
Finding the P-wave axes of the Elastic Tensor 

Bill Menke, September 26, 2019 

 

Contents: 

Section 1: The derivative of wave speed with respect to propagation direction. 

Section 2. Gradient method for minimizing/maximizing wave speed. 

Section 3. Grid search for a starting value. 

Section 4: Discussion of the appropriateness of non-degenerate perturbation theory 

Section 5: Discussion of equation for P-wave axes 

 

 

Section 1: The derivative of wave speed with respect to propagation direction. 

The wave polarization direction 𝐩 satisfies the eigenvalue problem: 

𝑀𝑖𝑗𝑝𝑗 = 𝑠 𝑝𝑖     

(1) 

Here 𝑠 = 𝜌𝑣2 where 𝜌 is density and 𝑣 is wave speed. The matrix 𝐌 depends upon propagation 

direction 𝐭: 

𝑀𝑖𝑗 = 𝑐𝑖𝑝𝑗𝑞𝑡𝑝𝑡𝑞 

(2) 

Let us now represent the propagation direction 𝐭 in terms of polar coordinates 𝜃 and 𝜑.   

𝐭(𝜃, 𝜑) = [
sin 𝜃 sin 𝜑
sin 𝜃 cos 𝜑

cos 𝜃

]    and    
𝜃 =  tan{(𝑡1

2 + 𝑡2
2)1/2/𝑡3}

𝜑 = tan2{𝑡1, 𝑡2}
 

(3) 

The goal is to compute the derivatives 𝑑𝑠 𝑑𝜃⁄  and 𝑑𝑠 𝑑𝜑⁄ , so that 𝑠(𝜃, 𝜑) can be minimized or 

maximized with respect to propagation direction.   

First-order non-degenerate perturbation theory allows us to calculate the perturbation ∆𝑠 of an 

eigenvalue caused by a perturbation ∆𝐌 of the associated matrix: 

∆𝑠 = ∆𝑀𝑖𝑗𝑝𝑖𝑝𝑗 

(4) 

I will argue later that non-degenerate perturbation is appropriate in this instance. The derivatives 

𝑑𝑠 𝑑𝜃⁄  and 𝑑𝑠/𝑑𝜑 can be inferred from Equation (4): 



∆𝑠 =
𝑑𝑠

𝑑𝜃
∆𝜃 =

𝑑𝑀𝑖𝑗

𝑑𝜃
𝑝𝑖𝑝𝑗∆𝜃    so   

𝑑𝑠

𝑑𝜃
=

𝑑𝑀𝑖𝑗

𝑑𝜃
𝑝𝑖𝑝𝑗 

∆𝑠 =
𝑑𝑠

𝑑𝜑
∆𝜑 =

𝑑𝑀𝑖𝑗

𝑑𝜑
𝑝𝑖𝑝𝑗∆𝜑    so   

𝑑𝑠

𝑑𝜑
=

𝑑𝑀𝑖𝑗

𝑑𝜑
𝑝𝑖𝑝𝑗 

(5) 

Applying the chain rule to the definition of 𝐌 in Equation (2) yields: 

𝑑𝑀𝑖𝑗

𝑑𝜃
= 𝑐𝑖𝑝𝑗𝑞

𝑑𝑡𝑝

𝑑𝜃
𝑡𝑞 + 𝑐𝑖𝑝𝑗𝑞𝑡𝑝

𝑑𝑡𝑞

𝑑𝜃
= 

= 𝑐𝑖𝑝𝑗𝑞

𝑑𝑡𝑝

𝑑𝜃
𝑡𝑞 + 𝑐𝑖𝑞𝑗𝑝

𝑑𝑡𝑝

𝑑𝜃
𝑡𝑞 = 𝑐𝑖𝑝𝑗𝑞

𝑑𝑡𝑝

𝑑𝜃
𝑡𝑞 + 𝑐𝑗𝑝𝑖𝑞

𝑑𝑡𝑝

𝑑𝜃
𝑡𝑞 = 2𝑐𝑖𝑝𝑗𝑞

𝑑𝑡𝑝

𝑑𝜃
𝑡𝑞 

 

𝑑𝑀𝑖𝑗

𝑑𝜑
= 𝑐𝑖𝑝𝑗𝑞

𝑑𝑡𝑝

𝑑𝜑
𝑡𝑞 + 𝑐𝑖𝑝𝑗𝑞𝑡𝑝

𝑑𝑡𝑞

𝑑𝜑
= 2𝑐𝑖𝑝𝑗𝑞

𝑑𝑡𝑝

𝑑𝜑
𝑡𝑞 

(6) 

Here we have used the fact that 𝑀𝑖𝑗 = 𝑀𝑗𝑖 (implying 𝑑𝑀𝑖𝑗 𝑑𝜃⁄ = 𝑑𝑀𝑗𝑖 𝑑𝜃⁄ ) and 𝑐𝑖𝑝𝑗𝑞 = 𝑐𝑗𝑝𝑖𝑞. 

The derivatives of the propagation direction are computed by differentiating Equation (3): 

𝑑𝐭

𝑑𝜃
= [

cos 𝜃 sin 𝜑
cos 𝜃 cos 𝜑

− sin 𝜃

]     and   
𝑑𝐭

𝑑𝜑
= [

sin 𝜃 cos 𝜑
− sin 𝜃 sin 𝜑

0

]    

Note that 𝑑𝐭 𝑑𝜃⁄  and 𝑑𝐭 𝑑𝜑⁄  are both perpendicular to 𝐭. 

(7) 

Section 2. Gradient method for minimizing/maximizing wave speed. 

Actually, we minimize/maximize 𝑠 = 𝜌𝑣2. 

Step 1. Find an initial guess for (𝜃, 𝜑) using a coarse grid search (see Part 3). 

Step 2: Compute 𝐭, 𝑑𝐭 𝑑𝜃⁄  and 𝑑𝐭 𝑑𝜑⁄  as in Equations (3) and (7). 

Step 3. Compute M, 𝑑𝐌 𝑑𝜃⁄  and 𝑑𝐌 𝑑𝜑⁄  as in Equations (2) and (6). 

Step 4. Extract the three eigenvalues 𝜆𝑖 and corresponding eigenvectors 𝐯(𝑖) of M. 

Step 5. Find the index of the largest eigenvalue 𝑘 = argmax
𝑖

𝜆𝑖 and set 𝑠 = 𝜆𝑘 and 𝐩 =

𝐯(𝑘). 

Step 6. Compute the gradient  𝐠 = [𝑑𝑠 𝑑𝜃⁄ , 𝑑𝑠 𝑑𝜑⁄ ]𝑇 as in Equation (5) and its direction 

𝐧 = 𝐠/|𝐠|. 



Step 7. Update (𝜃, 𝜑) using a gradient method, stepping in the either in the −𝐧 or +𝐧 

direction, depending upon whether 𝑠 is being minimized or maximized. 

 

Section 3. Grid search for a starting value. 

Step 1. Prepare a coarse grid (𝜃𝑚, 𝜑𝑛) with 0 ≤ 𝜃𝑚 ≤ 𝜋 and 0 ≤ 𝜑𝑛 ≤ 2𝜋. 

Step 2: Then, for each node on the grid, tabulate 𝑠𝑚𝑛 = 𝑠(𝜃𝑚, 𝜑𝑛): 

2A. Compute 𝐭 as in Equations (3). 

2B. Compute M as in Equations (2). 

2C. Extract the three eigenvalues 𝜆𝑖 of M. 

2D. Find the index of the largest eigenvalue 𝑘 = max
𝑖

𝜆𝑖 and set 𝑠𝑚𝑛 = 𝜆𝑘. 

Step 3: The starting value (𝜃𝑝, 𝜑𝑞) for minimizing 𝑠 is: 

(𝑝, 𝑞) = argmin
𝑚,𝑛

𝑠(𝜃𝑚, 𝜑𝑛) 

(8) 

The corresponding starting value for maximizing 𝑠 is: 

(𝑝, 𝑞) = argmax
𝑚,𝑛

𝑠(𝜃𝑚, 𝜑𝑛) 

(9) 

The intermediate direction, 𝐭𝑖𝑛𝑡 satisfies 𝐭𝑖𝑛𝑡 = ±(𝐭𝑓𝑎𝑠𝑡 × 𝐭𝑠𝑙𝑜𝑤) where the sign is chosen to 

insure a right-handed coordinate system 𝐭𝑠𝑙𝑜𝑤 = 𝐭𝑓𝑎𝑠𝑡 × 𝐭𝑖𝑛𝑡. The intermediate P-wave speed 

𝑠𝑖𝑛𝑡 = 𝜆𝑘 is the largest eigenvalue 𝜆𝑘 of 𝐌, were 𝐌 is calculated using Equation 2 with 𝐭 =

𝐭𝑠𝑙𝑜𝑤. The rotation matrix 𝐒 that takes 𝑐𝑖𝑗𝑝𝑞 into a coordinate system in which (𝐭𝑓𝑎𝑠𝑡, 𝐭𝑖𝑛𝑡, 𝐭𝑠𝑙𝑜𝑤) 

are parallel to (𝑥1, 𝑥2, 𝑥3) is 𝐒 = [𝐭𝑓𝑎𝑠𝑡, 𝐭𝑖𝑛𝑡, 𝐭𝑠𝑙𝑜𝑤]
T
. 

Note: I have checked this result numerically and it works fine. 

 

Section 4. I now return to the matter of the appropriateness of applying non-degenerate 

perturbation theory to the analysis of: 

𝐌𝐩(𝒊) = 𝑠𝑖  𝐩(𝒊)  →  (𝐌 + ∆𝐌)(𝐩(𝒊) + ∆𝐩(𝒊)) = (𝑠𝑖 + ∆𝑠𝑖) (𝐩(𝒊) + ∆𝐩(𝒊))  

(10) 

The key question is whether the largest eigenvalue, say 𝑠𝑘 is distinct; that is, has a value different 

than the other two eigenvalues.  In typical Earth materials, the answer is yes, since 𝑠𝑘 



corresponds to the P-wave velocity, where as the other two eigenvalues refer to the S-wave 

velocities, and in a typical Earth material the P-velocity is always higher than either of the two S-

velocities.  

Another interesting aspect of this perturbation problem arises from 𝑑𝐭 𝑑𝜃⁄  and 𝑑𝐭 𝑑𝜑⁄  both being 

perpendicular to 𝐭.  This behavior implies 𝑑𝑠 𝑑𝜃⁄ = 𝑑𝑠 𝑑𝜑⁄ = 0 in isotropic material. Denoting 

𝑑𝐭 𝑑𝜃⁄ = 𝐧 with 𝐭 ∙ 𝐧 = 0, we find in isotropic material with Lame coefficients 𝜆 and 𝜇: 

𝑐𝑖𝑝𝑗𝑞 = 𝜆𝛿𝑖𝑝𝛿𝑗𝑞 + 𝜇𝛿𝑖𝑗𝛿𝑝𝑞 + 𝜇𝛿𝑖𝑞𝛿𝑗𝑞 

𝑑𝑠 𝑑𝜃⁄ = (𝜆𝛿𝑖𝑝𝛿𝑗𝑞 + 𝜇𝛿𝑖𝑗𝛿𝑝𝑞 + 𝜇𝛿𝑖𝑞𝛿𝑗𝑝)𝑛𝑝𝑡𝑞𝑝𝑖𝑝𝑗 + (𝜆𝛿𝑖𝑝𝛿𝑗𝑞 + 𝜇𝛿𝑖𝑗𝛿𝑝𝑞 + 𝜇𝛿𝑖𝑞𝛿𝑗𝑝)𝑛𝑝𝑡𝑞𝑝𝑖𝑝𝑗 

= 𝜆𝑛𝑖𝑝𝑖𝑡𝑗𝑝𝑗 + 𝜇𝑛𝑖𝑡𝑖𝑝𝑗𝑝𝑗 + 𝜇𝑛𝑗𝑝𝑗𝑡𝑖𝑝𝑖 + 𝜆𝑛𝑖𝑝𝑖𝑡𝑗𝑝𝑗 + 𝜇𝑛𝑝𝑡𝑝𝑝𝑖𝑝𝑖 + 𝜇𝑛𝑗𝑝𝑗𝑡𝑖𝑝𝑖 = 0 

(11) 

Here we have used the fact that, for a P wave in an isotropic material, the polarization direction 𝐩 

is parallel to the propagation direction 𝐭, so 𝐧 ∙ 𝐩 = 0. The same argument applies for 𝑑𝑠 𝑑𝜑⁄ . 

Section 5: Discussion of equation for P-wave axes 

Suppose that we generically refer to the angles of propagation 𝜃 or 𝜑 as 𝛼. The condition that the 

wave speed (or rather eigenvalue 𝑠) is stationary with respect to small perturbations in 𝛼 is: 

 

0 =
𝑑𝑠

𝑑𝛼
=

𝑑𝑀𝑖𝑗

𝑑𝛼
𝑝𝑖𝑝𝑗 = 2𝑐𝑖𝑝𝑗𝑞

𝑑𝑡𝑝

𝑑𝛼
𝑡𝑞𝑝𝑖𝑝𝑗    for 𝛼 = 𝜃, 𝜑   

(12) 

Defining 𝑏𝑝 ≡ 𝑑𝑡𝑝 𝑑𝛼⁄  and noting  𝑏𝑝𝑡𝑝 = 0, we have 

0 = (𝑐𝑖𝑝𝑗𝑞𝑝𝑖𝑝𝑗)𝑡𝑞 𝑏𝑝  for all 𝐛 ⊥ 𝐭 

(13) 

Consider the eigenvalue problem 𝑁𝑝𝑞𝑡𝑞 = 𝜆𝑡𝑝 with 𝑁𝑝𝑞 = 𝑐𝑖𝑝𝑗𝑞𝑝𝑖𝑝𝑗 (where 𝑝𝑗 is fixed).  Then 

Equation (13) is equivalent to: 

0 = 𝜆 𝑡𝑝 𝑡𝑞 𝑏𝑝  for all 𝐛 ⊥ 𝐭 

(14) 

Equation (14) is satisfied trivially since 𝑡𝑝𝑏𝑝 = 0.  Hence the condition for an extremum in 𝑠 is: 

𝑐𝑖𝑝𝑗𝑞𝑝𝑖𝑝𝑗𝑡𝑞 = 𝜆𝑡𝑝   and   𝑐𝑖𝑝𝑗𝑞𝑡𝑝𝑡𝑞 𝑝𝑗 = 𝑠 𝑝𝑖     

(15) 

After contracting first equation by 𝑡𝑝 and the second by 𝑝𝑖 : 



𝜆 = 𝑐𝑖𝑝𝑗𝑞𝑝𝑖𝑝𝑗𝑡𝑞𝑡𝑝   and   𝑠 = 𝑐𝑖𝑝𝑗𝑞𝑡𝑝𝑡𝑞 𝑝𝑖𝑝𝑗      

(16) 

We conclude 𝜆 = 𝑠. We now manipulate Equation (16): 

𝑐𝑖𝑝𝑗𝑞𝑝𝑖𝑝𝑗𝑡𝑞 = 𝑠𝑡𝑝   and   𝑐𝑖𝑝𝑞𝑡𝑝𝑡𝑞 𝑝𝑗 = 𝑠𝑝𝑖     

(𝑠−1𝑐𝑖𝑝𝑗𝑞𝑝𝑗𝑡𝑞) 𝑝𝑝 = 𝑡𝑖   and   (𝑠−1𝑐𝑖𝑝𝑗𝑞𝑝𝑗𝑡𝑞) 𝑡𝑝  = 𝑝𝑖     

 𝑍𝑖𝑝 𝑝𝑝 = 𝑡𝑖   and    𝑍𝑖𝑝 𝑡𝑝  = 𝑝𝑖    with    𝑍𝑖𝑝 ≡ 𝑠−1𝑐𝑖𝑝𝑗𝑞𝑝𝑗𝑡𝑞 

(17) 

Here the symmetric matrix 𝐙 both takes 𝐩 into 𝐭 and 𝐭 into 𝐩. This transformation can happen in 

either of two ways. The first is when 𝐩‖𝐭 and 𝐙 = 𝐭𝐭T + α𝐮𝐮T + β𝐯𝐯T, where 𝐮, 𝐯 and 𝐭 are 

mutually perpendicular unit vectors and where α and β are constants; that is, 𝐙𝐲 leaves 

unchanged the component of 𝐲 parallel to 𝐭 while rescaling the components normal to 𝐭 and/or 

rotating them in the plane. The second is when 𝐩 ⊥ 𝐭 and 𝐙 = 𝐭𝐩T + 𝐩𝐭T + α𝐯𝐯T, where 𝐭, 𝐩 and 

𝐯 are mutually perpendicular unit vectors and where α and β; that is, 𝐙𝐲 interchanges the 𝐩 and 𝐭 

components of 𝐲, while rescaling the component parallel to 𝐯. Hence: 

𝑐𝑖𝑝𝑗𝑞𝑡𝑝𝑡𝑗𝑡𝑞 = 𝑠𝑡𝑖    with  𝑝𝑖 = 𝑡𝑖    or    𝑐𝑖𝑝𝑗𝑞𝑡𝑝𝑝𝑗𝑡𝑞  = 𝑠𝑝𝑖   with  𝑝𝑖𝑡𝑖 = 0 

(18a,b) 

Equation (18a) would seem to represent the P-wave and (18b) the S-wave.  Unfortunately, I do 

not know of a fast way of solving Equation (18a).  I have, however, checked that it is solved by 

the (𝑠, 𝐭) returned by the linearized solver described above (at least for a test case consisting of 

arbitrarily rotated 𝑐𝑖𝑗𝑝𝑞 corresponding to orthorhombic olivine). 

 

function [thfast, phfast, sfast, tfast, thint, phint, sint, 

tint, thslow, phslow, sslow, tslow, cp] = findaxes2(c) 

% find the fast, intermediate and slow directions and rho*v^2 of 

P wave in an anisotropic medium 

% c: 3x3x3x3 elacticity tensor 

% th and ph (in radians) polar angles of axis 

% t: unit vector of axi 

% s: rho*Vp^2 

% cp: c rotated so (fast int slow) are parallel to (x, y, z) 

  

% controls accuracy of gradient method 

MAXHALVINGS = 32; 

% controls detection of being very close to extermum 

MINIMUMLENGTH = 1e-6; 

  

%  PART 1:  Coarse Grid Search 



  

thmin = 0; 

thmax = pi; 

phmin = 0; 

phmax = 2*pi; 

Nth = 19; 

Nph = 31; 

th = thmin + (thmax-thmin)*[0:Nth-1]'/(Nth-1); 

ph = phmin + (phmax-phmin)*[0:Nph-1]'/(Nph-1); 

sfast = zeros( Nth, Nph ); 

  

for ith=[1:Nth] 

for iph=[1:Nph] 

    sth = sin(th(ith)); 

    cth = cos(th(ith)); 

    sph = sin(ph(iph)); 

    cph = cos(ph(iph)); 

    t = [sth*sph; sth*cph; cth]; 

    % I checked that t'*dtdth=0 and t'*dtdph=0 

    M = zeros(3,3); 

    dMdth = zeros(3,3); 

    dMdph = zeros(3,3); 

    for i=[1:3] 

    for j=[1:3] 

    for p=[1:3] 

    for q=[1:3] 

        M(i,j) = M(i,j) + c(i,p,j,q)*t(p)*t(q); 

    end 

    end 

    end 

    end 

    [V,L] = eig(M,'vector'); 

    sfast( ith, iph ) = max(L); 

end 

end 

  

[s1,k1] = max(sfast); 

[s2,k2] = max(s1); 

k3 = k1(k2); 

ithmax = k3; 

iphmax = k2; 

sgridmax = sfast(ithmax,iphmax); 

thmax = th(ithmax); 

phmax = ph(iphmax); 

  

[s1,k1] = min(sfast); 

[s2,k2] = min(s1); 



k3 = k1(k2); 

ithmin = k3; 

iphmin = k2; 

sgridmin = sfast(ithmin,iphmin); 

thmin = th(ithmin); 

phmin = ph(iphmin); 

  

% Part 2, refine fast axis 

  

myth = thmax; 

myph = phmax; 

alpha = (pi/180) * 1; 

halvings = 0; 

  

for itt=[1:100] 

sth = sin(myth); 

cth = cos(myth); 

sph = sin(myph); 

cph = cos(myph); 

  

t = [sth*sph; sth*cph; cth]; 

dtdth = [cth*sph; cth*cph; -sth]; 

dtdph = [sth*cph; -sth*sph; 0]; 

M = zeros(3,3); 

dMdth = zeros(3,3); 

dMdph = zeros(3,3); 

for i=[1:3] 

for j=[1:3] 

for p=[1:3] 

for q=[1:3] 

    M(i,j) = M(i,j) + c(i,p,j,q)*t(p)*t(q); 

    dMdth(i,j) = dMdth(i,j) + 2*c(i,p,j,q)*dtdth(p)*t(q); 

    dMdph(i,j) = dMdph(i,j) + 2*c(i,p,j,q)*dtdph(p)*t(q); 

end 

end 

end 

end 

[V,L] = eig(M,'vector'); 

[Lmax, k] = max(L); 

mys = Lmax; 

P = V(:,k); 

mydsdth = 0; 

mydsdph = 0; 

for i=[1:3] 

for j=[1:3] 

    mydsdth = mydsdth + dMdth(i,j)*P(i)*P(j); 

    mydsdph = mydsdph + dMdph(i,j)*P(i)*P(j); 



end 

end 

  

grad_s = [mydsdth; mydsdph]; 

nu = grad_s/sqrt(grad_s'*grad_s); 

  

myth2 = myth + alpha * nu(1); 

myph2 = myph + alpha * nu(2); 

  

sth2 = sin(myth2); 

cth2 = cos(myth2); 

sph2 = sin(myph2); 

cph2 = cos(myph2); 

  

t2 = [sth2*sph2; sth2*cph2; cth2]; 

M2 = zeros(3,3); 

  

for i=[1:3] 

for j=[1:3] 

for p=[1:3] 

for q=[1:3] 

    M2(i,j) = M2(i,j) + c(i,p,j,q)*t2(p)*t2(q); 

end 

end 

end 

end 

[V2,L2] = eig(M2,'vector'); 

[L2max, k2] = max(L2); 

mys2 = L2max; 

if( mys2 > mys ) 

    myth = myth2; 

    myph = myph2; 

    mys = mys2; 

else 

    alpha = alpha/2; 

    halvings = halvings + 1; 

end 

if( halvings > MAXHALVINGS ) 

    break; 

end 

  

end 

thfast = myth; 

phfast = myph; 

sfast = mys; 

  

% Part 3, refine slow axis 



  

myth = thmin; 

myph = phmin; 

alpha = (pi/180) * 1; 

halvings = 0; 

  

for itt=[1:100] 

sth = sin(myth); 

cth = cos(myth); 

sph = sin(myph); 

cph = cos(myph); 

  

t = [sth*sph; sth*cph; cth]; 

dtdth = [cth*sph; cth*cph; -sth]; 

dtdph = [sth*cph; -sth*sph; 0]; 

M = zeros(3,3); 

dMdth = zeros(3,3); 

dMdph = zeros(3,3); 

for i=[1:3] 

for j=[1:3] 

for p=[1:3] 

for q=[1:3] 

    M(i,j) = M(i,j) + c(i,p,j,q)*t(p)*t(q); 

    dMdth(i,j) = dMdth(i,j) + 2*c(i,p,j,q)*dtdth(p)*t(q); 

    dMdph(i,j) = dMdph(i,j) + 2*c(i,p,j,q)*dtdph(p)*t(q); 

end 

end 

end 

end 

[V,L] = eig(M,'vector'); 

[Lmin, k] = max(L); % code path min() -> max(), Menke 02/11/20 

mys = Lmin; 

P = V(:,k); 

mydsdth = 0; 

mydsdph = 0; 

for i=[1:3] 

for j=[1:3] 

    mydsdth = mydsdth + dMdth(i,j)*P(i)*P(j); 

    mydsdph = mydsdph + dMdph(i,j)*P(i)*P(j); 

end 

end 

  

grad_s = [mydsdth; mydsdph]; 

len_grad_s = sqrt(grad_s'*grad_s); 

if (len_grad_s < MINIMUMLENGTH ) 

    break; 

end 



nu = -grad_s/len_grad_s; 

  

myth2 = myth + alpha * nu(1); 

myph2 = myph + alpha * nu(2); 

  

sth2 = sin(myth2); 

cth2 = cos(myth2); 

sph2 = sin(myph2); 

cph2 = cos(myph2); 

  

t2 = [sth2*sph2; sth2*cph2; cth2]; 

M2 = zeros(3,3); 

  

for i=[1:3] 

for j=[1:3] 

for p=[1:3] 

for q=[1:3] 

    M2(i,j) = M2(i,j) + c(i,p,j,q)*t2(p)*t2(q); 

end 

end 

end 

end 

[V2,L2] = eig(M2,'vector'); 

[L2min, k2] = max(L2); 

mys2 = L2min; 

if( mys2 < mys ) 

    myth = myth2; 

    myph = myph2; 

    mys = mys2; 

else 

    alpha = alpha/2; 

    halvings = halvings + 1; 

end 

if( halvings > MAXHALVINGS ) 

    break; 

end 

  

end 

thslow = myth; 

phslow = myph; 

sslow = mys; 

  

% Part 4, intermediate axis, perpendicular to other axes 

sth = sin(thfast); 

cth = cos(thfast); 

sph = sin(phfast); 

cph = cos(phfast); 



tfast = [sth*sph; sth*cph; cth]; 

  

sth = sin(thslow); 

cth = cos(thslow); 

sph = sin(phslow); 

cph = cos(phslow); 

tslow = [sth*sph; sth*cph; cth]; 

  

tint = cross(tfast, tslow); 

thint = atan( sqrt(tint(1)*tint(1)+tint(2)*tint(2)) / tint(3) ); 

phint = atan2( tint(1), tint(2) ); 

  

sth = sin(thint); 

cth = cos(thint); 

sph = sin(phint); 

cph = cos(phint); 

tint = [sth*sph; sth*cph; cth]; 

  

% ensure sign correct; that is fast cross intermediate = slow 

if( tslow'*cross(tfast,tint) < 0 ) 

    tint = -tint; 

end 

  

thint = atan( sqrt(tint(1)*tint(1)+tint(2)*tint(2)) / tint(3) ); 

phint = atan2( tint(1), tint(2) ); 

% I check that [tint'*tfast, tint'*tslow, tfast'*tslow ]=[0,0,0] 

  

M = zeros(3,3); 

for i=[1:3] 

for j=[1:3] 

for p=[1:3] 

for q=[1:3] 

    M(i,j) = M(i,j) + c(i,p,j,q)*tint(p)*tint(q); 

end 

end 

end 

end 

L = eig(M); 

sint = max(L); 

  

% rotate to these axes 

cp = rot3x3x3x3( c, [tfast, tint, tslow]' ); 

  

end 

function [Cout] = rot3x3x3x3(Cin,S) 

Cout = zeros(3,3,3,3); 



for i=[1:3] 

for j=[1:3] 

for k=[1:3] 

for l=[1:3] 

    for p=[1:3] 

    for q=[1:3] 

    for r=[1:3] 

    for s=[1:3] 

        Cout(i,j,k,l) = Cout(i,j,k,l) + 

S(i,p)*S(j,q)*S(k,r)*S(l,s)*Cin(p,q,r,s); 

    end 

    end 

    end 

    end 

end 

end 

end 

end 

end 
 

 


