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Synopsis.  The posterior probability of dimension is not meaningful when the trans-dimensional 

model parameterization allows a high-dimensional model to be exactly equivalent to a low-

dimensional model (in the sense of predicting all the same data). 

 

Introduction 

I am concerned here with a trans-dimensional inversion for model parameters 𝐦 using observed 

data 𝐝𝑜𝑏𝑠 based on Bayes theorem: 

𝑃(𝐦|𝐝𝑜𝑏𝑠) =
𝑃(𝐝𝑜𝑏𝑠|𝐦)𝑃𝐴(𝐦)

𝑃(𝐝𝑜𝑏𝑠)
 

Here 𝐦 is understood to be trans-dimensional and consisting of a set of 𝑁-dimensional vectors 

𝐦(𝑁) (𝑁 = 𝑁𝑚𝑖𝑛 ⋯ 𝑁𝑚𝑎𝑥), each of which is associated with a model space 𝕄𝑁. For simplicity, I 

restrict model parameters to be on an integers lattice 𝕄𝑁 = ℤ𝑝
𝑁; that is, with |𝑚𝑖

(𝑁)
| ≤ 𝑝(𝑁), 

where 𝑝(𝑁) is a positive integer.  The prior distribution is denoted 𝑃𝐴(𝐦). The posterior 

probability 𝑃(𝐦|𝐝𝑜𝑏𝑠) of the model can be written: 

𝑃(𝐦|𝐝𝑜𝑏𝑠) = 𝑃(𝐦(𝑁)|𝑁, 𝐝𝑜𝑏𝑠) 𝑃(𝑁|𝐝𝑜𝑏𝑠) 

where 𝑃(𝑁|𝐝𝑜𝑏𝑠) is the posterior probability of the model being 𝑁-dimensional.  My interest 

here is the behavior of 𝑃(𝑁|𝐝𝑜𝑏𝑠) when the model is “hierarchical”. 

By “hierarchical”, I mean the special case where models in the sequence 𝐦(1), 𝐦(2), 𝐦(3)  ⋯ 

have increasing complexity.  A sequence of Fourier cosine series: 

𝑚(𝑥) = ∑ 𝑚𝑘
(𝑁)

cos(2𝜋𝑛𝑥)

𝑁

𝑘=0

   with   𝑁 = 1, 2, 3 ⋯ 𝑀  

is of this form, for its ability to represent a complicated 𝑚(𝑥) increases with 𝑁. A property of 

this trans-dimensional representations is that an (𝑁 − 1) dimensional representation is “nested” 

within an 𝑁 dimensional one, in the sense that the latter is made equivalent to the former by 

requiring 𝑚𝑁
(𝑁)

= 0.  As I shall argue below, this redundancy in the trans-dimensional model 

representation produces undesirable behavior in Bayesian estimates of the probability 𝑃(N|𝐝𝑜𝑏𝑠) 

Motivating Example 

Consider a trans-dimensional model 𝐦 that is either a 2-vector (dimension 𝑁 = 2) or a 3-vector 

(dimension 𝑁 = 3), where the elements of the vectors take on the binary values (0,1).  This 

simple trans-dimensional model has 22 + 23 = 4 + 8 = 12 discrete states. 



Suppose that the prior probability 𝑃𝐴(𝑁 = 2) of the model being a 2-vector is ½ and the model 

being a 3-vector is ½. Furthermore, suppose that if the model is a 2-vector, then its 𝐽2 = 4 states 

have equal probability 𝑃𝐴(𝐦|𝑁 = 2) = 1/4 and that if it is a three-vector its 𝐽3 = 8 states have 

equal probability 𝑃𝐴(𝐦|𝑁 = 3) = 1/8.  Here, 𝐽𝑁 is the number of model states with dimension 

𝑁. 

Suppose that the observations consist of one datum 𝑑 = ∑ 𝑚𝑖𝑖  and that it is measured with 

sufficient accuracy that 𝑃(𝑑𝑜𝑏𝑠|𝐦) ≈ 1  when 𝑑𝑜𝑏𝑠 = 𝑑(𝐦) and that 𝑃(𝑑𝑜𝑏𝑠|𝐦) ≈ 0  when 

𝑑𝑜𝑏𝑠 ≠ 𝑑(𝐦). 

Now suppose  𝑑𝑜𝑏𝑠 = 0.  We apply Bayes theorem to calculate the posterior probability 

𝑃(𝐦|𝑑𝑜𝑏𝑠): 

𝑃(𝐦|𝑑𝑜𝑏𝑠) =
𝑃(𝑑𝑜𝑏𝑠|𝐦)𝑃𝐴(𝐦)

𝑃(𝑑𝑜𝑏𝑠)
=

𝑃(𝑑𝑜𝑏𝑠|𝐦)𝑃𝐴(𝐦)

∑ 𝑃(𝑑𝑜𝑏𝑠|𝐦(𝒊))𝑃(𝐦(𝒊))𝑖

 

with ∑ 𝑃(d|𝐦(𝒊))𝑃(𝐦(𝒊))

𝑖

=
1

8
+

1

16
=

3

16
 

The probability that the dimension is 𝑁 = 2 is: 

𝑃(𝑁 = 2|𝑑𝑜𝑏𝑠) = ∑ 𝑃(𝐦(𝒊)|𝑑𝑜𝑏𝑠)

2−𝑣𝑒𝑐𝑡𝑜𝑟 𝑠𝑡𝑎𝑡𝑒𝑠 𝑖

= (
1

8
) (

3

16
)⁄ =

2

3
 

and the probability that the dimension is 𝑁 = 3 is: 

𝑃(𝑁 = 3|𝑑𝑜𝑏𝑠) = ∑ 𝑃(𝐦(𝒊)|𝑑𝑜𝑏𝑠)

3−𝑣𝑒𝑐𝑡𝑜𝑟 𝑠𝑡𝑎𝑡𝑒𝑠 𝑖

= (
1

16
) (

3

16
)⁄ =

1

3
 

Similar calculations can be performed for 𝑑𝑜𝑏𝑠 = 1 and 𝑑𝑜𝑏𝑠 = 2 (see Appendix). The results 

are summarized as follows: 

 𝑑𝑜𝑏𝑠 𝑃(𝑁 = 2|𝑑𝑜𝑏𝑠) 𝑃(𝑁 = 3|𝑑𝑜𝑏𝑠)

𝑝𝑟𝑖𝑜𝑟 1/2 1/2
0 2/3 1/3
1 4/7 3/7
2 2/5 3/5
3 0 1

 

The probability of the dimension is a strong function of 𝑑𝑜𝑏𝑠. The 𝑁 = 2 model is most probable 

when  𝑑𝑜𝑏𝑠 ≤ 1 and the 𝑁 = 3 model when  𝑑𝑜𝑏𝑠 = 2.  Superficially, this behavior is acceptable; 

in general, we expect the data to provide information on the dimension. 

But what aspect of the data provides information on dimensionality?  The data is just the sum of 

the model parameters.  How does the process of summing discriminate between possible 

dimensions? 



Analysis 

Bayes Theorem indicates that, in the above example, the ratio 𝑟 of dimensional probabilities is: 

𝑟 =
𝑃(𝑁 = 2|𝑑𝑜𝑏𝑠)

𝑃(𝑁 = 3|𝑑𝑜𝑏𝑠)
=

∑ 𝑃(𝐦(𝒊)|𝑑𝑜𝑏𝑠)2−𝑣𝑒𝑐𝑡𝑜𝑟 𝑠𝑡𝑎𝑡𝑒𝑠 𝑖

∑ 𝑃(𝐦(𝒊)|𝑑𝑜𝑏𝑠)3−𝑣𝑒𝑐𝑡𝑜𝑟 𝑠𝑡𝑎𝑡𝑒𝑠 𝑖

= 

=

∑ {
1 if 𝑑𝑜𝑏𝑠 = 𝑑(𝐦(𝒊))

0 otherwise
} 𝑃𝐴(𝐦(𝒊))2−𝑣𝑒𝑐𝑡𝑜𝑟 𝑠𝑡𝑎𝑡𝑒𝑠  𝑖

∑ {1 if 𝑑𝑜𝑏𝑠 = 𝑑(𝐦(𝒊))
0 otherwise

} 𝑃𝐴(𝐦(𝒊))3−𝑣𝑒𝑐𝑡𝑜𝑟 𝑠𝑡𝑎𝑡𝑒𝑠 𝑖

= 

=

∑ 𝑃𝐴(𝐦(𝒊))2−𝑣𝑒𝑐𝑡𝑜𝑟 𝑠𝑡𝑎𝑡𝑒𝑠 𝑖
𝑡ℎ𝑎𝑡 𝑠𝑎𝑡𝑖𝑠𝑦 𝑡ℎ𝑒 𝑑𝑎𝑡𝑎

∑ 𝑃𝐴(𝐦(𝒊))3−𝑣𝑒𝑐𝑡𝑜𝑟 𝑠𝑡𝑎𝑡𝑒𝑠 𝑖
𝑡ℎ𝑎𝑡 𝑠𝑎𝑡𝑖𝑠𝑦 𝑡ℎ𝑒 𝑑𝑎𝑡𝑎

 

In the special case where the prior asserts that all model states with the same dimension have 

equal probability, 𝑃𝐴(𝐦(𝒊)|𝑁) = 1/𝐽𝑁, where 𝐽𝑁 is the number of model states in dimension 𝑁.  

If  𝐾𝑁 is the number of states of an 𝑁-vector that satisfy the data (the “multiplicity”), then: 

 

𝑟 =
𝐾2

𝐽2

𝐾3

𝐽3
⁄  

 

Consequently, the ratio depends on the fraction of model states that satisfy the data for each 

dimension.  I consider this behavior to be “unintuitive”. Given that at least one state in each 

dimension satisfies the data exactly, my intuitive notion is that the ratio of probabilities should be 

given by the prior. However, since: 

𝑟 ≠
𝐽3

𝐽2
 

my intuitive notion is wrong! The value of 𝑟 depends on the number degree of non-uniqueness of 

the different dimensions, too. 

Criticism 

My finding that the degree of non-uniqueness affects the posterior probability of dimension is 

especially troublesome in hierarchical models, when a lower dimensional model is nested within 

a higher dimensional model, and especially when many distinct instances of the lower 

dimensional model are nested within the higher dimensional one. 

The following layered parameterization is a nested set of hierarchical models:  Suppose that the 

layering is in the 𝑥-direction in the interval (0, 𝑋). A model with 𝑛 layers has 𝑁 = 2𝑛 − 1 model 

parameters: (𝑛 − 1) layer thicknesses ℎ𝑖 and 𝑛 layer material properties 𝑣𝑖 .  Suppose also that the 

data depends only upon the 𝑥-variation of 𝑣(𝑥) and not on the presence or absence of layer 



interfaces.    In this case, a model with a small number of layers is multiply nested within the 

space of models with a larger number of layers. An example with a multiplicity of three is shown 

(Figure 1). Furthermore, the multiplicity is not the same for all choices of the lower-dimensional 

model.  For instance, the example in Figure 1 would have a multiplicity of four if, for all layers, 

𝑣𝑖 = 7. 

When the prior assigns all dimensions equally probability, and all model states within a 

dimension equal probability; then 𝑃𝐴(𝐦(𝑁)|𝑁) = 1/𝐽𝑁 declines rapidly with 𝑁.  Suppose that 

the data is exactly satisfied by a state of low dimension 𝑁0. The multiplicity 𝐾𝑁 of this state 

within a higher dimension may grow rapidly with 𝑁.  Thus, 𝑃(𝑁|𝑑𝑜𝑏𝑠) ∝ 𝐾𝑁/𝐽𝑁 may be peaked 

at some dimension 𝑁 > 𝑁0.  While the position of this peak depends upon the data, it does so 

only because multiplicity is a data-dependent function; that is 𝐾𝑁(𝑑𝑜𝑏𝑠).  Thus, the posterior 

probability of the dimension has very little to do with any property of the data, and a lot to do 

with the combinatoric properties of the model parameterization. 

However, I have found that constructing a “natural” non-nested hierarchy of models to be 

difficult. However, any nested parameterization can be “unnested” by explicitly excluding from 

𝕄𝑁 all model states that appear within any lower dimensional space.   

The Fourier cosine representation mentioned earlier can be made into a non-nested 

parameterization by requiring that 𝑚𝑁
(𝑁)

≠ 0.  The condition only eliminates a state on the 

boundary of ℤ𝑝
𝑁, and does not open “holes” within it. My sense is that model spaces with 

complicated topologies should be avoided, because they complicate the application of sampling 

algorithms such as Metropolis-Hastings. 

Another “almost perfect” parameterization is a set of layered models where the number of layers 

is a prime number, the layers of a given dimension all have equal thickness, and model 

parameters are layer properties (Figure 2).  No higher dimensional model is exactly equivalent to 

any given lower dimensional one, except for the trivial case of all layer properties being equal.  

This 1: 1: ⋯ : 1 line through ℤ𝑁 needs to be explicitly excluded from the spaces 𝕄𝑁, 𝑁 >

1 (which creates a “hole” through them).   

Parameterizations in which the model space 𝕄𝑁 contains redundancies are problematic even 

when no nesting occurs, because a “physically-reasonable” prior may be difficult to state. 

Consider the case where the data depends only upon 𝑣(𝑥) and where that function is represented 

as a Gaussian Process with 𝑛 training points; that is, 𝑁 = 2𝑛 and 𝐦(𝑁) =
[𝑥1, 𝑣1, 𝑥2, 𝑣2, ⋯ 𝑥𝑛, 𝑣𝑛] 𝑇.  Because the order of training points is arbitrary, a given function 

𝑣(𝑥) is represented 𝑛! times within the model space.  The prior assumption that all dimensions 

are equally probable and all model states within a dimension are equally probable implies 

𝑃𝐴(𝐦(𝑁)) = 1/(𝑀𝐽𝑁).  Changing the latter assumption to distinguishable states having equal 

probability implies 𝑃𝐴(𝐦(𝑁)) = (½𝑁)!/(𝑀𝐽𝑁).  The latter formula would seem to be the more 

“physically-reasonable” definition of the prior.  However, stating it requires a detailed 

understanding of the redundancies inherent in particular parameterization, which may not be 

available in all cases. 



 

 

 
Fig. 1. A nested hierarchical trans-dimensional layered model in which interfaces must be at 

integer positions 𝑥𝑖 (black numerals) with  0 < 𝑥 < 5 and layer property 𝑣𝑖 (red numerals) 

must be an integer value 0 < 𝑣𝑖 < 11.  The two-layer model (A) is equivalent to three 

different four-layer models (B-D). 

 

 
Fig. 2. A non-nested hierarchical trans-dimensional layered model in which interfaces must be 

evenly distributed between  0 < 𝑥𝑖 < 5 (black numerals) and layer properties 𝑣𝑖 (red 

numerals) must be an integer value 0 < 𝑣𝑖 < 11.  No three-layer model (A) is equivalent to 

any 5, 7 or 11 layer model, though some are close (B-D). 

 

Appendix. 



Case of 𝑑𝑜𝑏𝑠 = 1.  Two 2-vector states (1,0) and (0,1) and three 3-vector states (1,0,0) 

(0,1,0) and (0,0,1) have non-zero probability, so: 

∑ 𝑃(d|𝐦(𝒊))𝑃(𝐦(𝒊))

𝑖

=
2

8
+

3

16
=

7

16
 

The probability that the dimension is 𝑁 = 2 is: 

𝑃(𝑁 = 2|𝑑𝑜𝑏𝑠) = ∑ 𝑃(𝐦(𝒊)|𝑑𝑜𝑏𝑠)

2−𝑣𝑒𝑐𝑡𝑜𝑟 𝑠𝑡𝑎𝑡𝑒𝑠 𝑖

= (
2

8
) (

7

16
)⁄ =

4

7
 

and the probability that the dimension is 𝑁 = 3 is: 

𝑃(𝑁 = 3|𝑑𝑜𝑏𝑠) = ∑ 𝑃(𝐦(𝒊)|𝑑𝑜𝑏𝑠)

3−𝑣𝑒𝑐𝑡𝑜𝑟 𝑠𝑡𝑎𝑡𝑒𝑠 𝑖

= (
3

16
) (

7

16
)⁄ =

3

7
 

 

Case of 𝑑𝑜𝑏𝑠 = 2.  One 2-vector states (1,1) and three 3-vector states (1,1,0) 

(1,0,1) and (0,1,1) have non-zero probability, so: 

∑ 𝑃(d|𝐦(𝒊))𝑃(𝐦(𝒊))

𝑖

=
1

8
+

3

16
=

5

16
 

The probability that the dimension is 𝑁 = 2 is: 

𝑃(𝑁 = 2|𝑑𝑜𝑏𝑠) = ∑ 𝑃(𝐦(𝒊)|𝑑𝑜𝑏𝑠)

2−𝑣𝑒𝑐𝑡𝑜𝑟 𝑠𝑡𝑎𝑡𝑒𝑠 𝑖

= (
1

8
) (

5

16
)⁄ =

2

5
 

and the probability that the dimension is 𝑁 = 3 is: 

𝑃(𝑁 = 3|𝑑𝑜𝑏𝑠) = ∑ 𝑃(𝐦(𝒊)|𝑑𝑜𝑏𝑠)

3−𝑣𝑒𝑐𝑡𝑜𝑟 𝑠𝑡𝑎𝑡𝑒𝑠 𝑖

= (
3

16
) (

5

16
)⁄ =

3

5
 

 

Case of 𝑑𝑜𝑏𝑠 = 3.  No 2-vector state and one 3-vector states (1,1,1) have non-zero probability, 

so: 

∑ 𝑃(d|𝐦(𝒊))𝑃(𝐦(𝒊))

𝑖

= 0 +
1

16
=

1

16
 

The probability that the dimension is 𝑁 = 2 is: 𝑃(𝑁 = 2|𝑑𝑜𝑏𝑠) = 0 and the probability that the 

dimension is 𝑁 = 3 is: 

𝑃(𝑁 = 3|𝑑𝑜𝑏𝑠) = ∑ 𝑃(𝐦(𝒊)|𝑑𝑜𝑏𝑠)

3−𝑣𝑒𝑐𝑡𝑜𝑟 𝑠𝑡𝑎𝑡𝑒𝑠 𝑖

= (
1

16
) (

1

16
)⁄ = 1 


