Is Cross-correlating Displacement or Velocity Better in Ambient Noise Studies? Bill Menke, February 26, 2020 (after conversation with Josh Russell)

Suppose we correlate two signals a(t) and b(t) to get $c(t) = a(t) \star b(t)$ where \star signifies cross-correlation. In the frequency domain, we have $c(\omega) = a(\omega)\overline{b}(\omega)$ where $c(\omega)$ is the cross spectrum and where $\overline{signifies}$ complex conjugation.

Now suppose that we form two other signals, a'(t) = T(t) * a(t) and b'(t) = T(t) * b(t)where T(t) is some operator. For example, the choice $T(t) = -\partial \delta/\partial t$, where $\delta(t)$ is the Dirac impulse function, implements differentiation. The cross correlation is c'(t) = a'(t) * b'(t). Following the general approach of Menke and Menke (2016, their equation 9.24), we rewrite the equation using convolutions, noting that a(t) * b(t) = a(t) * b(-t), where * signifies convolution:

$$c'(t) = a'(t) \star b'(t) = (T(t) \star a(t)) \star (T(-t) \star b(-t)) =$$

= $(T(t) \star T(-t)) \star (a(t) \star b(-t)) = (T(t) \star T(t)) \star (a(t) \star b(t)) =$
= $X(t) \star (a(t) \star b(t))$ with $X(t) \equiv (T(t) \star T(t))$

Here, X(t) is the autocorrelation of T(t), a function which is symmetric about t = 0. Consequently, c'(t) is related to c(t) by a symmetric filter that does not introduce any phase shifts.

In the frequency domain:

$$c'(\omega) = \left(T(\omega)\overline{T}(\omega)\right) * \left(a(\omega)\ \overline{b}(\omega)\right) = |T(\omega)|^2 c(\omega) = X(\omega)c(\omega)$$

Note that $X(\omega)$ is a real-valued function. Consequently, $c'(\omega)$ is related to $c(\omega)$ by modulation by an envelope function $X(\omega)$.

Thus, any zero-crossing in $c(\omega)$ will also be zero-crossings of $c'(\omega)$, and as long as $T(\omega)$ has no zero-crossings, $c'(\omega)$ will have exactly the same number of zero-crossings as $c(\omega)$. The only effect of $T(\omega)$ is to modulate the overall shape of the cross-spectrum $c'(\omega)$.

So, whether one cross-correlates displacement u(t) or velocity v(t) or raw seismogram output¹ s(t) is unimportant, except for aesthetics in plotting, since the choice effects that relative amplitude of different frequency bands and can be used to suppress parts of the cross-spectrum that is dominate by noise, or to emphasize frequency bands that are important to the analysis.

¹Presuming the response of the two seismometers are the same.

Reference:

Menke, W. and J. Menke, Environmental Data Analysis with MATLAB, Second Edition (textbook), Academic Press (Elsevier), 342pp, 2016.