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We consider a two-layer problem in depth 𝑧. The top layer has 0 ≤ 𝑧 ≤ 𝐿, top boundary 

condition with temperature 𝑇(0) = 0 and has radioactive heat production 𝐻 = 𝐴/𝐿. Note that 𝐻 

scales inversely with 𝐿, so that the total heat production 𝐴 is independent of layer thickness. This 

models a process that moves heat producing radioactive elements up and down, without 

changing the total amount of them. The bottom layer has 𝐿 < 𝑧 ≤ 𝑍, bottom boundary condition 

with temperature 𝑇(𝑍) = 𝑇0 and no heat production.  The thermal conductivity 𝑘 is presumed 

constant. 

Derivation 

In the top layer, the steady-state heat flow equation with thermal conductivity 𝑘 is: 
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Integrating once yields: 

𝑑

𝑑𝑥
𝑇 = − 

𝐴

𝐿𝑘
𝑧 + 𝑎 

Where 𝑎 is an integration constant. Integrating a second time yields: 
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Where 𝑏 is an integration constant. The top boundary condition implies 𝑏 = 0.  The heat flow is  
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And the surface heat flow is  

𝑞0 = −𝑎𝑘 

In the bottom layer, the steady-state heat flow equation with thermal conductivity 𝑘 is: 
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Hence 𝑇 varies linearly with 𝑧. The solution that satisfies 𝑇(𝑍) = 𝑇0 is: 

𝑇𝑏𝑜𝑡 = −𝑐(𝑍 − 𝑧) + 𝑇0 

Where the constant 𝑐 is yet to be determined. The corresponding heat flow is  
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The continuity condition 𝑞𝑡𝑜𝑝(𝐿) = 𝑞𝑏𝑜𝑡(𝐿) implies: 
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The solution 
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The negative of the surface heat flow is: 
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Verifying the solution 

Check top b.c.: 



𝑇𝑡𝑜𝑝(0) = − 
𝐴

2𝐿𝑘
02 + {

𝐴

2𝑘
 (2 −

𝐿

𝑍
) +

𝑇0

𝑍
} 0 = 0 

Check heat flow continuity condition: 

𝑞𝑡𝑜𝑝 = 𝑞𝑏𝑜𝑡 
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Check bottom b.c.: 
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Thus, all four conditions are satisfied.  (I have checked all these formulas numerically). 

Interpretation of the surface heat flow: 
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The second term 𝑘𝑇0 𝑍⁄  is the basal heat flow, that is, the heat flow associated with overall 

temperature difference between the bottom and top of the layer.  It does not depend upon the 

thickness 𝐿 of the heat-producing layer. 

The first term ½𝐴 (2 − 𝐿 𝑍⁄  ) is the radioactive heat flow, that is, the heat flow associated with 

overall heat producing layer.  It does depend upon the thickness 𝐿, and varies from ½𝐴 when 

𝐿 = 𝑍; that is, the heat producing layer is at its maximum thickness, to 𝐴 when 𝐿 = 0; that is, the 

heat producing layer is very thin.  The total heal production in a column of height 𝐿 is 𝐴, so at 

steady state the heat flowing from it is also 𝐴.  Thus, one interpretation of the term is that all the 

heat goes up then when 𝐿 = 0, but only half of it goes up when 𝐿 = 0. 



Application to the lithosphere: 

Let’s assume that the lithosphere is 𝑍 = 100 km thick, with a basal temperature of 𝑇0 = 1350 +

0.5𝑍 and a thermal conductivity such that 𝑘𝑇0 𝑍⁄ = 38 mW/m2 (the heat flow associated with 

200 Ma oceanic lithosphere).  That is, in the absence of heat production, 𝐴 = 0 and the surface 

heat flow is 38 mW/m2.  We assume that the crust is 100/3 ≈ 33 km thick and that top 𝐿 km of 

it is heat producing, so that 0 ≤ 𝐿 ≤ 100/3 km.  The first term in the heat flow equation 

therefore varies between 𝐴 and 5𝐴/6, which is a relatively small range of variation. 

If we assume that the heat producing part of the crust has the same total heat production as a 

100/3 km thick layer of basalt with 𝐻 = 1 μW/m3, then 𝐴 = 100/3 ≈ 33 mW/m2 and the 

crustal heat flow is in the range: 

65.7 ≤ −𝑞0 ≤ 71.3 mW m2⁄   for   33 ≥ 𝐿 ≥ 0 km 

 

 

Figure 1.  Example in text with 𝐿 = 100/3 km. The surface heat flow is 65.7 mW/m2 (red 

circle). 

 



 

 

Figure 2  Example in text with 𝐿 = 1/3 km. The surface heat flow is 71.3 mW/m2 (red circle). 

 

 

 


