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This derivation relies on the exactly the same manipulations that are used in seismic adjoint 

methods (e.g. Menke, 2018), except that the linear operators involved are matrices, as contrasted 

to differential operators. 

The 𝑁 training points 𝐝 are assumed to be included in the 𝑀 model parameters 𝐦, so that the 

predicted data 𝐝𝑝𝑟𝑒 can be recovered from the estimated model parameters 𝐦𝑒𝑠𝑡 by 𝐝𝑝𝑟𝑒 =

𝐆 𝐦𝑒𝑠𝑡, where 𝐆 is an 𝑁 × 𝑀 matrix of zeros and ones. 

The Gaussian Process Estimate (GPE) of the model parameters is: 

𝐦𝑒𝑠𝑡 = 𝐂𝑚𝑑(𝑝)  𝐮(𝑝)    with    𝐮(𝑝) = 𝐀−1(𝑝) 𝐝𝑜𝑏𝑠    and       𝐀(𝑝) =  𝐂𝑑𝑑(𝑝) + σ2𝐈 

Here, the 𝑀 × 𝑁 autocovariance matrix 𝐂𝑚𝑑(𝑝) and the 𝑁 × 𝑁 symmetric autocovariance 

matrix  𝐂𝑑𝑑(𝑝) are functions of a parameter 𝑝.  The matrix 𝐀(𝑝) also is symmetric.  The constant 

σ2 represents a variance. The partial derivative of the predicted data with respect to this 

parameter is: 
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Putting this together: 
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Or: 
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Since 𝐆𝐂𝑚𝑑 = 𝐂𝑑𝑑  and 𝐆 𝜕𝐂𝑚𝑑 𝜕𝑝⁄ = 𝜕𝐂𝑑𝑑 𝜕𝑝⁄ , this result can also be written: 
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Thus, in order to calculate 𝜕𝐝𝑝𝑟𝑒 𝜕𝑝⁄ , one must solve two instances of an 𝑁 × 𝑁 system, both 

with the same matrix, 𝐀. 

Defining the total 𝐿2 error as 𝐸 = 𝐞𝑇𝐞   with 𝐞 = 𝐝𝑜𝑏𝑠 − 𝐝𝑝𝑟𝑒, we have: 
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The partial derivative of the error is: 
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In order to calculate 𝜕𝐸 𝜕𝑝⁄ , one must solve two instances of an 𝑁 × 𝑁 system, both with the 

same matrix 𝐀. An alternate formulation can be achieved by writing 𝜕𝐸 𝜕𝑝⁄ = 𝑇1 + 𝑇2 with: 
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and with: 
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So, the alternate formulation becomes: 
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A conceptual advantage of this formulation is that the linear systems explicitly involve either the 

observations 𝐝𝑜𝑏𝑠 or the error 𝐞 as “source terms” (that is, on their right-hand sides). However, 

this implementation requires three 𝑁 × 𝑁 linear systems to be solved (all with the same matrix 

𝐀). 

Example.  We consider true model parameters: 

𝑚(𝑥) = 𝛾 cos(𝑝𝑥) 

where 𝑝 is a wavenumber.  The true autocorrelation function and its derivative are: 

𝐶𝑖𝑗(𝑝) = 𝛾2 cos{𝑝(𝑥𝑖 − 𝑥𝑗)}    and   
𝜕𝐶𝑖𝑗

𝜕𝑝
=  −𝛾2(𝑥𝑖 − 𝑥𝑗) cos{𝑝(𝑥𝑖 − 𝑥𝑗)} 



We consider a test scenario with 𝑀 = 101 on the interval 0 ≤ 𝑥 ≤ 100, and with 𝛾 = 1 and 𝑝𝑡𝑟𝑢𝑒 =

0.15708.  The 𝑁 = 40 data 𝑑𝑖 are randomly drawn from the 𝑚s and are perturbed by Normally-

distributed random noise with zero mean and variance 𝜎2 = (0.05)2.  The GPE estimate is computed 

with an incorrect wavenumber 𝑝 = 0.95 𝑝𝑡𝑟𝑢𝑒 (Figure 1). 

 
Fig. 1.  True model parameters 𝐦 (black curve) and data 𝐝 (red circles).  The GPE estimate with an 

incorrect wavenumber 𝑝 = 0.95 𝑝𝑡𝑟𝑢𝑒 (green curve) fits the data poorly.  Newton’s method is used to 

iteratively improve 𝑝, leading to the improved fit (yellow curve). 

 

Newton’s method is used to iteratively improve 𝑝, using the derivative formula 𝜕𝐝𝑝𝑟𝑒 𝜕𝑝⁄ .  Its accuracy 

is verified against a finite-difference estimate (Figure 2). 

 
Fig. 2. The derivative 𝜕𝐝𝑝𝑟𝑒 𝜕𝑝⁄  (black curve), computed using the formula from this paper, 

compares favorably with the result of a finite difference calculation (red circles). 
 

Newton’s method converges rapidly with about three iterations (Figure 3). 



 
Fig. 3.  Convergence of Newton’s method. (A) The error ‖𝐞‖ = (𝐞𝑇𝐞/𝑁) where 𝐞 = 𝐝𝑜𝑏𝑠 − 𝐝𝑝𝑟𝑒, as a 

function of iteration 𝑖.  Note the error decreases to a constant level after about three iterations. (B) The 

estimated wavenumber 𝑝 (solid curve) as a function of iteration 𝑖, compared with the true wavenumber 

𝑝𝑡𝑟𝑢𝑒 (dotted line). 
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