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Functional form of attenuation. The amplitude 𝐴(𝑥) of a wave is observed to decline with the 

distance 𝑥 of propagation. 

Suppose that the wave’s amplitude is 𝐴0 at 𝑥 = 0. An important issue is the form of the function 

𝐴(𝑥). 

If we assume that the attenuation is linear, then only amplitude ratios matter. That is, if a starting 

amplitude 𝐴0 decreases to 𝐴(𝑥), then a starting amplitude of 2𝐴0 decreases to 2𝐴(𝑥).  This 

means that 𝐴(𝑥) = 𝐴0𝑓(𝑥) where 𝑓(𝑥) is independent of 𝐴0. 

In a homogenous medium, we might expect that the attenuation experienced between 0 and 𝑥2 =

2𝑥1 is the same as if the wave had propagated twice through a distance 𝑥1.  If the amplitude 

decreases from 𝐴0 to 𝐴0𝑓(𝑥1) in between (0, 𝑥1), then it should decrease from 𝐴0𝑓(𝑥1) to 

𝐴0[𝑓(𝑥1)]2 between (𝑥1, 𝑥2),.  Thus, 𝑓(2𝑥1) = [𝑓(𝑥1)]2.  More generally, similar equation 

should hold for any 𝑥2 = 𝑟𝑥1: 

𝑓(𝑟𝑥) = [𝑓(𝑥)]𝑟 

This equation, together with the boundary condition 𝑓(0) = 1, can be viewed as an “functional 

equation” for 𝑓(𝑥).  Its solution is 𝑓(𝑥) = exp(−𝑎𝑥), where 𝑎 is a decay constant, as can be 

verified by substitution: 

exp(−𝑎𝑟𝑥) = [exp(−𝑎𝑥)]𝑟 

A constructive derivation is given at the end of this note. 

Frequency-dependence. Suppose that the wave is sinusoidal with angular frequency 𝜔 and that 

it propagates through a medium with velocity 𝑣.  Waves of different frequencies may decay at 

different rates, or in other words, the decay constant 𝑎(𝜔) may be frequency-dependent. 

A simple behavior that was observed in early experiments is that the decrease in amplitude 

depends only on the number 𝑛 of wavelengths propagated; that is 𝑓(𝑥) = exp(−(constant) 𝑛). 

Historically, this constant was denoted as 𝜋/𝑄, where 𝑄 is “quality factor”. Since wavelength 𝜆, 

velocity 𝑣 and angular frequency 𝜔 are related by 𝜔𝜆/2𝜋 = 𝑣, the number of wavelengths is 

𝑛 = 𝑥 𝜆⁄ = 𝜔𝑥/2𝜋𝑣. So: 
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Hence, the decay rate is 𝑎 = 𝜔 (2𝑄𝑣)⁄  and the attenuation is: 
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Here we have defined the “tee-star” 𝑡∗ ≡ 𝑥/(𝑄𝑣). 



In these historically-important formula, quality factor 𝑄, tee-star 𝑡∗ and velocity 𝑣 are treated as 

frequency-independent constants.  However, in the 1960’s, a problem was discovered with this 

idea.  It turns out that wave propagation through a medium that is constant-𝑄 and constant-𝑣 is 

“acausal”, meaning that an observer at 𝑥 will detect a non-zero displacement before an 

earthquake at 𝑥 = 0 occurs.  This “unphysical” result is understood to mean that a frequency-

independent 𝑄 is impossible.  One of the interesting aspects of the (graduate-level) mathematics 

behind this result is the realization that not only must quality factor 𝑄(𝜔) depend upon 

frequency, but so must velocity 𝑣(𝜔).  A velocity that is frequency-dependent is said to be 

“dispersive”.  Furthermore, the analysis shows that either one of these functions is sufficient to 

exactly determine the other.  The formula relating 𝑄(𝜔) to 𝑣(𝜔) (and vice versa) are called 

Kramer-Kronig relations. 

Azimi et al. (1968) propose a quasi-constant-𝑄 model in which 𝑄(𝜔) was approximately 

constant below a reference frequency 𝜔0 and increases as 𝜔 at high frequencies: 
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The velocity 𝑣(𝜔) associated with the quasi-constant 𝑄(𝜔) (above) was worked out by Azimi et 

al. (1968) using the Kramer-Kronig relations: 
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An analysis of the limit 𝜔 𝜔0⁄ → 1 is provided at the end of this note. Rock physics results have 

shown that the quasi-constant- 𝑄 model is not a good approximation for rocks, and that a better 

approximation is the power law formula: 

𝑄(𝜔) = 𝑄0 (
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)
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where 𝜔0 is a reference frequency, 𝑄0 is the quality factor at the reference frequency and the 

exponent 𝛼 ≈ 0.4. This 𝑄 formula implies that quality factor increases with frequency; that is, at 

low frequencies the wave experiences high attenuation and at very high frequencies it 

experiences almost none.  

The velocity 𝑣(𝜔) associated with the power-law 𝑄(𝜔) (above) has been worked out by 

Bateman (1954) using the Kramer-Kronig relations: 
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Here 𝑣∞ is the velocity at infinite frequency. 

Asthenospheric S waves have 𝑄0 ≈ 80 at a reference frequency of 𝑓0 = 𝜔0 2𝜋⁄ = 0.1 Hz.  The 

𝑄(𝜔) and 𝑣(𝜔) for the quasi-constant-𝑄 and power-law models is shown in Figure 1. 



 

Note 1: Constructive solution to 𝑓(𝑟𝑥) = [𝑓(𝑥)]𝑟 with boundary condition 𝑓(0) = 1.  We take 

the logarithm of both sides of the equation: log 𝑓(𝑟𝑥) = 𝑟 log 𝑓(𝑥) and expand log 𝑓(𝑥) in a 

Taylor series: 

log 𝑓(𝑥) = 𝑐0 + 𝑐1𝑥 + ½𝑐2𝑥2 + ⋯ 

We then insert the series into the equation: 

𝑐0 + 𝑐1𝑟𝑥 + ½𝑐2𝑟2𝑥2 + ⋯ = 𝑟𝑐0 + 𝑟𝑐1𝑥 + ½𝑐2𝑟𝑥2 + ⋯ 

and match terms of the same power of 𝑥: 
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Consequently, log 𝑓(𝑥) = 𝑐1𝑥 and 𝑓(𝑥) = exp(𝑐1𝑥).  The notion that 𝑓(𝑥) declines with 𝑥 

requires 𝑐1 to be negative, that is 𝑐1 = −𝑎, where 𝑎 > 0.  If other solutions exist, they must 

either not have a logarithm or not have a Taylor series.  One solution without a logarithm is 

𝑓(𝑥) = 0, but it does not satisfy the boundary condition.  Any solutions without a Taylor series 

must be singular at the origin, and could not satisfy the boundary condition, either.  

Consequently, the decaying exponential is the only “physical” solution. 

Note 2.  The velocity in the quasi-constant-𝑄 model contains the factor: 
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Both the numerator and denominator tend to zero as 𝑦 → 1, so analysis is needed assure that 

their ratio is finite. Using the fact that lim
𝑦→1

(log 𝑦) (𝑦 − 1)⁄ = 1, we find that lim
𝑦→1

𝑔(𝑦) = −½.  

Consequently, the velocity formula is well-behaved at 𝜔 = 𝜔0. 


