Throat and pore of a tetrahedral arrangement of spheres Bill Menke, 8/27/19

Part A: The "throat" is the largest sphere that can fit through the center of three unit spheres arranged on a plane, i.e. the radius \overline{DE} .

Part B: The "pore" is the largest sphere that can fit inside a tetrahedral arrangement of unit spheres.

We start by constructing a tetrahedron using a cube centered on the origin and with edges of length 2

Now consider the fours spheres that make up the tetrahedron. The sphere centered at C and the sphere centered at D touch halfway along $\overline{\text{CD}}$, and thus have radii $R = \frac{1}{2} \text{ length } \overline{\text{CO}} = \sqrt{2}$.

Now consider largest sphere that fits inside the tetrahedron. It touches one of the tetrahedron spheres along \overline{CO} . Therefore, its radius is $r = \overline{CO} - R = \sqrt{3} - \sqrt{2}$. Rescaling for tetrahedron spheres of unit radius yields $r' = \sqrt{\frac{3}{2}} - 1 \approx 0.225$.