
The Bateman Attenuation Model 

Bill Menke, May 28, 2020 

 

The dispersion relation is (Aki and Richards, 2009, page 169, eqn 13): 

 

These authors define the Hilbert transform ℋ as (Aki and Richards, 2009, page 169, eqn 13) 

 

We relate the attenuation rate 𝛼 to a quality factor 𝑄 by 𝛼(𝜔) = 𝜔/(2𝑄𝑐∞). The quality factor 

𝑄(𝜔) is an odd function of angular frequency 𝜔 (Aki and Richards, 2009, page 164). 

Consequently, attenuation rate 𝛼(𝜔) is an even function of frequency.  

Quality factor is 𝑄(𝜔) is assumed to obey the empirical law 𝑄 = 𝑄0 sgn(𝜔) (|𝜔| 𝜔0⁄ )𝛼, where 

𝑄0 > 0 and 𝜔0 > 0 are constants and 0 < 𝛼 < 1 (typically,  𝛼 ≈ 0.4).  Consequently: 
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Bateman (1954, page 249, eqn 30) gives the following Hibert transform pair.: 

 

 

I have checked the formula numerically.  The discreet Hilbert transform matches the it, except 

for a sign and a slight d.c. shift.  I attribute the sign to a sign flip in Matlab’s definition of the 

Hilbert transform, and the d.c. shift to an issue with the zero-frequency component in the 

underlying discrete Fourier transform. 



Note that the Bateman (1954) definition of the Hilbert transform is the same as the one by Aki 

and Richards (2009). Identifying 𝜈 − 1 = −𝛼, we see that 𝜈 = 1 − 𝛼. Note that the condition is 

satisfied; that is, 0 < 𝜈 < 1 for 𝛼 ≈ 0.4. We then have: 
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Note that tan{½𝜋(1 − 𝛼)} = tan{½𝜋 − ½𝜋𝛼} = cot{½𝜋𝛼}, and also that 𝜔 𝜔0⁄ = 𝑓 𝑓0⁄ , 

where 𝑓 if frequency, so the formula reduces to: 
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Here ∆𝑠 is the slowness change. When 𝛼 = 0.4,  cot{½𝜋𝛼} ≈ 1.38. 

In the example below, we simulate shear wave propagation through typical asthenosphere with 

𝑐∞ = 4.5 km/s, 𝑄0 = 80, 𝑓0 = 0.1 Hz, 𝛼 = 0.4 and compare the results with the quasi-constant 

𝑄 Azimi et al. (1968) model.  Based on this simulation, we make the following observations: 

1. The velocity dispersion of the two models is very similar, with velocity increasing with 

frequency at a rate of about 0.05 km/s per log10Hz (Figures 1).  The Azimi et al. (1968) 

dispersion is more linear than the Bateman (1954) model. 

2. The Bateman (1954) attenuation operator is narrower than the Azimi et al. (1968) attenuation 

operator, because the latter has a lower quality factor at the higher frequencies (Figure 2). 

 
Figure 1.  Comparison of the Bateman (1954) (black) and Azimi et al. (1968) (red) models of 

the variation of  (A) quality factor 𝑄(𝑓) and (B) shear velocity 𝑉𝑆(𝑓) with frequency 𝑓. In 

both cases, 𝑄(𝑓0) = 80 (a typical value for the asthenosphere). 

 



 
Figure 2.  Comparison of the Bateman (1954) (black) and Azimi et al. (1968) (red) attenuation 

operators, for propagation through 300 km of attenuating material. The Bateman (1954) model 

has 𝑐∞ = 4.5 km/s, 𝑄0 = 80, 𝑓0 = 0.1 Hz, 𝛼 = 0.4. The Azimi et al. (1968) model has 𝑐∞ =
4.5 km/s,  𝑄0 = 80, 𝑓0 = 0.1 Hz and 𝑓𝑐𝑜𝑟𝑛𝑒𝑟 = 5 Hz.  Both operators have been bandpass 

filtered between 0.01 and 1.0 Hz, to simulate a seismometer response. 
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Exemplary MATLAB code 

function [ t, pulse0, pulse, f, Qw, cw ] = bateman( N, Dt, x, cinf, 

Q0, f0, alpha ) 

 

% Q model Q(f) = Q0 * (f/f0)^alpha 

% input parameters: 

 

% N  number of samples in pulse (e.g. 1024); 

% Dt sampling interbal (e.g. 0.1) 

% x  propagation distance in km (e.g. 100) 

% cinf base velocity in km/s (e.g. 4.5); 

% Q0  refrence quality factor (e.g. 80) 

% f0 reference frequency in hz (e.g. 0.1) 

% alpha frequency dependence of quality factor (e.g. 0.4) 



 

% returned values 

% t time array 

% pulse0 input pulse, a unit spike at time N/2 

% pulse attenuated pulse 

% f frequencies in Hz 

% Qw frequency dependent quality factors 

% cw frequency dependent phase velocities 

 

% time series 

t = Dt*[0:N-1]'; 

pulse0 = zeros(N,1); 

pulse0(N/2)=1; 

 

% standard fft setup 

fny = 1/(2*Dt); 

N2 = N/2+1; 

df = fny / (N/2); 

f = df*[0:N2-1]'; 

w = 2*pi*f; 

w0 = 2*pi*f0; 

 

% Using Bateman's (1954) Hilbert transform pair 

% f(w) = sgn(w) abs(w)^(nu-1)  when 0<nu<1 

% H(f) = tan(nu pi / 2) abs(w)^(nu-1) 

 

Qw = Q0 * ((w/w0).^alpha); 

a = w./(2*Qw*cinf); 

a(1)=0; 

b = 1/(2*Q0*cinf); 

c = cot(pi*alpha/2); 

ds = b*c*((w/w0).^(-alpha)); 

ds(1)=0; 

sw = (1/cinf) + ds; 

cw = 1./sw; 

cw(1)=0; 

 

dt = fft(pulse0); 

dp = dt(1:N2); 

dp = dp .* exp(-a*x) .* exp(-complex(0,1)*w.*ds.*x); 

dtnew = [dp(1:N2);conj(dp(N2-1:-1:2))]; % fold out negative 

frequencies 

pulse = real(ifft(dtnew)); 

 

end 

 


