Finding the P-wave axes of the Elastic Tensor
Bill Menke, September 26, 2019
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Section 1: The derivative of wave speed with respect to propagation direction.
The wave polarization direction p satisfies the eigenvalue problem:
M;jp; = s p;
(1)

Here s = pv? where p is density and v is wave speed. The matrix M depends upon propagation
direction t:

M;j = cipjqtptq
(2)
Let us now represent the propagation direction t in terms of polar coordinates 8 and .
(6,0) = [sing conp| ana 0= (e + D7)
cos 8 @ = tan2{ty, t,}
3)

The goal is to compute the derivatives ds/df and ds/d, so that s(6, ¢) can be minimized or
maximized with respect to propagation direction.

First-order non-degenerate perturbation theory allows us to calculate the perturbation As of an
eigenvalue caused by a perturbation AM of the associated matrix:

As = AM;;p;p;
4)

I will argue later that non-degenerate perturbation is appropriate in this instance. The derivatives
ds/d6 and ds/d¢ can be inferred from Equation (4):



)
Applying the chain rule to the definition of M in Equation (2) yields:
dM;; dt, dt,
a0 Cwiaggta T Cipjaly g =
dt, dt, dt, dt, dt,
= Cipja gg ta + Ciajp g ta = Cwia g ta T Civia g ta = 2Cipjq 79 L

dM;; dt, dt, dt,

do = Cipjq do tq * Cipjglp do = 2Cipjq %tq

(6)

Here we have used the fact that M;; = M;; (implying dM;;/d6 = dM;;/d6) and ¢;pjq = Cjpiq-
The derivatives of the propagation direction are computed by differentiating Equation (3):

and — =|—sinfsing

dt [cos 0 sin @
do 0

a6~ |cos 9_cos )
—sinf

dt [ sin 6 cos ¢

Note that dt/d6 and dt/d¢ are both perpendicular to t.
(7

Section 2. Gradient method for minimizing/maximizing wave speed.
Actually, we minimize/maximize s = pv?2.

Step 1. Find an initial guess for (6, ¢) using a coarse grid search (see Part 3).

Step 2: Compute t, dt/d6 and dt/d¢ as in Equations (3) and (7).

Step 3. Compute M, dM/d6 and dM/d¢ as in Equations (2) and (6).

Step 4. Extract the three eigenvalues A; and corresponding eigenvectors v of M.

Step 5. Find the index of the largest eigenvalue k = argmax 4; and set s = 4 and p =

i

v,

Step 6. Compute the gradient g = [ds/d6,ds/dp]" as in Equation (5) and its direction
n =g/lgl.



Step 7. Update (6, @) using a gradient method, stepping in the either in the —n or +n
direction, depending upon whether s is being minimized or maximized.

Section 3. Grid search for a starting value.
Step 1. Prepare a coarse grid (6, ¢,) with0 < 0,, <mand 0 < ¢, < 2.
Step 2: Then, for each node on the grid, tabulate s,,,, = 5(6,,, @):
2A. Compute t as in Equations (3).
2B. Compute M as in Equations (2).
2C. Extract the three eigenvalues A4; of M.

2D. Find the index of the largest eigenvalue k = max A; and set s,,,,, = Ay.
l

Step 3: The starting value (Bp, gpq) for minimizing s is:

(p, q) = argmin (6, @)
mn

(8)

The corresponding starting value for maximizing s is:

(p,q) = argmax s(Op, Pn)
mn

)

The intermediate direction, t™™ satisfies t** = +(t/%5t x t5!°W) where the sign is chosen to
insure a right-handed coordinate system t5/°% = /45t x t™* The intermediate P-wave speed
st = ), is the largest eigenvalue 1, of M, were M is calculated using Equation 2 with t =
t5l9%  The rotation matrix S that takes c; jpq 1nto a coordinate system in which (tf ast gint tSlow)

. ; T
are parallel to (x1, x5, x3) is S = [t/9sE, tint gstow] ",

Note: I have checked this result numerically and it works fine.

Section 4. I now return to the matter of the appropriateness of applying non-degenerate
perturbation theory to the analysis of:

Mp® =5, p® - (M +AM)(p® + Ap@) = (s; + As) (p@ + Ap©@)
(10)

The key question is whether the largest eigenvalue, say s, is distinct; that is, has a value different
than the other two eigenvalues. In typical Earth materials, the answer is yes, since sy



corresponds to the P-wave velocity, where as the other two eigenvalues refer to the S-wave
velocities, and in a typical Earth material the P-velocity is always higher than either of the two S-
velocities.

Another interesting aspect of this perturbation problem arises from dt/d6 and dt/d¢ both being
perpendicular to t. This behavior implies ds/d6 = ds/d¢ = 0 in isotropic material. Denoting
dt/df = n with t- n = 0, we find in isotropic material with Lame coefficients A and u:

Cipjq = A0ip0jq + H8ijOpq + HOigFjq
ds/df = (A8i8jq + 18ij8pq + USigSjp )ptapin; + (A8ipiq + 181j8pq + HEigSjp )ptapiD;
= Anpitjp; + unitip;p; + unp;tip; + Anipitip; + pnptypip; + unipitip; =0
(11)

Here we have used the fact that, for a P wave in an isotropic material, the polarization direction p
is parallel to the propagation direction t, so n - p = 0. The same argument applies for ds/d¢.

Section 5: Discussion of equation for P-wave axes

Suppose that we generically refer to the angles of propagation 6 or ¢ as a. The condition that the
wave speed (or rather eigenvalue s) is stationary with respect to small perturbations in « is:

_ ds _ dMl] dt

O_EE_'ETPWJ=2Qng§%pmJﬂna==a¢
(12)
Defining b, = dt,/da and noting b,t,, = 0, we have
0= (Ciqupipj)tq b, forallb Lt
(13)

Consider the eigenvalue problem Np,t, = At, with N, = ¢ippjqPi0; (Where p; is fixed). Then
Equation (13) is equivalent to:

0=At,tyb, forallb Lt
(14)
Equation (14) is satisfied trivially since t, b, = 0. Hence the condition for an extremum in s is:
CipjqPiPjtq = Aty and Cipjqtpty Dj =S P
(15)
After contracting first equation by t,, and the second by p; :



A = CipjgPiPjtqty and s = Cjpjqtpty DiDj

(16)
We conclude 4 = s. We now manipulate Equation (16):
CipjqPiPjtq = St, and Cippqtpty Pj = SD;
(s cipjapjte) Pp = ti and (s cipjqpjte) tp = pi
Zippp =t and Zyt, =p; with Z;, = s cpepjt,
(17)

Here the symmetric matrix Z both takes p into t and t into p. This transformation can happen in
either of two ways. The first is when p||t and Z = ttT + cuu” + BvvT, where u, v and t are
mutually perpendicular unit vectors and where a and 3 are constants; that is, Zy leaves
unchanged the component of y parallel to t while rescaling the components normal to t and/or
rotating them in the plane. The second is when p L tand Z = tpT + ptT + avvT, where t, p and
v are mutually perpendicular unit vectors and where o and [3; that is, Zy interchanges the p and t
components of y, while rescaling the component parallel to v. Hence:

Cipjqtptitq = St; with p; =t; or cpjqtypjty = sp; with p;t; =0
(18a,b)

Equation (18a) would seem to represent the P-wave and (18b) the S-wave. Unfortunately, I do
not know of a fast way of solving Equation (18a). I have, however, checked that it is solved by
the (s, t) returned by the linearized solver described above (at least for a test case consisting of
arbitrarily rotated c;j,4 corresponding to orthorhombic olivine).

function [thfast, phfast, sfast, tfast, thint, phint, sint,
tint, thslow, phslow, sslow, tslow, cp] = findaxes2(c)

find the fast, intermediate and slow directions and rho*v"*2 of
wave in an anisotropic medium

c: 3x3x3x3 elacticity tensor

th and ph (in radians) polar angles of axis

t: unit vector of axi

S: rho*Vp~"2

cp: ¢ rotated so (fast int slow) are parallel to (x, vy, 2z)

o® o° o° o° J o°

o

% controls accuracy of gradient method
MAXHALVINGS = 32;

% controls detection of being very close to extermum
MINIMUMLENGTH = le-6;

% PART 1: Coarse Grid Search



thmin = 0;
thmax = pi;

phmin = 0;

phmax = 2*pi;

Nth = 19;

Nph = 31;

th = thmin + (thmax-thmin)*[0:Nth-1]"'/(Nth-1);
ph = phmin + (phmax-phmin)*[0:Nph-1]"'/ (Nph-1);

sfast = zeros( Nth, Nph );

for ith=[1:Nth]
for iph=[1:Nph]
sth = 31n(th(ith));
cth = cos(th(ith));
sph = sin(ph(iph));
(

ph = cos(ph(iph));

[sth*sph; sth*cph; cth];

checked that t'*dtdth=0 and t'*dtdph=0
zeros (3,3);

dMdth = zeros(3,3);

dep zeros (3,3);

for 3]

for
for
for

=< o0t Q
=l

[1:
[1:
[1:
[1:
i

Z&)?(J -

3]
3]
3]
)

— |

(J) = M(i,3) + c(i,p,J,9) *t(p)*t(q);
end
end
end
end
[V,L] = eig (M, 'vector');
sfast( ith, iph ) = max (L)
end
end

[s1,kl] max (sfast) ;

[s2,k2] = max(sl);

k3 = k1 (k2);

ithmax = k3;

iphmax = k2;

sgridmax = sfast (ithmax, iphmax) ;
thmax = th(ithmax);

phmax = ph(iphmax) ;

[sl,kl] = min(sfast);
[s2,k2] = min(sl);



k3 = k1l (k2);

ithmin = k3;

iphmin = k2;

sgridmin = sfast(ithmin, iphmin);
thmin = th(ithmin);

phmin = ph(iphmin);

% Part 2, refine fast axis

myth = thmax;
myph phmax;
alpha = (pi/180) * 1;
halvings = 0;

for itt=[1:100]

sth = sin (myth);
cth = cos(myth);
sph sin (myph) ;
cph = cos (myph) ;

t = [sth*sph; sth*cph; cth];
dtdth = [cth*sph; cth*cph; -sth];
dtdph [sth*cph; -sth*sph; 0];
M = zeros(3,3);

dMdth = zeros(3,3);

dMdph = zeros(3,3);
for i=[1:3]
for j=[1:3]
for p=[1:3]
for g=[1:3]
M(i,3) = M(i,3) + c(i,p,J,9)*t(p)*t(q);
dMdth (i,j) = dMdth(i,j) + 2*c(i,p,J,q) *dtdth(p) *t (q) ;
dMdph (i,J) = dMdph(i,Jj) + 2*c(i,p,],q) *dtdph(p)*t(q);
end
end
end
end
[V,L] = eig (M, 'vector');
[Lmax, k] = max(L);
mys = Lmax;
P =V(:,k);
mydsdth = 0;
mydsdph = 0;
for i=[1:3]
for j=[1:3]

mydsdth = mydsdth + dMdth(i,J)*P (1) *P(J);
mydsdph = mydsdph + dMdph (i, j)*P (i) *P(7);

~



end
end

grad s = [mydsdth; mydsdph];
nu = grad s/sqgrt(grad s'*grad s);

myth2 = myth + alpha * nu(l);
myph?2 myph + alpha * nu(2);

sth2 = sin (myth2);

cth2 cos (myth2) ;
( )
( )

4

sph?2 sin (myph?2
cph?2 = cos (myph?2

14

t2 = [sth2*sph2; sth2*cph2; cth2];
M2 zeros (3,3);

for
for
for
for

PR
W W w W

]
]
]
]
)

Z&)?(J-H

Nl

= M2(i,3J) + c(i,p,J,q)*t2(p)*t2(q);
end
end
end
end
[V2,L2] = eig (M2, 'vector');
[L2max, k2] = max(L2);
mys2 = L2max;
if( mys2 > mys )
myth = myth2;
myph = myph2;
mys = mysZ2;
else
alpha = alpha/2;
halvings = halvings + 1;
end
if( halvings > MAXHALVINGS )
break;
end

end

thfast = myth;
phfast = myph;
sfast = mys;

¢}

% Part 3, refine slow axis



myth = thmin;
myph = phmin;
alpha = (pi/180) * 1;
halvings = 0;

for itt=[1:100]

sth = sin (myth);
cth = cos (myth);
sph sin (myph) ;
cph = cos (myph) ;

t = [sth*sph; sth*cph; cth];
dtdth = [cth*sph; cth*cph; -sth];
dtdph = [sth*cph; -sth*sph; 0];

M = zeros(3,3);
dMdth = zeros (3, 3);

dMdph = zeros(3,3);
for i=[1:3]
for j=[1:3]
for p=[1:3]
for g=[1:3]
M(l/j) = M(llj) + C(ilpljlq)*t(p)*t(q);
dMdth (i, j) = dMdth(i,j) + 2*c(i,p,J,q) *dtdth(p)*t (q) ;
dMdph (i,J) = dMdph(i,3j) + 2*c(i,p,],q) *dtdph(p)*t(q);
end
end
end
end
[V,L] = eig (M, 'vector');
[Lmin, k] = max(L); % code path min() -> max(), Menke 02/11/20
mys = Lmin;
P =V(:,k);
mydsdth = 0;
mydsdph = 0;
for i=[1:3]
for j=[1:3]

mydsdth = mydsdth + dMdth(i,j)*P(i)*P(]J)
mydsdph = mydsdph + dMdph(i,3J)*P(i)*P(3J)
end
end

~

grad s = [mydsdth; mydsdph];

len grad s = sqgrt(grad s'*grad s);

if (len grad s < MINIMUMLENGTH )
break;

end



nu -grad s/len grad s;

myth?2
myph?2

= myth + alpha * nu(l);
myph + alpha * nu(2);

sth2
cth2
sph?2

sin (myth2

sin (myph?2

.
4
.
4

14

( )
cos (myth2)

( )

( ) ;

cph2 cos (myph?2) ;

t2 =
M2

[sth2*sph2;
zeros (3,3);

sth2*cph2; cth2];

for
for
for
for

=< Q T Y- -
I
L e

Nl

o w w w

M2(1i,3) + c(i,p,J,q)*t2(p)*t2(q);
end
end
end
end
[V2,L2] = eig (M2, "vector');
[L2min, k2] max (L2) ;
mys2 L2min;
if( mys2 < mys )
myth myth2;
myph myph?2;
mys mys2;
else
alpha alpha/2;
halvings = halvings + 1;
end
if( halvings > MAXHALVINGS )
break;
end

end

thslow = myth;
phslow myph;
sslow mys;

% Part 4, intermediate axis,
th = sin(thfast);
cth = cos(thfast);
sph sin (phfast);
( )

cph cos (phfast

perpendicular to other axes

0]

4



tfast = [sth*sph; sth*cph; cth];

sth = sin(thslow
cth cos (thslow
sph = sin(phslow
cph = cos (phslow) ;

tslow = [sth*sph; sth*cph; cth];

.
14

4

.
14

~_— — ~— ~—

tint = cross(tfast, tslow);

thint = atan( sgrt(tint(l)*tint(l)+tint(2)*tint(2)) / tint(3) );
phint = atan2( tint (1), tint(2) );

sth = sin(thint);
cth cos (thint) ;
( )
)

sph = sin(phint);
cph = cos (phint);

tint = [sth*sph; sth*cph; cth];

% ensure sign correct; that is fast cross intermediate = slow
if( tslow'*cross(tfast,tint) < 0 )

tint = -tint;
end

thint = atan( sgrt(tint(l)*tint (l)+tint(2)*tint(2)) / tint(3) );
phint = atan2( tint (1), tint(2) );

% I check that [tint'*tfast, tint'*tslow, tfast'*tslow ]=[0,0,0]
M = zeros(3,3);
for i=[1:3]
for j=[1:3]
for p=[1:3]
for g=[1:3]
M(i,3) = M(i,3) + c(i,p,3,q) *tint (p)*tint(q);
end
end
end
end
L = eig((M);
sint = max (L) ;

% rotate to these axes
cp = rot3x3x3x3( c, [tfast, tint, tslow]' );

end

function [Cout] = rot3x3x3x3(Cin,S)
Cout = zeros(3,3,3,3):;



for
for
for
for

S(1,

end
end
end
end
end
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: 3]
out (i, j,k,1) = Cout(i,j,k,1) +
J,a)*S(k,r)*S(1l,s)*Cin(p,g,r,8);



