{T}} \mathbf{d} + \mathbf{V}_{0} \mathbf{M}_{(M-p) \times (M-p)}^{-1} \mathbf{m'}_{M-p}^{0}$$

Here $\mathbf{U} = [\mathbf{U}_p, \mathbf{U}_0]$ and $\mathbf{V} = [\mathbf{V}_p, \mathbf{V}_0]$ have been partitioned into two submatrices, the first of which has *p* columns. This form of the solution emphasizes that the natural solution has a "hidden" zero part:

$$\mathbf{m} = \mathbf{V}_p \mathbf{\Sigma}_{p \times p}^{-1} \mathbf{U}_p^{\mathrm{T}} \mathbf{d} + \mathbf{0}$$

Consequently, the covariance \mathbf{C}_m of the solution \mathbf{m} depends both upon the covariance of the data (say \mathbf{C}_d) and the covariance of the prior information (say \mathbf{C}_0). Furthermore, the so-called resolution matrix $\mathbf{R} = \mathbf{V}_p \mathbf{V}_p^{\mathrm{T}}$ is really a "deviatoric resolution"; that is, the resolution of deviations about a prior solution (see Menke (2018) for details).

Reference

W. Menke, Geophysical Data Analysis: Discrete Inverse Theory, 4th Edition, Elsevier, 2018.