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These ideas are based on a discussion that Dan Blatter and I had on the effect of resampling on 

the trade-off of resolution and variance, as computed by the method we recently developed.  The 

discussion here imagines that a coarsely-sampled time series 𝐦 is the fundamental one (e.g. 

computed via an MCMC method) but that a finely-sampled time series 𝐲, computed from 𝐦 by 

interpolation, is the one upon which the resolution/variance analysis is based.  The question is 

how much bias is introduced by having done the resolution/variance analysis in 𝐲 rather than 𝐦.  

I analyze this question below and provide the answer “not much”. 

My identification of 𝐦 as a coarsely-sampled time series representing some underlying 

continuous function 𝑚(𝑥) is a simplification.  It is meant to stand-in for the more interesting – 

and more complicated - case, not treated here, in which 𝐦 is the set of coefficients of a spline 

representation of 𝑚(𝑥). 

1. Eigenvalues and Eigenvectors of a “Modulated Repeating Pattern” Matrix. The 𝑁 × 𝑁 

matrix 𝐁 is constructed by repeating a 𝑃 × 𝑃 block 𝐖 on an 𝑀 × 𝑀 grid, so that that 𝑁 = 𝑃𝑀. 

Each instance of 𝐖 is multiplied by a factor given by the elements of an 𝑀 × 𝑀 symmetric 

matrix 𝐀, so that: 

B𝑖,𝑗 = A(𝑖/𝑃),(𝑗/𝑃)𝑊(𝑖\𝑃),(𝑗\𝑃) 

(1) 

Here matrix indices start at zero, “/” is integer division and “\” is remainder. We assume that 𝐀 

and 𝐖 satisfy the algebraic eigenvalue equations, 𝐀𝐚(𝑠) = α𝑘𝐚
(𝑠) and 𝐖𝐰(𝑠) = ω𝑘𝐰

(𝑠), 

respectively.  We can show that the quantities: 

𝛽𝑠 = 𝛼(𝑠/𝑃)ω(𝑠\𝑃)   and    𝑏𝑘
(𝑠) = 𝑎(𝑘/𝑃)

(𝑠/𝑃)
𝑤(𝑘\𝑃)

(𝑠\𝑃)
 

(2) 

are the eigenvalues and eigenvector of 𝐁 by considering the product 𝐁𝐛(𝑘): 

[𝐁𝐛(𝑠)]
𝑞

= ∑ 𝐵𝑞,𝑘𝑏𝑘
(𝑠)

𝑁−1

𝑘=0

= ∑ A(𝑞/𝑃),(𝑘/𝑃)𝑊(𝑞\𝑃),(𝑘\𝑃)𝑎(𝑘/𝑃)
(𝑠/𝑃)

𝑤(𝑘\𝑃)
(𝑠\𝑃)

𝑁−1

𝑘=0

 

(3) 

With the substitution, 𝑘 = 𝑖𝑃 + 𝑗, the single sum 𝑘 = 1⋯𝑁 can be replaced by two sums, 𝑖 =

1⋯𝑀 and 𝑗 = 1⋯𝑃.  Then, noting that 𝑘 𝑃⁄ = 𝑖 and 𝑘\𝑃 = 𝑗, we have: 

[𝐁𝐛(𝑠)]
𝑞

= ∑ ∑ A(𝑞/𝑃),𝑖𝑊(𝑞\𝑃),𝑗𝑎𝑖
(𝑠/𝑃)

𝑤𝑗
(𝑠\𝑃)

𝑃−1

𝑗=0

𝑀−1

𝑖=0

= 



= ∑ A(𝑞/𝑃)𝑖𝑎𝑖
(𝑠/𝑃)

∑ 𝑊(𝑞\𝑃)𝑗𝑤𝑗
(𝑠\𝑃)

𝑃−1

𝑗=0

𝑀−1

𝑖=0

= 

= 𝛼(𝑠/𝑃)𝜔(𝑠\𝑃)  𝑎(𝑞/𝑝)
(𝑠/𝑃)

𝑤(𝑞\𝑝)
(𝑠/𝑃)

= 𝛽𝑠𝑏𝑞
(𝑠)

 

(4) 

Thus, the choices above satisfy the algebraic eigenvalue equation 𝐁𝐛(𝑠) = β𝑠𝐛
(𝑠).   

2. Eigenvalues and Eigenvectors of a “Block-Constant” Matrix. Now consider the special 

case where 𝐖 is a constant matrix with 𝑊𝑖,𝑗 = 1, so that 𝐁 is block-constant. One eigenvector of 

𝐖 is 𝐰(1) = [1,1,⋯ ,1]T with eigenvalue ω1 = 𝑃.  A choice for the other 𝑃 − 1 linearly-

independent eigenvectors is 𝐰(2) = [1,−1,0,⋯ ,1]T, 𝐰(3) = [1,0,−1,0,⋯ ,1]T, etc., all with 

identically-zero eigenvalue. Equation (2) implies that the eigenvalues of 𝐁 consist of the 𝑀 

eigenvalues of 𝐀, all multiplied by 𝑃, together with 𝑀 − 𝑃 identically-zero eigenvalues.  

Equation (2) also implies that the corresponding eigenvectors of 𝐁 consist of “interpolated” 

versions of the 𝑀 eigenvectors of 𝐀 (with constant interpolation), together with eigenvectors 𝑏𝑗
(𝑠)

 

(with 𝑀 < 𝑠 ≤ 𝑁) that oscillate rapidly with 𝑗. 

3.  Interpolation of a Timeseries. Suppose that the time series 𝐦 has sampling interval ∆𝑡 and 

length 𝑀. Suppose also that the time series 𝐲 has sampling interval ∆𝑡/𝑃 and length 𝑁 = 𝑃𝑀.  

Consider a 𝑁 × 𝑀 interpolation operator 𝐓 that takes 𝐦 into 𝐲 (i.e. 𝐲 = 𝐓𝐦) and that preserves 

the values of 𝐦. That is, 𝑇𝑖𝑃,𝑗 = 𝛿𝑖,𝑗 so that 𝑦𝑘𝑃 = 𝑚𝑘 , for 0 ≤ 𝑘 < 𝑀. The 𝑃 = 2 case 

corresponding to linear interpolation is: 

𝐓 =

[
 
 
 
 
 
1 0 0 0 0 0 ⋯
½ 0 ½ 0 0 0 ⋯
0 1 0 0 0 0 ⋯
0 ½ 0 ½ 0 0 ⋯
0 0 1 0 0 0 ⋯
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋱]

 
 
 
 
 

 

(5) 

A symmetric 𝑁 × 𝑁 matrix 𝐁 can be formed from a symmetric 𝑀 × 𝑀 matrix 𝐀 via: 

𝐁 = 𝐓𝐀𝐓𝐓 

(6) 

This matrix preserves the values of 𝐀 in 𝐁: 

𝐵𝑘𝑃,𝑘𝑃 = ∑ ∑ 𝑇𝑘𝑃,𝑖𝑇𝑘𝑃,𝑗𝐴𝑖,𝑗

𝑀−1

𝑗=0

𝑀−1

𝑖=0

= ∑ ∑ 𝛿𝑘,𝑖𝛿𝑘,𝑗𝐴𝑖,𝑗

𝑀−1

𝑗=0

𝑀−1

𝑖=0

= 𝐴𝑖,𝑗  

(7) 



and interpolates the other values.  Furthermore, the interpolation process can be view as acting 

on the eigenvectors of 𝐀, since it follows from 𝐀 = ∑ 𝛼𝑠𝑠 𝐚(𝑠)𝐚(𝑠)T that: 

𝐁 = 𝐓𝐀𝐓𝐓 = ∑ 𝛼𝑠

𝑀−1

𝑠=0

𝐓𝐚(𝑠)𝐚(𝑠)T𝐓𝐓 = ∑ 𝛼𝑠

𝑀−1

𝑠=0

(𝐓𝐚(𝑠))(𝐓𝐚(𝑠))
T
 

Note, however that 𝐓𝐚(𝑠) is not, in general, an eigenvector of 𝐁. 

Now consider forming the covariance 𝐂𝑦  of 𝐲 from the covariance matrix 𝐂𝑚 of  𝐦  using the 

usual rules of error propagation: 

𝐂𝑦 = 𝐓𝐂𝑚𝐓T 

(8) 

Comparing Equations (6) and (8), we conclude that 𝐂𝑦  is an interpolated version of 𝐂𝑚.  We 

expect that 𝐂𝑦  has at least 𝑁 − 𝑀 identically-zero eigenvalues, because the interpolation has 

created 𝑁 − 𝑀 linear elements 𝐲 that are completely dependent on the other 𝑀 elements and 

that, consequently, have no error. 

4.  Effect of Interpolation on Eigenvalues and Eigenvectors.  We now address the question of 

how the eigenvalues and eigenvectors of 𝐂𝑦  differ from those of 𝐂𝑚.  Since we have established 

that 𝐂𝑦  is an interpolated version of 𝐂𝑚, we start by writing; 

𝐂𝑦 = 𝐂𝑦
(0)

+ 𝛿𝐂𝑦  

(9) 

We choose 𝐂𝑦
(0)

 to be a block-constant matrix built from 𝐂𝑚 (with block size 𝑃). We have 

previously established that this block-constant matrix shares the eigenvectors and (up to a 

multiplicative constant) eigenvalues of 𝐂𝑚, and additionally has 𝑁 − 𝑀 highly oscillatory 

eigenvectors with identically-zero eigenvalues. The perturbation 𝛿𝐂𝑦  does not necessarily have 

identically-zero mean, either overall or within individual 𝑃 × 𝑃 blocks. However, since 𝐂𝑦  

shares every 𝑃th value with 𝐂𝑦
(0)

 (the others being determined by interpolation), we expect that 

these means are very much smaller than ‖𝛿𝐂𝑦‖. 

The effect of the small perturbation 𝛿𝐂𝑦  on the non-zero eigenvalues can be determined using 

perturbation theory. The eigenvalues and eigenvectors of 𝐂𝑚 are denoted as 𝛼𝑠 and 𝐚(𝑠), 

respectively, and the eigenvalues and eigenvectors of 𝐂𝑦  as 𝛽𝑠 = 𝛽𝑠
0 + 𝛿𝛽𝑠 and 𝐛(𝑠) = 𝐛(0𝑠) +

𝛿𝐛(𝑠), respectively.  The 𝑀 non-zero eigenvalues are non-degenerate, so the first-order 

perturbations can be shown to be: 

𝛿𝛽𝑠 = 𝐛(0𝑠)T𝛿𝐂𝑦  𝐛(0𝑠)      and     𝛿𝐛(𝑠) = ∑
(𝐛(0𝑠)T𝛿𝐂𝑦𝐛(0𝑗))

𝛽𝑠
0 − 𝛽𝑗

0

𝑁−1

𝑗=0
𝑗≠𝑠

𝐛(0𝑗) 



(10) 

We consider these first-order perturbations to be “small”.  In fact, 𝛿𝛽𝑠 is especially small: 

Because 𝐛(0𝑠)  is block-constant, the 𝛿𝛽𝑠 would be zero if each block of 𝛿𝐂𝑦  has zero mean: 

𝛿𝛽𝑠 = 𝐛(0𝑠)T𝛿𝐂𝑦  𝐛(0𝑠) = ∑ ∑ 𝑏𝑝
(0𝑠)[𝛿𝐂𝑦]

𝑝,𝑞
 𝑏𝑞

(0𝑠)

𝑁−1

𝑞=0

𝑁−1

𝑝=0

 

= ∑ ∑ 𝑎(𝑝/𝑃)
(𝑠/𝑃)

𝑤(𝑝\𝑃)
(𝑠\𝑃)

 [𝛿𝐂𝑦]
𝑝,𝑞

 𝑎(𝑞/𝑃)
(𝑠/𝑃)

𝑤(𝑞\𝑃)
(𝑠\𝑃)

𝑁−1

𝑞=0

𝑁−1

𝑝=0

 

= ∑ ∑ 𝑎𝑖
(𝑠/𝑃)

𝑎𝑗
(𝑠/𝑃)

∑ ∑ 𝑤𝑢
(𝑠\𝑃)

 [𝛿𝐂𝑦]
𝑖𝑃+𝑢,𝑗𝑃+𝑣

 𝑤𝑣
(𝑠\𝑃)

𝑃−1

𝑣=0

𝑃−1

𝑢=0

𝑁−1

𝑗=0

𝑁−1

𝑖=0

 

= 𝑃2 ∑ ∑ 𝑎𝑖
(𝑠/𝑃)

𝑎𝑗
(𝑠/𝑃)

(∑ ∑  [𝛿𝐂𝑦]
𝑖𝑃+𝑢,𝑗𝑃+𝑣

 

𝑃−1

𝑣=0

𝑃−1

𝑢=0

)

𝑁−1

𝑗=0

𝑁−1

𝑖=0

= 0 

when   (∑ ∑  [𝛿𝐂𝑦]
𝑖𝑃+𝑢,𝑗𝑃+𝑣

 

𝑃−1

𝑣=0

𝑃−1

𝑢=0

) = 0   for all   𝑖, 𝑗 

The term in parenthesis is the block-mean. Here we have used the fact that, for the non-zero 

eigenvalues, 𝑤𝑣
(𝑠\𝑃)

= 𝑤𝑣
(𝑠\𝑃)

= 𝑃.  In actuality, the block-means are almost but not quite zero, 

so that 𝛿𝛽𝑠 is non-zero but much smaller than ‖𝐛(0𝑠)‖
2
‖𝛿𝐂𝑦‖; 

The 𝑁 − 𝑀 zero eigenvalues are degenerate. Their perturbations also be calculated using 

degenerate perturbation theory, but we omit discussion of it here. 

5.  Effect on Menke & Blatter Style Trade-Off Curves.  The eigenvalue spectrum of 𝐂𝑦  

differs from that of 𝐂𝑚 in three ways: an overall scaling factor of 𝑃 is introduce that represents 

the decrease of the sampling interval from ∆𝑡 to ∆𝑡/𝑃; the 𝑀 non-zero eigenvalues of 𝐂𝑦  are 

slightly perturbed with respect to those of 𝐂𝑚; and 𝑁 − 𝑀 zero eigenvalues are added.  

Superficially, the introduction of the zero eigenvalues might seem to be a boon, since they imply 

that zero-variance features have been added to the problem.  However, these features arise from 

the interpolation and are associated with highly-oscillatory eigenvectors.   Thus, given 

[𝑦1, 𝑦2, 𝑦3, 𝑦4, 𝑦5,⋯ ]𝑇 with the linear interpolation 𝑦2 = ½𝑦1 + ½𝑦3 and 𝑦4 = ½𝑦3 + ½𝑦5, the 

linear combinations ½𝑦1 − 𝑦2 + ½𝑦3 = 0 and ½𝑦3 − 𝑦4 + ½𝑦5 = 0 have identically-zero 

variance.  However, they are also oscillatory and highly unlocalized and cannot be used to form a 

localized weighted average.  For instance, although the sum of these two linear combinations, 

say 〈𝑦3〉 =  ½𝑦1 − 𝑦2 + 𝑦3 − 𝑦4 + ½𝑦5 is centered about 𝑦3, it is not usefully localized around 

𝑦3. Consequently, the 𝑁 − 𝑀 zero eigenvalues merely add a long tail of small-variance, large-

spread values to the trade-off curve.  The part of the trade-off curve with small-spread is 

controlled by the 𝑀 non-zero eigenvalues, and since these are only slightly perturbed with 



respect to those of 𝐂𝑚, this part of the trade-off curve for 𝐲 is very similar to that for 𝐦 (up to an 

overall scaling). 

The upshot is that a sound interpretation of variance and resolution can be made from 𝐲. 


