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Part 1. The idea is to view a standard “linear” inverse problem of the form 𝐝𝑜𝑏𝑠 = 𝐆𝐦 has having a data 

kernel 𝐆 that is dependent on a parameter 𝑝, and then to solve for 𝐦 and 𝑝 in a way that makes use of the 

fact that for fixed 𝑝 the solution for 𝐦 is 𝐦(𝑝) = [𝐆T𝐆]−1𝐆T𝐝𝑜𝑏𝑠. 

The prediction error 𝐞(𝑝) is a function of a parameter 𝑝 via: 

𝐞(𝑝) = 𝐝𝑜𝑏𝑠 − 𝐆(𝑝) 𝐦(𝑝) 

Here 𝐝𝑜𝑏𝑠 is a vector of 𝑁 observed data, 𝐦 is a vector of 𝑀 model parameters, and 𝐆 is an 𝑵 × 𝑴 

matrix. For fixed 𝑝, the least squares solution is that one that minimizes the total 𝐸(𝐦) = ‖𝐞‖2
2 and is 

given by: 

𝐦(𝑝) = 𝐆−𝑔𝐝𝑜𝑏𝑠    with    𝐆−𝑔 ≡ [𝐙(𝑝)]−1[𝐆(𝑝)]T     and    𝐙(𝑝) = [𝐆(𝑝)]T𝐆(𝑝) 

Here 𝐆−𝑔 is a generalized inverse. The least squared solution 𝐦(𝑝) defines a parametric curve in the 

space of 𝐦.  The estimated solution (𝑝𝑒𝑠𝑡 , 𝐦𝑒𝑠𝑡) is the point of minimum error along this curve; that is 

𝑝𝑒𝑠𝑡 = argmin𝑝 𝐸(𝑝) and 𝐦𝑒𝑠𝑡 = 𝐦𝑒𝑠𝑡(𝑝𝑒𝑠𝑡).  This point can be found using Newton’s method, once a 

procedure for calculating the derivative 𝜕𝐞 𝜕𝑝⁄  has been established. 

The derivative of the solution with respect to the parameter 𝑝 is: 

𝜕𝐦

𝜕𝑝
=

𝜕𝐆−𝑔

𝜕𝑝
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)

T
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)

T
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Combining these equations leads to: 

𝜕𝐦

𝜕𝑝
= 𝐙−1 ((

𝜕𝐆

𝜕𝑝
)

T

𝐝𝑜𝑏𝑠 −
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𝜕𝑝
𝐦) = 𝐙−1 ((

𝜕𝐆

𝜕𝑝
)

T

𝐞 − 𝐆T
𝜕𝐆

𝜕𝑝
𝐦) 

Consequently, for fixed 𝑝 the solution 𝐦(𝑝) and its derivative 𝜕𝐦𝑒𝑠𝑡 𝜕𝑝⁄  satisfy linear equations 

involving the same 𝑀 × 𝑀 matrix 𝐙: 

𝐙
𝜕𝐦

𝜕𝑝
= ((

𝜕𝐆

𝜕𝑝
)

T
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𝜕𝐆

𝜕𝑝
𝐦)     and    𝐙 𝐦 = 𝐆T𝐝𝑜𝑏𝑠  

For fixed 𝑝, the derivative of the predicted data 𝐝𝑝𝑟𝑒 and the error 𝐞 = 𝐝𝑜𝑏𝑠 − 𝐝𝑝𝑟𝑒 are: 

𝜕𝐝𝑝𝑟𝑒
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=
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Two useful second derivatives are: 



𝜕2𝐦
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All these formulas have been verified numerically. 

Newton’s method can be used to iteratively improve an estimate of the solution, starting with an initial 

estimate (𝑝0, 𝐦(𝑝0)). At the 𝑛𝑡ℎ iteration, the solution is 𝑝𝑛 and 𝐦𝑛 ≡ [𝐙(𝑝𝑛)]−1[𝐆(𝑝𝑛)]T𝐝𝑜𝑏𝑠. We 

now define: 

𝐅 ≡
𝜕𝐞

𝜕𝑝
|

𝐦0,𝑝0

    and     𝐟 ≡ −𝐞(𝐦0, 𝑝0) 

The least square solution for ∆𝑝 ≡ 𝑝𝑛+1 − 𝑝𝑛 is then ∆𝑝 = [𝐅T𝐅]−1𝐅T𝐟 and the estimated parameter is 

𝑝𝑒𝑠𝑡 = lim𝑛→∞𝑝𝑛+1.  This procedure can be trivially extended to the case of several parameters by 

adding columns to 𝐅.  If there are 𝐾 such parameters, then (𝐾 + 1) linear equations, each the same 

𝑀 × 𝑀 matrix 𝐙, must be solved at each iteration of Newton’s method. 

The covariance of the estimate can be approximated using a linearized approximation, 𝐂𝑚,𝑝 ≈

𝜎𝑑
2[𝐖T𝐖]−1, where: 

𝐖 = [𝐆(𝑝𝑛)
𝜕𝐆

𝜕𝑝
|

𝑝𝑛

] 

Here 𝜎𝑑
2 is the variance of the data.  

Example 1:  We consider a simple curve fitting case with 𝑀 = 1 model parameter 𝑚 ≡ 𝑚1 and data 

kernel case 𝐺𝑖𝑗(𝑝) = 𝑚 𝑥𝑖
𝑝

, where 𝑥𝑖 is an auxiliary variable. The derivative is 𝜕𝐺𝑖𝑗 𝜕𝑝⁄ = 𝑥𝑖
𝑝

ln 𝑥𝑖.  In 

the example (𝑝𝑡𝑟𝑢𝑒 , 𝑚𝑡𝑟𝑢𝑒) = (2.0,1.5) and 𝑁 = 101 synthetic data are uniformly spaced on the interval 

(0,1) with uncorrelated Normally-distributed noise with uniform variance 𝜎𝑑
2 = (0.05)2 (Figure 1, red 

circles).  The error surface 𝐸(𝑝, 𝑚) (Figure 2, colors) has a global minimum at (𝑝𝑡𝑟𝑢𝑒 , 𝑚𝑡𝑟𝑢𝑒).  The 

parametric curve 𝑚(𝑝) (Figure 2, blue curve) passes through the global minimum. The Newton’s method, 

begun at the point 𝑝0 = 0.5, rapidly converges to the global minimum, following the parametric curve as 

it does so (Figure 2, green curve with triangle at each iteration).  This trajectory is different than the one 

followed by Newton’s method when both 𝑝 and 𝑚 are allowed to freely vary (Figure 2, yellow curve with 

circles at each iteration).  Both trajectories rapidly converge (in about three iteration) to the global 

minimum.  The predicted data (Figure 1, black curve) fit the data well. 



  
Fig. 1.  First exemplary inverse problem. The 

observed data 𝑑 (red dots) as a function of the 

auxiliary variable 𝑥, together with the predicted 

data for 𝑝0  (black curve) and 𝑝𝑒𝑠𝑡 (green curve) 

See text for further discussion. 

 

Fig. 2.  Error surface (colors) for the first 

exemplary inverse problem in Figure 1.   See text 

for further discussion 

 

 

Example 2. In a second example, we consider a simple Fourier analysis problem, with data kernel 

𝐺𝑖𝑗(𝑝) = 𝑚1 + 𝑚2  sin(𝑝𝑥𝑖) + 𝑚3  cos(𝑝𝑥𝑖) with position 𝑥 on the interval (0, 100), 𝐦𝑡𝑟𝑢𝑒 =

[1.0, 0.2, 03]T and 𝑝𝑡𝑟𝑢𝑒 = 6𝜋/100. Normally-distributed noise with variance 𝜎𝑑
2 = (0.05)2 is used to 

create synthetic observed data 𝐝𝑜𝑏𝑠 (Figure 3, red dots).  The initial solution, with 𝑝0 = 0.9 𝑝𝑡𝑟𝑢𝑒, fits the 

data poorly (Figure 3, black curve), whereas the solution with 𝑝𝑒𝑠𝑡 ≈ 1.004 𝑝𝑡𝑟𝑢𝑒 (Figure 3, green curve) 

fits it well. 

 

 
Fig. 3. Second exemplary inverse problem. The observed data 𝑑 (red dots) as a function of the auxiliary 

variable 𝑥, together with the predicted data for 𝑝0  (black curve) and 𝑝𝑒𝑠𝑡 (green curve) See text for 

further discussion. 

 

 



Part 2. We now derive comparable derivatives for the Generalized Least Squares solution (Menke 2018, 

equation 5.48): 

𝐦𝑒𝑠𝑡 = 𝐆−𝑔𝐝𝑜𝑏𝑠 + 𝐇−𝑔𝐡𝑝𝑟𝑖 ≡ 𝐦(1) + 𝐦(2)    𝑤𝑖𝑡ℎ 

𝐆−𝑔 = 𝐙−1𝐆T𝐂𝑑
−1  and   𝐇−𝑔 = 𝐙−1𝐇T𝐂ℎ

−1    and    𝐙 = 𝐆T𝐂𝑑
−1𝐆 + 𝐇T𝐂ℎ

−1𝐇 

Case 1. When the data kernel 𝐆(𝑝) depends on a parameter 𝑝, the derivative of the estimated model 

parameters is: 

𝜕𝐦𝑒𝑠𝑡
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=
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The normalized prediction error is �̃� = 𝐂𝑑
−½(𝐝𝑜𝑏𝑠 − 𝐝𝑝𝑟𝑒) = 𝐂𝑑

−½(𝐝𝑜𝑏𝑠 − 𝐆𝐦𝑒𝑠𝑡) and its derivative is: 

𝜕�̃�

𝜕𝑝
= −𝐂𝑑

−½𝐆
𝜕𝐦𝑒𝑠𝑡

𝜕𝑝
− 𝐂𝑑

−½ 𝜕𝐆

𝜕𝑝
𝐦𝑒𝑠𝑡 

The normalized error in prior information is �̃� = 𝐂ℎ
−½(𝐡𝑝𝑟𝑖 − 𝐡𝑝𝑟𝑒) = 𝐂ℎ

−½(𝐡𝑝𝑟𝑖 − 𝐇𝐦𝑒𝑠𝑡) Its 

derivative is: 

𝜕�̃�

𝜕𝑝
= −𝐂ℎ

−½𝐇
𝜕𝐦𝑒𝑠𝑡

𝜕𝑝
 

Case 2: When the prior information kernel 𝐇(𝑝) depends on a parameter 𝑝, the derivatives are (by 

analogy): 

𝜕𝐦𝑒𝑠𝑡

𝜕𝑝
=

𝜕𝐆−𝑔

𝜕𝑝
𝐝𝑜𝑏𝑠 +
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−1
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𝜕�̃�

𝜕𝑝
= −𝐂𝑑

−½𝐆
𝜕𝐦𝑒𝑠𝑡

𝜕𝑝
 

𝜕�̃�

𝜕𝑝
= −𝐂ℎ

−½𝐇
𝜕𝐦𝑒𝑠𝑡

𝜕𝑝
− 𝐂ℎ

−½ 𝜕𝐇

𝜕𝑝
𝐦𝑒𝑠𝑡 

 

Case 3: When the data variance 𝐂𝑑(𝑝) depends on a parameter 𝑝, the derivative is: 

𝜕𝐦𝑒𝑠𝑡

𝜕𝑝
=

𝜕𝐆−𝑔

𝜕𝑝
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−1
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𝐝𝑜𝑏𝑠 − 𝐙−1

𝜕𝐙

𝜕𝑝
𝐙−1𝐇T𝐂ℎ

−1𝐡𝑝𝑟𝑖 = 

= −𝐙−1
𝜕𝐙

𝜕𝑝
𝐦(1) + 𝐙−1𝐆T

𝜕𝐂𝑑
−1

𝜕𝑝
𝐝𝑜𝑏𝑠 − 𝐙−1

𝜕𝐙

𝜕𝑝
𝐦(2) = 

= 𝐙−1 (𝐆T
𝜕𝐂𝑑

−1

𝜕𝑝
𝐝𝑜𝑏𝑠 −

𝜕𝐙

𝜕𝑝
𝐦𝑒𝑠𝑡) 

with    
𝜕𝐙

𝜕𝑝
= 𝐆T

𝜕𝐂𝑑
−1

𝜕𝑝
𝐆 = −𝐆T𝐂𝑑

−1
𝜕𝐂𝑑

𝜕𝑝
𝐂𝑑

−1𝐆 

The derivative of the normalized prediction error is �̃� is: 

𝜕�̃�

𝜕𝑝
= −𝐂𝑑

−½𝐆
𝜕𝐦𝑒𝑠𝑡

𝜕𝑝
−

𝜕𝐂𝑑
−½

𝜕𝑝
𝐆𝐦𝑒𝑠𝑡 

The derivation 𝜕𝐂𝑑
−½ 𝜕𝑝⁄  cab be computed by solving the Sylvester equation that arises from 

differentiating 𝐂𝑑
−½ 𝐂𝑑

−½ = 𝐂𝑑
−1: 

𝜕𝐂𝑑
−½

𝜕𝑝
𝐂𝑑

−½ + 𝐂𝑑
−½ 𝜕𝐂𝑑

−½

𝜕𝑝
=

𝜕𝐂𝑑
−1

𝜕𝑝
= −𝐂𝑑

−1
𝜕𝐂𝑑

𝜕𝑝
𝐂𝑑

−1 

The derivative of the normalized error in prior information ℓ̃ is: 

𝜕�̃�

𝜕𝑝
= −𝐂ℎ

−½𝐇
𝜕𝐦𝑒𝑠𝑡

𝜕𝑝
 

Case 4: When the variance of prior information 𝐂ℎ(𝑝) depends on a parameter 𝑝, the derivatives are (by 

analogy): 

𝜕𝐦𝑒𝑠𝑡

𝜕𝑝
= 𝐙−1 (𝐇T

𝜕𝐂ℎ
−1

𝜕𝑝
𝐡𝑝𝑟𝑖 −

𝜕𝐙

𝜕𝑝
𝐦𝑒𝑠𝑡) 



with    
𝜕𝐙

𝜕𝑝
= 𝐇T

𝜕𝐂ℎ
−1

𝜕𝑝
𝐇 = −𝐇T𝐂ℎ

−1
𝜕𝐂ℎ

𝜕𝑝
𝐂ℎ

−1𝐇 

𝜕�̃�

𝜕𝑝
= −𝐂𝑑

−½𝐆
𝜕𝐦𝑒𝑠𝑡

𝜕𝑝
 

𝜕�̃�

𝜕𝑝
= −𝐂ℎ

−½𝐇
𝜕𝐦𝑒𝑠𝑡

𝜕𝑝
−

𝜕𝐂ℎ
−½

𝜕𝑝
𝐇𝐦𝑒𝑠𝑡 

𝜕𝐂ℎ
−½

𝜕𝑝
 𝐂ℎ

−½ + 𝐂ℎ
−½  

𝜕𝐂ℎ
−½

𝜕𝑝
= −𝐂ℎ

−1
𝜕𝐂ℎ

𝜕𝑝
𝐂ℎ

−1 

I have not yet performed a numerical verification of these formula. 


