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(These note were done in preparation for working on a difficult tensor analysis problem in which 

I am interested but have so far found intractable). 

 

Part 1. Relations between Levi-Civita 𝜖𝑖𝑗𝑘  and Kronecker Delta 𝛿𝑖𝑗 for three dimensions. 

(Source: Wikipedia articles “Levi-Civita Symbol” and “Dyadics”). 

𝜖𝑖𝑗𝑘𝜖𝑙𝑚𝑛 = 𝛿𝑖𝑙(𝛿𝑗𝑚𝛿𝑘𝑛 − 𝛿𝑗𝑛𝛿𝑘𝑚) − 𝛿𝑖𝑚(𝛿𝑗𝑙𝛿𝑘𝑛 − 𝛿𝑗𝑛𝛿𝑘𝑙) + 𝛿𝑖𝑛(𝛿𝑗𝑙𝛿𝑘𝑚 − 𝛿𝑗𝑚𝛿𝑘𝑙) 

𝜖𝑖𝑗𝑘𝜖𝑖𝑝𝑞 = 𝛿𝑗𝑝𝛿𝑘𝑞 − 𝛿𝑗𝑞𝛿𝑘𝑝 

𝜖𝑖𝑗𝑘𝜖𝑖𝑗𝑛 = 2𝛿𝑘𝑛 

𝜖𝑖𝑗𝑘𝜖𝑖𝑗𝑘 = 6 

(1.1 a,b,c,d) 

Note also that: 

𝛿𝑖𝑗 = 𝑣𝑖
𝐴𝑣𝑗

𝐴 + 𝑣𝑖
𝐵𝑣𝑗

𝐵 + 𝑣𝑖
𝐶 𝑣𝑗

𝐶 

(1.2) 

for any three mutually perpendicular unit vectors 𝑣𝑖
𝐴 , 𝑣𝑖

𝐵 , 𝑣𝑖
𝐶 .  

Part 2. Exploration of the properties of the fourth order tensor 𝑑𝑗𝑘𝑚𝑛 = 𝑀𝑖𝑙𝜖𝑖𝑗𝑘𝜖𝑙𝑚𝑛, where 𝐌 is a 

symmetric second order tensor, 𝑀𝑖𝑗 = 𝑀𝑗𝑖 . 

𝑑𝑗𝑘𝑚𝑛 = 𝑀𝑖𝑙𝜖𝑖𝑗𝑘𝜖𝑙𝑚𝑛 

(2.1) 

𝑑𝑗𝑘𝑚𝑛 = 𝑀𝑖𝑙𝛿𝑖𝑙(𝛿𝑗𝑚𝛿𝑘𝑛 − 𝛿𝑗𝑛𝛿𝑘𝑚) − 𝑀𝑖𝑙𝛿𝑖𝑚(𝛿𝑗𝑙𝛿𝑘𝑛 − 𝛿𝑗𝑛𝛿𝑘𝑙) + 𝑀𝑖𝑙𝛿𝑖𝑛(𝛿𝑗𝑙𝛿𝑘𝑚 − 𝛿𝑗𝑚𝛿𝑘𝑙) = 

= 𝑀𝑖𝑖(𝛿𝑗𝑚𝛿𝑘𝑛 − 𝛿𝑗𝑛𝛿𝑘𝑚) − 𝑀𝑙𝑚(𝛿𝑗𝑙𝛿𝑘𝑛 − 𝛿𝑗𝑛𝛿𝑘𝑙) + 𝑀𝑙𝑛(𝛿𝑗𝑙𝛿𝑘𝑚 − 𝛿𝑗𝑚𝛿𝑘𝑙) = 

= 𝑀𝑖𝑖(𝛿𝑗𝑚𝛿𝑘𝑛 − 𝛿𝑗𝑛𝛿𝑘𝑚) − (𝑀𝑙𝑚𝛿𝑗𝑙𝛿𝑘𝑛 − 𝑀𝑙𝑚𝛿𝑗𝑛𝛿𝑘𝑙) + (𝑀𝑙𝑛𝛿𝑗𝑙𝛿𝑘𝑚 − 𝑀𝑙𝑛𝛿𝑗𝑚𝛿𝑘𝑙) = 

= 𝑀𝑖𝑖(𝛿𝑗𝑚𝛿𝑘𝑛 − 𝛿𝑗𝑛𝛿𝑘𝑚) − (𝑀𝑗𝑚𝛿𝑘𝑛 − 𝑀𝑘𝑚𝛿𝑗𝑛) + (𝑀𝑗𝑛𝛿𝑘𝑚 − 𝑀𝑘𝑛𝛿𝑗𝑚)   so 

𝑑𝑗𝑘𝑚𝑛 = 𝑀𝑖𝑖(𝛿𝑗𝑚𝛿𝑘𝑛 − 𝛿𝑗𝑛𝛿𝑘𝑚) + 𝑀𝑗𝑛𝛿𝑘𝑚 + 𝑀𝑘𝑚𝛿𝑗𝑛 − 𝑀𝑗𝑚𝛿𝑘𝑛 − 𝑀𝑘𝑛𝛿𝑗𝑚  

(2.2) 

The fourth order tensor can also be written: 

𝑑𝑝𝑞𝑘𝑙 = 𝑀𝑝𝑞̅̅ ̅̅ ,𝑘𝑙̅̅ ̅𝜖𝑝𝑞̅̅ ̅̅ ,𝑝,𝑞𝜖𝑘𝑙̅̅ ̅,𝑘,𝑙  

𝑝𝑞̅̅ ̅ = {
excluded index if 𝑝 ≠ 𝑞

0 if 𝑝 = 𝑞
     and     𝑀𝑖𝑗 = 0    if  𝑖 = 0 or 𝑗 = 0  



(2.3) 

Properties: 

𝑑𝑎𝑎𝑚𝑛 = 0   with no sum over 𝑎 

𝑑𝑎𝑎𝑚𝑛 = 𝑀𝑖𝑙𝜖𝑖𝑎𝑎𝜖𝑙𝑚𝑛 = 0 

𝑑𝑎𝑎𝑚𝑛 = 𝑀𝑖𝑖(𝛿𝑎𝑚𝛿𝑎𝑛 − 𝛿𝑎𝑛𝛿𝑎𝑚) + 𝑀𝑎𝑛𝛿𝑎𝑚 + 𝑀𝑎𝑚𝛿𝑎𝑛 − 𝑀𝑎𝑚𝛿𝑎𝑛 − 𝑀𝑎𝑛𝛿𝑎𝑚 = 

= 𝑀𝑖𝑖(0) + 𝑀𝑎𝑛𝛿𝑎𝑚 − 𝑀𝑎𝑛𝛿𝑎𝑚 + 𝑀𝑎𝑚𝛿𝑎𝑛 − 𝑀𝑎𝑚𝛿𝑎𝑛 = 0 

(2.3) 

𝑑𝑝𝑞𝑎𝑎 = 0   with no sum over 𝑎 

𝑑𝑗𝑘𝑎𝑎 = 𝑀𝑖𝑗𝜖𝑖𝑗𝑘𝜖𝑗𝑎𝑎 = 0 

𝑑𝑗𝑘𝑎𝑎 = 𝑀𝑖𝑖(𝛿𝑗𝑎𝛿𝑘𝑎 − 𝛿𝑗𝑎𝛿𝑘𝑎) + 𝑀𝑗𝑎𝛿𝑘𝑎 + 𝑀𝑘𝑎𝛿𝑗𝑎 − 𝑀𝑗𝑎𝛿𝑘𝑎 − 𝑀𝑘𝑎𝛿𝑗𝑎 = 

= 𝑀𝑖𝑖(0) + 𝑀𝑗𝑎𝛿𝑘𝑎 − 𝑀𝑗𝑎𝛿𝑘𝑎 + 𝑀𝑘𝑎𝛿𝑗𝑎 − 𝑀𝑘𝑎𝛿𝑗𝑎 = 0 

(2.4) 

𝑑𝑗𝑘𝑚𝑛 = 𝑑𝑚𝑛𝑗𝑘 

𝑑𝑚𝑛𝑗𝑘 = 𝑀𝑙𝑖𝜖𝑖𝑚𝑛𝜖𝑙𝑗𝑘 = 𝑀𝑖𝑙𝜖𝑙𝑚𝑛𝜖𝑖𝑗𝑘 = 𝑀𝑖𝑙𝜖𝑖𝑗𝑘𝜖𝑙𝑚𝑛 = 𝑑𝑗𝑘𝑚𝑛 

𝑑𝑚𝑛𝑗𝑘 = 𝑀𝑖𝑖(𝛿𝑚𝑗𝛿𝑛𝑘 − 𝛿𝑚𝑘𝛿𝑛𝑗) + 𝑀𝑚𝑘𝛿𝑛𝑗 + 𝑀𝑛𝑗𝛿𝑚𝑘 − 𝑀𝑚𝑗 𝛿𝑛𝑘 − 𝑀𝑛𝑘𝛿𝑚𝑗 = 

= 𝑀𝑖𝑖(𝛿𝑗𝑚𝛿𝑘𝑛 − 𝛿𝑘𝑚𝛿𝑗𝑛) + 𝑀𝑗𝑛𝛿𝑘𝑚 + 𝑀𝑚𝑘𝛿𝑗𝑛 − 𝑀𝑗𝑚𝛿𝑘𝑛 − 𝑀𝑘𝑛𝛿𝑗𝑚 = 𝑑𝑗𝑘𝑚𝑛 

(2.5) 

𝑑𝑘𝑗𝑚𝑛 = −𝑑𝑗𝑘𝑚𝑛 

𝑑𝑘𝑗𝑚𝑛 = 𝑀𝑖𝑙𝜖𝑖𝑘𝑗𝜖𝑙𝑚𝑛 = −𝑀𝑖𝑙𝜖𝑖𝑗𝑘𝜖𝑗𝑚𝑛 = −𝑑𝑗𝑘𝑚𝑛  

𝑑𝑘𝑗𝑚𝑛 = 𝑀𝑖𝑖(𝛿𝑘𝑚𝛿𝑗𝑛 − 𝛿𝑘𝑛𝛿𝑗𝑚) + 𝑀𝑘𝑛𝛿𝑗𝑚 + 𝑀𝑗𝑚𝛿𝑘𝑛 − 𝑀𝑘𝑚𝛿𝑗𝑛 − 𝑀𝑗𝑛𝛿𝑘𝑚 = 

= −𝑀𝑖𝑖(𝛿𝑗𝑚𝛿𝑘𝑛 − 𝛿𝑗𝑛𝛿𝑘𝑚) − 𝑀𝑗𝑛𝛿𝑘𝑚 − 𝑀𝑘𝑚𝛿𝑗𝑛 + 𝑀𝑗𝑚𝛿𝑘𝑛 + 𝑀𝑘𝑛𝛿𝑗𝑚 = −𝑑𝑗𝑘𝑚𝑛 

(2.6) 

𝑑𝑗𝑘𝑛𝑚 = −𝑑𝑗𝑘𝑚𝑛 

𝑑𝑗𝑘𝑚𝑛 = 𝑀𝑖𝑙𝜖𝑖𝑗𝑘𝜖𝑙𝑛𝑚 = −𝑀𝑖𝑙𝜖𝑖𝑗𝑘𝜖𝑙𝑚𝑛 = −𝑑𝑗𝑘𝑚𝑛  

𝑑𝑗𝑘𝑛𝑚 = 𝑀𝑖𝑖(𝛿𝑗𝑛𝛿𝑘𝑚 − 𝛿𝑗𝑚𝛿𝑘𝑛) + 𝑀𝑗𝑚𝛿𝑘𝑛 + 𝑀𝑘𝑛𝛿𝑗𝑚 − 𝑀𝑗𝑛𝛿𝑘𝑚 − 𝑀𝑘𝑚𝛿𝑗𝑛 = 

= −𝑀𝑖𝑖(𝛿𝑗𝑚𝛿𝑘𝑛 − 𝛿𝑗𝑛𝛿𝑘𝑚) − 𝑀𝑗𝑛𝛿𝑘𝑚 − 𝑀𝑘𝑚𝛿𝑗𝑛 + 𝑀𝑗𝑚𝛿𝑘𝑛 + 𝑀𝑘𝑛𝛿𝑗𝑚 = −𝑑𝑗𝑘𝑚𝑛 

(2.7) 

𝑑2323 = 𝑀11 



𝑑2323 = 𝑀𝑖𝑗𝜖𝑖23𝜖𝑗23 = 𝑀11𝜖123𝜖123 = (1)(1)𝑀11 = 𝑀11 

𝑑2323 = 𝑀𝑖𝑖(𝛿22𝛿33 − 𝛿23𝛿32) + 𝑀2𝑛𝛿32 + 𝑀32𝛿23 − 𝑀22𝛿33 − 𝑀33𝛿22 = 

= 𝑀𝑖𝑖 − 𝑀22 − 𝑀33 = 𝑀11 

(2.8) 

𝑑1313 = 𝑀22 

𝑑1313 = 𝑀𝑖𝑗𝜖𝑖13𝜖𝑗13 = 𝑀22𝜖213𝜖213 = (−1)(−1)𝑀13 = 𝑀22 

𝑑131𝑛 = 𝑀𝑖𝑖(𝛿11𝛿33 − 𝛿13𝛿31) + 𝑀13𝛿31 + 𝑀31𝛿13 − 𝑀11𝛿33 − 𝑀33𝛿11 = 

= 𝑀𝑖𝑖 + 𝑀13𝛿31 − 𝑀11𝛿33 − 𝑀33𝛿11 = 𝑀22  

(2.9) 

𝑑1212 = 𝑀33 

𝑑1212 = 𝑀𝑖𝑗𝜖𝑖12𝜖𝑗12 = 𝑀33𝜖312𝜖312 = (1)(1)𝑀33 = 𝑀33 

𝑑1212 = 𝑀𝑖𝑖(𝛿11𝛿22 − 𝛿12𝛿21) + 𝑀12𝛿21 + 𝑀21𝛿12 − 𝑀11𝛿22 − 𝑀22𝛿11 = 

= 𝑀𝑖𝑖 − 𝑀11 − 𝑀22 = 𝑀33 

(2.10) 

𝑑1323 = 𝑀12 

𝑑1323 = 𝑀𝑖𝑗𝜖𝑖13𝜖𝑗23 = 𝑀21𝜖213𝜖123 = (−1)(1)𝑀12 = −𝑀12 

𝑑1323 = 𝑀𝑖𝑖(𝛿12𝛿33 − 𝛿13𝛿32) + 𝑀13𝛿32 + 𝑀32𝛿13 − 𝑀12𝛿33 − 𝑀33𝛿12 = −𝑀12 

(2.11) 

𝑑1223 = 𝑀13 

𝑑1223 = 𝑀𝑖𝑗𝜖𝑖12𝜖𝑗23 = 𝑀31𝜖312𝜖123 = (1)(1)𝑀13 = 𝑀13 

𝑑1223 = 𝑀𝑖𝑖(𝛿12𝛿23 − 𝛿13𝛿22) + 𝑀13𝛿22 + 𝑀22𝛿13 − 𝑀12𝛿23 − 𝑀23𝛿12 = 𝑀13 

(2.12) 

𝑑1213 = −𝑀23 

𝑑1213 = 𝑀𝑖𝑗𝜖𝑖12𝜖𝑗13 = 𝑀32𝜖312𝜖213 = (1)(−1)𝑀23 = −𝑀23 

𝑑1213 = 𝑀𝑖𝑖(𝛿11𝛿23 − 𝛿13𝛿21) + 𝑀13𝛿21 + 𝑀21𝛿13 − 𝑀11𝛿23 − 𝑀23𝛿11 = −𝑀23 

(2.13) 

Part 3. Proof that, in three dimensions, if two eigenvectors 𝑣𝑖
𝐴 and 𝑣𝑖

𝐵, together with 

corresponsing eigenvalues 𝜆𝐴 and 𝜆𝐵, are known for a symmetric tensor 𝑀𝑖𝑗 , then the remaining 

eigenvector is 𝐯𝐶 = 𝐯𝐴 × 𝐯𝐵 and the corresponding eigenvalue is 𝜆𝐶 = tr(𝐌) − 𝜆𝐴 − 𝜆𝐵. We start with: 



𝑀𝑖𝑗𝑣𝑗
𝐴 = 𝜆𝐴 𝑣𝑗

𝐴     with    𝜆𝐴 = 𝑀𝑖𝑗𝑣𝑖
𝐴𝑣𝑗

𝐴    and   𝑣𝑖
𝐴𝑣𝑗

𝐴 = 1 

𝑀𝑖𝑗𝑣𝑗
𝐵 = 𝜆𝐵 𝑣𝑗

𝐵     with    𝜆𝐵 = 𝑀𝑖𝑗𝑣𝑖
𝐵𝑣𝑗

𝐵   and   𝑣𝑖
𝐵𝑣𝑗

𝐵 = 1 

𝑀𝑖𝑗(𝜖𝑗𝑘𝑙 𝑣𝑘
𝐴𝑣𝑙

𝐵) = 𝜆𝐶𝑣𝑖
𝐶       with       𝜆𝐶 = 𝑀𝑖𝑗𝑣𝑖

𝐶𝑣𝑗
𝐶    and   𝑣𝑖

𝐶 = 𝜖𝑖𝑗𝑘𝑣𝑗
𝐴𝑣𝑘

𝐵       

𝑣𝑖
𝑋𝑣𝑖

𝑌 = 𝛿𝑋𝑌 

(3.1) 

First, note 𝑣𝑖
𝐶  is a unit vector: 

𝑣𝑖
𝐶𝑣𝑖

𝐶 = 𝜖𝑖𝑗𝑘𝜖𝑖𝑝𝑞𝑣𝑗
𝐴𝑣𝑘

𝐵𝑣𝑝
𝐴𝑣𝑞

𝐵  = (𝛿𝑗𝑝𝛿𝑘𝑞 − 𝛿𝑗𝑞𝛿𝑘𝑝)𝑣𝑗
𝐴𝑣𝑘

𝐵𝑣𝑝
𝐴𝑣𝑞

𝐵 = 𝑣𝑗
𝐴𝑣𝑗

𝐴𝑣𝑞
𝐵𝑣𝑞

𝐵 − 𝑣𝑗
𝐴𝑣𝑗

𝐵𝑣𝑘
𝐵𝑣𝑘

𝐴 = 1 + 0 = 1  

(3.2) 

Now let us solve for 𝜆𝐶: 

𝜆𝐶 =  𝑣𝑖
𝐶𝑀𝑖𝑗𝑣𝑗

𝐶 =  𝑀𝑖𝑙(𝜖𝑖𝑗𝑘𝑣𝑗
𝐴𝑣𝑘

𝐵)(𝜖𝑙𝑚𝑛𝑣𝑚
𝐴 𝑣𝑛

𝐵) =  𝑀𝑖𝑙𝜖𝑖𝑗𝑘𝜖𝑙𝑚𝑛𝑣𝑗
𝐴𝑣𝑘

𝐵𝑣𝑚
𝐴 𝑣𝑛

𝐵 = 

= 𝑀𝑖𝑙𝜖𝑖𝑗𝑘𝜖𝑙𝑚𝑛𝑣𝑗
𝐴𝑣𝑘

𝐵𝑣𝑚
𝐴 𝑣𝑛

𝐵 =  𝑑𝑗𝑘𝑚𝑛𝑣𝑗
𝐴𝑣𝑘

𝐵𝑣𝑚
𝐴 𝑣𝑛

𝐵 = 

=  {𝑀𝑖𝑖(𝛿𝑗𝑚𝛿𝑘𝑛 − 𝛿𝑗𝑛𝛿𝑘𝑚) + 𝑀𝑗𝑛𝛿𝑘𝑚 + 𝑀𝑘𝑚𝛿𝑗𝑛 − 𝑀𝑗𝑚𝛿𝑘𝑛 − 𝑀𝑘𝑛𝛿𝑗𝑚}𝑣𝑗
𝐴𝑣𝑘

𝐵𝑣𝑚
𝐴 𝑣𝑛

𝐵 = 

= {𝑀𝑖𝑖(𝛿𝑗𝑚𝛿𝑘𝑛𝑣𝑗
𝐴𝑣𝑘

𝐵𝑣𝑚
𝐴 𝑣𝑛

𝐵 − 𝛿𝑗𝑛𝛿𝑘𝑚𝑣𝑗
𝐴𝑣𝑘

𝐵𝑣𝑚
𝐴 𝑣𝑛

𝐵) + 𝑀𝑗𝑛𝛿𝑘𝑚𝑣𝑗
𝐴𝑣𝑘

𝐵𝑣𝑚
𝐴 𝑣𝑛

𝐵 + 𝑀𝑘𝑚𝛿𝑗𝑛𝑣𝑗
𝐴𝑣𝑘

𝐵𝑣𝑚
𝐴 𝑣𝑛

𝐵

− 𝑀𝑗𝑚𝛿𝑘𝑛𝑣𝑗
𝐴𝑣𝑘

𝐵𝑣𝑚
𝐴 𝑣𝑛

𝐵 − 𝑀𝑘𝑛𝛿𝑗𝑚𝑣𝑗
𝐴𝑣𝑘

𝐵𝑣𝑚
𝐴 𝑣𝑛

𝐵} = 

=  {𝑀𝑖𝑖 ((𝑣𝑗
𝐴𝑣𝑗

𝐴)(𝑣𝑘
𝐵𝑣𝑘

𝐵) − (𝑣𝑗
𝐴𝑣𝑗

𝐵)(𝑣𝑘
𝐴𝑣𝑘

𝐵)) + (𝑣𝑛
𝐵𝑀𝑛𝑗 𝑣𝑗

𝐴)(𝑣𝑘
𝐵𝑣𝑘

𝐴) + (𝑣𝑘
𝐵𝑀𝑘𝑚𝑣𝑚

𝐴 )(𝑣𝑗
𝐴𝑣𝑗

𝐵)

− (𝑣𝑗
𝐴𝑀𝑗𝑚𝑣𝑚

𝐴 )(𝑣𝑘
𝐵𝑣𝑘

𝐵) − (𝑣𝑘
𝐵𝑀𝑘𝑛𝑣𝑛

𝐵)(𝑣𝑗
𝐴𝑣𝑗

𝐴)} = 

= {𝑀𝑖𝑖 − (𝑣𝑗
𝐴𝑀𝑗𝑚𝑣𝑚

𝐴 ) − (𝑣𝑘
𝐵𝑀𝑘𝑛𝑣𝑛

𝐵)} = tr(𝐌) − 𝜆𝐴 − 𝜆𝐵 

(3.4) 

Thus, as expected, 𝜆𝐴 + 𝜆𝐵 + 𝜆𝐶 = tr(𝐌).  Note that result alternately can be arrived using Equation 

(1.2): 

tr(𝐌) = 𝑀𝑖𝑗𝛿𝑖𝑗 = 𝑀𝑖𝑗𝑣𝑖
𝐴𝑣𝑗

𝐴 + 𝑀𝑖𝑗𝑣𝑖
𝐵𝑣𝑗

𝐵 + 𝑀𝑖𝑗𝑣𝑖
𝐶𝑣𝑗

𝐶 = 𝜆𝐴 + 𝜆𝐵 + 𝜆𝐶  

(3.5) 

We now verify that 𝑙𝑝 ≡ 𝜆𝐶
−1𝑀𝑝𝑖(𝜖𝑖𝑗𝑘𝑣𝑗

𝐴𝑣𝑘
𝐵) (with 𝜆𝐶 ≠ 0) is a unit vector: 

𝜆𝐶
2𝑙𝑝𝑙𝑝 = 𝑀𝑝𝑖(𝜖𝑖𝑗𝑘𝑣𝑗

𝐴𝑣𝑘
𝐵)𝑀𝑝𝑙(𝜖𝑙𝑚𝑛𝑣𝑙

𝐴𝑣𝑚
𝐵 ) = (𝑀𝑝𝑖𝑀𝑝𝑙)𝜖𝑖𝑗𝑘𝜖𝑙𝑚𝑛𝑣𝑗

𝐴𝑣𝑘
𝐵𝑣𝑙

𝐴𝑣𝑚
𝐵 = 𝑊𝑖𝑙𝜖𝑖𝑗𝑘𝜖𝑙𝑚𝑛𝑣𝑗

𝐴𝑣𝑘
𝐵𝑣𝑙

𝐴𝑣𝑚
𝐵  

(3.6) 

Where 𝑊𝑖𝑙 ≡ 𝑀𝑝𝑖𝑀𝑝𝑙  is a symmetric tensor with eigenvalues 𝜆𝐴
2, 𝜆𝐵

2  and 𝜆𝐶
2 .  Since equation has the same 

form as the one previously considered, we can write: 

𝜆𝐶
2𝑙𝑝𝑙𝑝 = tr(𝐒) − 𝜆𝐴

2 − 𝜆𝐵
2 = 𝜆𝐶

2  



(3.7) 

Hence, we conclude that 𝑙𝑝𝑙𝑝 = 1 as long as 𝜆𝐶 ≠ 0. 

Finally, let us write the left and right hand sides of the eigenvalue equation as: 

𝑙𝑝 ≡  𝜆𝐶
−1𝑀𝑝𝑖(𝜖𝑖𝑗𝑘𝑣𝑗

𝐴𝑣𝑘
𝐵)   and   𝑣𝑝 ≡ (𝜖𝑝𝑞𝑟𝑣𝑞

𝐴𝑣𝑟
𝐵)    

(3.8) 

We have already established in (3.2) and (3.7) that  𝑣𝑝  and 𝑙𝑝 are unit vectors (as long as 𝜆𝐶 ≠ 0).  

Furthermore, we have also established that 𝑙𝑝𝑣𝑝 = 1.  The only way that the dot product between two unit 

vectors can be unity is if the two vectors are equal. Hence, 𝑙𝑝 = 𝑣𝑝 and the eigenvalue equation is 

satisfied.  For the 𝜆𝐶 = 0 case, the eigenvalue equation becomes 𝑀𝑖𝑗(𝜖𝑗𝑘𝑙𝑣𝑘
𝐴𝑣𝑙

𝐵) = (0)(𝜖𝑖𝑝𝑞𝑣𝑝
𝐴𝑣𝑞

𝐵) =

[0]𝑖.  We can trivially modify the result in (3.7) above to show that  |𝑀𝑖𝑗(𝜖𝑗𝑘𝑙 𝑣𝑘
𝐴𝑣𝑙

𝐵)| = 𝜆𝐶 = 0 and then, 

noting that a vector is equal to the zero vector when it has zero length, conclude that the eigenvalue 

equation is satisfied. 

I think that the above proof, “the cross product between any two eigenvectors is also an eigenvector” 

could also be used to prove that, when the eigenvalues are distinct, there can be only three mutually-

perpendicular eigenvectors.  But I am not pursuing the matter. 

Part 4. An alternate proof. Another way to prove that the cross-product satisfies the eigenvalue equation is 

to use the relationship: 

𝜖𝑖𝑗𝑘𝑀𝑖𝑤𝑀𝑗𝑝𝑀𝑘𝑞 = det(𝐌) 𝜖𝑤𝑝𝑞  

(3.9) 

(Source: Wikipedia article “Determinant”). Presuming 𝜆𝐴 ≠ 0 and 𝜆𝐵 ≠ 0: 

𝜆 𝐴
−1𝑀𝑖𝑗𝑣𝑗

𝐴 = 𝑣𝑗
𝐴   

𝜆 𝐵
−1𝑀𝑖𝑗𝑣𝑗

𝐵 = 𝑣𝑗
𝐵   

𝑣𝑖
𝐶 = 𝜖𝑖𝑗𝑘𝑣𝑗

𝐴𝑣𝑘
𝐵 = 𝜆 𝐴

−1𝜆 𝐵
−1(𝜖𝑖𝑗𝑘𝑀𝑗𝑝𝑀𝑘𝑞)(𝑣𝑝

𝐴 𝑣𝑞
𝐵) 

𝑀𝑤𝑖𝑣𝑖
𝐶 = 𝜖𝑖𝑗𝑘𝑣𝑗

𝐴𝑣𝑘
𝐵 = 𝜆 𝐴

−1𝜆 𝐵
−1(𝜖𝑖𝑗𝑘𝑀𝑖𝑤𝑀𝑗𝑝𝑀𝑘𝑞)(𝑣𝑝

𝐴 𝑣𝑞
𝐵) 

𝑀𝑤𝑖 𝑣𝑖
𝐶 = 𝜆 𝐴

−1𝜆 𝐵
−1 det(𝐌) (𝜖𝑤𝑝𝑞𝑣𝑝

𝐴  𝑣𝑞
𝐵) 

𝑀𝑤𝑖𝑣𝑖
𝐶 = 𝜆𝐶𝑣𝑖

𝐶   with    𝜆𝐶 = 𝜆 𝐴
−1𝜆 𝐵

−1 det(𝐌) 

(3.10) 

Note that this derivation yields the well-known rule, det(𝐌) = 𝜆𝐴𝜆𝐵𝜆𝐶 .  I have not tried to work out a 

patch for the case 𝜆𝐴 = 0 and/or 𝜆𝐵 = 0. 

Part 5.  Proof that if 𝜆𝐴 = 𝜆𝐵 = 𝜆  any linear combination 𝑣𝑖 = 𝑐𝐴𝑣𝑖
𝐴 + 𝑐𝐵𝑣𝑖

𝐵  is an eigenvector: 

𝜆𝑣𝑖 = 𝜆𝑐𝐴𝑣𝑖
𝐴 + 𝜆𝑐𝐵𝑣𝑖

𝐵 = 𝑐𝐴𝑀𝑖𝑗𝑣𝑗
𝐴 + 𝑐𝐵𝑀𝑖𝑗𝑣𝑗

𝐵 = 𝑀𝑖𝑗(𝑐𝐴𝑣𝑗
𝐴 + 𝑐𝐵𝑣𝑗

𝐵 ) = 𝑀𝑖𝑗𝑣𝑗 

(3.11) 


