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I am concerned here with the inverse problem of using observations of the non-double-couple 

component of earthquakes to determine the anisotropy of the Earth in the source region. 

In the weak-anisotropy limit, we can think of the elastic tensor 𝑐𝑖𝑗𝑝𝑞   as consisting of the sum of 

an isotropic part 𝑐𝑖𝑗𝑝𝑞
(0)

 and an anisotropic perturbation ∆𝑐𝑖𝑗𝑝𝑞 . Furthermore, the perturbation can 

be constructed by summing perturbations associated with each of the of twenty-one independent 

ways that ∆𝑐𝑖𝑗𝑝𝑞can be varied:  ∆𝑐𝑖𝑗𝑝𝑞 = ∑ 𝑚𝑠∆𝑐𝑖𝑗𝑝𝑞
(𝑠)21

𝑠=1 .  Here ∆𝑐𝑖𝑗𝑝𝑞
(𝑠)

 represents the unit 

perturbation of one independent set of elements of ∆𝑐𝑖𝑗𝑝𝑞  and 𝑚𝑠 is an amplitude. 

The unit moment tensor 𝑀𝑖𝑗 of an earthquake is related to the fault matrix 𝐷𝑖𝑗 by 𝑀𝑖𝑗 =

𝑐𝑖𝑗𝑝𝑞𝐷𝑝𝑞 . The fault matrix 𝐃 can be parameterized by the strike, dip and rake (𝜑, 𝜆, 𝛿) of the 

fault and a formula for it can be obtained from the expression for the moment tensor on page 112 

of Aki and Rickards (2009) by setting 𝜇𝐴 = 1. The explosive component of 𝐌 is 𝑋 = ⅓ tr(𝐌) 

and the CLVD component 𝑉 is equal to the eigenvalue of 𝐌 with least absolute value.  

Now consider a suite of (𝑘 = 1 ⋯ 𝑀) earthquakes on faults with strike, dip and rake 

(𝜑𝑘, 𝜆𝑘, 𝛿𝑘), explosive components 𝑋𝑘 ≡ 𝑋(𝜑𝑘, 𝜆𝑘, 𝛿𝑘) and CLVD components 𝑉𝑘 ≡

𝑉(𝜑𝑘, 𝜆𝑘, 𝛿𝑘).  Because the anisotropy is weak, 𝑋𝑘  and 𝑉𝑘  can be consider linear functions of the 

perturbations: 

𝑋𝑘 ≡ 𝑋(𝜑𝑘, 𝜆𝑘, 𝛿𝑘) = 𝑋𝑘
(0)

+ ∑ 𝐺𝑘𝑠
𝑋 𝑚𝑠

21

𝑖=1
    with    𝐺𝑘𝑠

𝑋 =
𝜕𝑋𝑘

𝜕∆𝑐𝑖𝑗𝑝𝑞

(𝑗)
 

𝑉𝑘 ≡ 𝑉(𝜑𝑘, 𝜆𝑘 , 𝛿𝑘) = 𝑉𝑘
(0)

+ ∑ 𝐺𝑘𝑠
𝑉 𝑚𝑠

21

𝑖=1
    with    𝐺𝑘𝑠

𝑉 =
𝜕𝑉𝑘

𝜕∆𝑐𝑖𝑗𝑝𝑞
(𝑠)

 

The 𝑋(0)and 𝑉(0) terms are zero, since the unperturbed medium is isotopic.  The explosive 

component 𝑋 = ⅓𝑐𝑖𝑖𝑝𝑞𝐷𝑝𝑞  is a linear function of ∆𝑐𝑖𝑗𝑝𝑞
(𝑠)

. Hence, the kernel 𝐺𝑘𝑠
𝑋  exists and is 

trivial to calculate.  Since 𝑉 involves extracting an eigenvalue, it is a non-linear function of 𝑐𝑖𝑖𝑝𝑞 .  

However, for small 𝑚𝑠 𝐺𝑘𝑠
𝑉  can easily be calculated using perturbation theory.  In the large 𝑚𝑠 

case, 𝐺𝑘𝑠
𝑉  can be subject to the “eigenvalue switching” problem, and can have discontinuities. 

We now view these equations as an inverse problem for unknown  𝑚𝑖 given observed 𝑋𝑘  and 𝑉𝑘 .  

A key question is whether the problem is unique. 

We know 21 three-dimensional angular patterns associated with 𝐺𝑘𝑝
𝑋  and 21 more associated 

with 𝐺𝑘𝑝
𝑉 .  If among these 42 patterns there are 21 of them that are linearly independent, then the 

21 unknowns are uniquely determined.  However, we expect that at most 19 patterns can be 



determined uniquely; the other two correspond to isotropic perturbations (that is, variations in 

Lame parameter 𝜆 and 𝜇) that have 𝑋 = 𝑉 = 0. 

We approach this problem numerically. We evaluate 𝐺𝑘𝑠
𝑋  and 𝐺𝑘𝑠

𝑉  on a 5° × 5° × 5° grid of 

(𝜑𝑘, 𝜆𝑘, 𝛿𝑘).  We then use singular value decomposition to determine the number of independent 

patterns (which is equal to the number of non-zero singular values).  We find: 

 

Data Number of Non-zero Singular values 

𝑋 only 5 

𝑉 only 14 

𝑋 and 𝑉 19 

 

A plot of the singular values is shown in Figure 1. When both 𝑋 and 𝑉 are used, all 19 

coefficients can be recovered; the inversion is unique, up to isotropic perturbations (Figure 2). 

On the other hand, for  𝑋-only and 𝑉-only inversions, fewer than 19 coefficients can be 

recovered; these inversions are non-unique. The seven unresolved combinations of elastic 

parameters are shown for the 𝑉 -only case (Figure 3). 

 

Figure 1.  Singular values, normalized and sorted by size.  (Red) 𝑋 only, (green) 𝑉 only, (black) 

both 𝑋 and 𝑉.  Two choices of isotropic medium, with Lame coefficients (𝜆, 𝜇) of (1.1,1) and 

(2.1,1), respectively, gave this same result. 

 



 

Figure 2.  The two unresolved linear combinations of elastic parameters for a “both 𝑋 and 𝑉” 

inversion, here shown as 6 × 6 Voigt matrices 𝐶𝑖𝑗. They correspond to two different linear 

combinations of the Lame parameters λ and 𝜇. Only the elements 𝐶14, 𝐶15, 𝐶16, 𝐶24, 𝐶25, 𝐶26, 

𝐶34, 𝐶35, 𝐶36, 𝐶45, 𝐶46 and 𝐶56 are fully-resolved. 

 

 

Figure 3.  The seven unresolved linear combinations of elastic parameters for a 𝑉-only inversion, 

here shown as 6 × 6 Voigt matrices 𝐶𝑖𝑗. Only the elements 𝐶14, 𝐶25 and 𝐶36 are fully-resolved. 

 

 


