Data Winnowing via Importance Bill Menke, April 21, 2020

Consider a linear inverse problem $\mathbf{Gm} = \mathbf{d}$ for data \mathbf{d} (of length N) and model parameters \mathbf{m} (of length M). The estimated model parameters are $\mathbf{m}^{\text{est}} = \mathbf{G}^{-g} \mathbf{d}^{\text{obs}}$, where \mathbf{G}^{-g} is a generalized inverse, and their covariance is \mathbf{C} . The problem that I am considering is how to select the subset $\hat{\mathbf{d}}$, of length $\hat{N} < N$, that leads to model parameters $\hat{\mathbf{m}}^{\text{est}}$ having a covariance $\hat{\mathbf{C}}$ that is as close as possible to \mathbf{C} .

The predicted data is $\mathbf{d}^{\mathrm{obs}} = \mathbf{G}\mathbf{m}^{\mathrm{est}}$. Inserting $\mathbf{m}^{\mathrm{est}} = \mathbf{G}^{-g}\mathbf{d}^{\mathrm{obs}}$ into this equation yields $\mathbf{d}^{\mathrm{pre}} = \mathbf{G}\mathbf{G}^{-g}\mathbf{d}^{\mathrm{obs}} \equiv \mathbf{N}\mathbf{d}^{\mathrm{obs}}$. When data resolution matrix $\mathbf{N} \equiv \mathbf{G}\mathbf{G}^{-g}$ is unequal to the identity matrix, each predicted data is a non-trivial linear combination of the observed data. The importance vector $\mathbf{n} \equiv \mathrm{diag}(\mathbf{N})$ quantifies the extent to which a datum contributes to its own prediction.

My idea is to solve the problem with all N data, compute the importance **n**, and then remove the datum with the least importance, leading to a dataset of length N - 1. The process is repeated until the length \hat{N} is reached.

The method seems to work on test cases of a strait line fit and a quadratic fit. Some theoretical development is going to be needed to understand the general case.

Example 1. Straight line $d_i = m_1 + x_i m_2$, where x is an auxiliary variable, N = 101, each datum has a different prior variance $\sigma_{d_i}^2$, and $\hat{N} = 6$. Note in Figure 1 that the procedure selects low-error data from the ends of the interval.

Fig. 1. (A) The observed data \mathbf{d}^{obs} (black circles), the predicted data \mathbf{d}^{pre} (black line) and the predicted data (green line) based on the winnowed data $\mathbf{\hat{d}}^{obs}$ (red circles). (B) Square root of the prior variance of \mathbf{d}^{obs} . (C) and (D) Square root of the posterior variances of m_1 and m_2 , respectively, as a function of \hat{N} .

Example 1. Same as the previous example, but for the quadratic curve $d_i = m_1 + x_i m_2 + x_i^2 m_3$. The solution is by weighted least-squares. Note in Figure 1 that the procedure selects low-error data from the ends of the interval and at its center.

Fig. 1. (A) The observed data \mathbf{d}^{obs} (black circles), the predicted data \mathbf{d}^{pre} (black line) and the predicted data (green line) based on the winnowed data $\mathbf{\hat{d}}^{obs}$ (red circles). (B) Square root of the prior variance of \mathbf{d}^{obs} . (C), (D) and (E) Square root of the posterior variances of m_1 , m_2 and m_3 , respectively, as a function of \hat{N} .

Core Part of Algorithm

```
% weighted least squares inversion
W = diag(sigmad.^{(-2)});
GMG = (G' * W * G) \setminus (G' * W);
mest = GMG*dobs;
dpre = G*mest;
Cm = GMG * diag(sigmad.^(2)) * GMG';
NN = G * GMG; % data resolution matrx
n = diag(NN); % data imporantance
% set up for "whittling away" iteration
Nshort = N;
xshort = x;
dshort = dobs;
sigmadshort = sigmad;
mshort = mest;
NNshort = NN;
nshort = n;
Cmshort = Cm;
Cmall = zeros(N, M, M);
Cmall(1,:,:)=Cm;
fprintf('%d m %.2f %.2f cov slope %.4f\n', Nshort, mshort(1),
mshort(2), Cmshort(2,2));
% "whittling away" iteration
for iter = [2:N-Nfinal+1]
[nsort, irow] = sort(nshort, 'descend');
Nshort = Nshort-1;
irow = irow(1:Nshort);
dshort = dshort(irow);
xshort = xshort(irow);
sigmadshort = sigmadshort(irow);
Gshort = [ones(Nshort, 1), xshort];
Wshort = diag(sigmadshort.(-2));
GMGshort = (Gshort'*Wshort*Gshort) \ (Gshort'*Wshort);
mshort = GMGshort*dshort;
dpreshort = Gshort*mshort;
Cmshort = GMGshort * diag(sigmadshort.^(2)) * GMGshort';
Cmall(iter,:,:)=Cmshort;
NNshort = Gshort * GMGshort; % data resolution matrx
nshort = diag(NNshort); % data imporantance
fprintf('%d m %.2f %.2f cov slope %.4f\n', Nshort, mshort(1),
mshort(2), Cmshort(2,2));
end
```