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Summary: 

 

(1) The use of differential data is well-justified when the original, undifferenced data have a 

covariance matrix in the form of a two-sided exponential function.  It is not well-justified when 

the data have a covariance matrix in the form of a Gaussian function.   

 

(2) When the original, undifferenced data have a covariance matrix in the form of a two-sided 

exponential function, and are regularly spaced in distance, the differential data are uncorrelated 

with a uniform variance. 

 

(3) When the original, undifferenced data have a covariance matrix in the form of a two-sided 

exponential function, but are irregularly spaced in distance, the differential data are uncorrelated 

with a non-uniform variance that scales with the spacing of the original data. 

 

(4) When the differential data are merely computed by taking differences of the original, 

undifferenced data, model parameters estimated using ordinary least-squares applied to the 

differential data are approximately equal to those estimated using weighed least squares applied 

to the original, undifferenced data (with the weights given by the inverse of the two-sided 

exponential covariance matrix).  A different (better) solution only results when the differential 

data are directly estimated and their variance is smaller than is implied by differencing the 

original data. 

 

Part 1.  We first discuss the effect of transforming a data vector 𝐝 into another vector 𝐝′ by 

multiplying it by an invertible matrix 𝐃:  

𝐝′ = 𝐃𝐝 

Let the 𝐝 be a data vector of 𝑁 Normally-distributed random variables with zero mean and 

symmetric covariance matrix 𝐂𝑑. It is well-known that the transformation 𝐝′ = 𝐃𝐝 with 𝐃 =

𝐂𝑑
−½ (the symmetric square root of  𝐂𝑑

−1) decorrelates the data and scales their variances to unity, 

so that the transformed data 𝐝′ have covariance 𝐂𝑑′ = 𝐈.  This “full decorrelation” occurs for any 

invertible 𝐃 that satisfies 𝐂𝑑
−1 = 𝐃𝑇𝐃 (from whence it follows that 𝐂𝑑 = 𝐃−1𝐃−1𝑇), as can be 

verified using standard error propagation: 

if   𝐝′ = 𝐃𝐝    then    𝐂𝑑′ = 𝐃𝐂𝑑𝐃𝑇 = 𝐃𝐃−1𝐃−1𝑇𝐃 = 𝐈 



Here, we have used the identities [𝐀𝐁]−1 = 𝐁−1𝐀−1 and  [𝐃−1]𝑇 = [𝐃𝑇]−1.  Note that 𝐃 can be 

multiplied by any unary matrix 𝐔 (obeying 𝐔𝑇𝐔 = 𝐈) without changing 𝐂𝑑
−1: 

𝐂𝑑
−1 = (𝐔𝐃)𝑇(𝐔𝐃) = 𝐃𝑇𝐔𝑇𝐔𝐃 = 𝐃𝑇𝐃 

Because many superficially different 𝐃s correspond to the same 𝐂𝑑
−1, comparing 𝐂𝑑

−1s is better 

than comparing 𝐃s. 

For a problem in which the data are related to 𝑀 model parameters 𝐦 via 𝐆𝐦 = 𝐝, the least 

squares solution 𝐦𝑒𝑠𝑡 is the one that minimizes the error: 

𝐸(𝐦) = (𝐝𝑜𝑏𝑠 − 𝐆𝐦)𝑇𝐂𝑑
−1(𝐝𝑜𝑏𝑠 − 𝐆𝐦) 

By multiplying the data equation 𝐝 = 𝐆𝐦 by 𝐃, we can show that the transformed data satisfy 

𝐃𝐝 = 𝐆𝐃𝐦 = 𝐆′𝐦, with 𝐆′ = 𝐆𝐃. Furthermore, we can show that the transformed error 𝐸′(𝐦) 

is equal to 𝐸(𝐦): 

𝐸(𝐦) ≡ (𝐝𝑜𝑏𝑠 − 𝐆𝐦)𝑇𝐂𝑑
−1(𝐝𝑜𝑏𝑠 − 𝐆𝐦) = (𝐝𝑜𝑏𝑠 − 𝐆𝐦)𝑇𝐃𝑇𝐃 (𝐝𝑜𝑏𝑠 − 𝐆𝐦) 

= (𝐃𝐝𝑜𝑏𝑠 − 𝐃𝐆𝐦)𝑇(𝐃𝐝𝑜𝑏𝑠 − 𝐃𝐆𝐦) = (𝐝′𝑜𝑏𝑠 − 𝐆′𝐦)𝑇(𝐝′𝑜𝑏𝑠 − 𝐆′𝐦) ≡ 𝐸′(𝐦) 

That is, the error 𝐸′(𝐦) associated with 𝐝′𝑜𝑏𝑠 is equal to the error 𝐸(𝐦) associated with 𝐝′𝑜𝑏𝑠.  

Consequently, the same least squares solution is achieved, irrespective of whether 𝐝′𝑜𝑏𝑠 or 𝐝𝑜𝑏𝑠 

is used. That the “ordinary” least squares solution 𝐦(𝐝′) = [𝐆′T𝐆′]−𝟏𝐆′T𝐝′ is exactly the same 

as the weighted least squares solution 𝐦(𝐝) = [ 𝐆T𝐂𝑑
−1 𝐆]−𝟏𝐆T𝐂𝑑

−1𝐝 is shown as follows: 

𝐦(𝐝) ≡ [ 𝐆T𝐂𝑑
−1 𝐆]−𝟏𝐆T𝐂𝑑

−1𝐝 = [ 𝐆T𝐃T𝐃 𝐆]−𝟏𝐆T𝐃T𝐖𝐝 

= [ (𝐃𝐆)T(𝐃𝐆)]−𝟏(𝐃𝐆)T𝐝′ = [ 𝐆′T𝐆′]−𝟏𝐆′T𝐝′ ≡ 𝐦(𝐝′) 

Here, we have used the rule,  [𝐀𝐁]T = 𝐁T𝐀T.   

Part 2.  We now consider the special case where the data 𝐝 are sampled from a continuous 

function 𝑑(𝑥), such that 𝑑𝑛 = 𝑑(𝑥𝑛) and 𝑥𝑛 = 𝑛∆𝑥.  We first state some well-known properties 

of the matrices of first and second differences, 𝐃1 and 𝐃2, respectively: 

𝐃1 =
1

∆𝑥 

[
 
 
 
 
 

1 0 0 ⋯ ⋯ 0
−1 1 0 ⋯ ⋯ 0
0 −1 1 0 ⋯ 0
⋯ ⋯ ⋯ ⋯ ⋯ ⋯
0 ⋯ 0 −1 1 0
0 0 0 ⋯ −1 1 ]

 
 
 
 
 

     



𝐃1
𝑇 =

1

∆𝑥 

[
 
 
 
 
1 −1 0 ⋯ ⋯ ⋯ 0
0 1 −1 0 ⋯ ⋯ 0
0 0 1 −1 0 ⋯ 0
⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯
0 0 0 ⋯ ⋯ 0 1 ]

 
 
 
 

 

𝐃1
−1 = ∆𝑥

[
 
 
 
 
1 0 0 ⋯ ⋯ 0
1 1 0 ⋯ ⋯ 0
1 1 1 0 ⋯ 0
⋯ ⋯ ⋯ ⋯ ⋯ ⋯
1 1 1 ⋯ 1 1 ]

 
 
 
 

     

𝐃1
−1𝑇 = ∆𝑥

[
 
 
 
 
1 1 1 ⋯ ⋯ 1
0 1 0 ⋯ ⋯ 1
0 0 1 1 ⋯ 1
⋯ ⋯ ⋯ ⋯ ⋯ ⋯
0 0 0 ⋯ 0 1 ]

 
 
 
 

     

𝐃2 = 𝐃1
𝑇𝐃1 = (∆𝑥)−2

[
 
 
 
 
 
 
−2 1 0 0 ⋯ ⋯ 0
1 −2 1 0 ⋯ ⋯ 0
0 1 −2 1 0 ⋯ 0
⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯
0 ⋯ 0 1 −2 1 0
0 ⋯ ⋯ ⋯ 0 −2 1
0 ⋯ ⋯ ⋯ 0 1 −1]

 
 
 
 
 
 

   

𝐃2
−1 = −[𝐃1

𝑇𝐃1]
−1 = −𝐃1

−1𝐃1
−1𝑇 = −(∆𝑥)2

[
 
 
 
 
 
1 1 1 1 ⋯ 1
1 2 2 2 ⋯ 2
1 2 3 3 ⋯ 3
1 2 3 4 ⋯ 4
⋯ ⋯ ⋯ ⋯ ⋯ ⋯
1 2 3 4 ⋯ 𝑁]

 
 
 
 
 

 

  𝐙 = 𝐃1
−1𝑇𝐃1

−1 = −(∆𝑥)2

[
 
 
 
 
 

N N − 1 N − 2 ⋯ 2 1
N − 1 N − 1 N − 2 ⋯ 2 1
N − 2 N − 2 N − 2 ⋯ 2 1

⋯ ⋯ ⋯ ⋯ ⋯ ⋯
2 2 2 2 2 1
1 1 1 ⋯ 1 1 ]

 
 
 
 
 

       

Note that the first row of 𝐝′ = 𝐃1𝐝 is not a difference, but rather the boundary condition that 

𝑑1
′ = 𝑑1. It is needed to insure that 𝐃1

−1 exists. The matrix is 𝐃1 is not anti-symmetric, because 

while transposition flip the 0⋯0, 1, −1, 0⋯0 pattern of rows to  0⋯0,−1, 1, 0, it shifts the 

pattern by one column.  Nevertheless, 𝐃1
𝑇𝐝 ≈ −𝐃1𝐝, at least when 𝑑𝑛 slowly varies with index 

𝑛.  Consequently, the approximation 𝐃1
𝑇 ≈ −𝐃1 is a useful one.  The inverse of 𝐃1 is the 

integration (cumulative sum) matrix.  The quantity 𝐃1
−1𝑇 is the “acausal” integration matrix. The 



second difference operator is constructed from the first via 𝐃2 = −𝐃1
𝑇𝐃1.  Finally, we define 

𝐙 ≡ 𝐃1
−1𝑇𝐃1

−1. 

We now examine the consequence of the choice 𝐃 = γ−1𝐃1; that is, the data are transformed by 

the first-difference matrix.  Then, 𝐂𝑑
−1 = γ−2𝐃1

𝑇𝐃1 and 𝐂𝑑 = γ2[𝐃1
𝑇𝐃1]

−1 = γ2𝐃1
−1𝐃1

−1𝑇 =

−γ2𝐃2
−1.  

Unfortunately, 𝐂𝑑 = −γ2𝐃2
−1 is not a useful covariance matrix, for two reasons. First, 

correlation decreases linearly along the anti-diagonal at the fixed rate of γ2(∆𝑥)2.  Thus, this 

covariance matrix cannot model a process with a scale length.  Furthermore, depending upon the 

magnitude of the slope and the size of the matrix, elements of 𝐂𝑑 that are distal from the main 

diagonal may become negative, implying anticorrelation of data values.  Second, the correlation 

increases along the main diagonal, implying that 𝐝 is not stationary.  This increase can be 

eliminated by a change to the boundary condition. When the first row of 𝐃1 is redefined as 

1,0⋯0, 1, the main diagonal of 𝐂𝑑 is constant. 

In the next section, we will discuss a choice of 𝐂𝑑 that both explicitly contains a scale parameter 

𝑠 and for which 𝐃 is approximately proportional to 𝐃1. 

Part 3.  We now construct a covariance matrix 𝐂𝑑 that gives rise to a transformation involving 

𝐃1. We assume that 𝑑(𝑥) is stationary, so that 𝐂𝑑 is a symmetric Toeplitz matrix, with elements 

[𝐂𝑑]𝑛𝑚 that depends only upon |𝑛 − 𝑚|. 

We now consider the matrix equation: 

(𝐃1
T𝐃1 + 𝑠2𝐈) 𝐐 = 2𝑠 𝐈 

where 𝑠 is a parameter and 𝐐 is unknown.  Later in this section, we will show that: 

𝑄𝑛𝑚 ≈  exp{−𝑠∆𝑥|𝑛 − 𝑚|} 

(except possibly along its edges). Thus, 𝑠 is a scale parameter. If we then choose the covariance 

to be the two-sided exponential function 𝐂𝑑 = 𝛾2𝐐, the matrix equation implies: 

𝐂𝑑
−1 = 𝐃T𝐃 = 𝛾−2 𝐐−1 = (𝛾√2𝑠)

−2
(𝐃1

T𝐃1 + 𝑠2𝐈)  

This last expression is equivalent to: 

𝐂𝑑
−1 = 𝐃T𝐃 = (𝛾√2𝑠)

−1
(𝐃1 + 𝑠𝐈)𝑇    (𝛾√2𝑠)

−1
(𝐃1 + 𝑠𝐈) 

The equivalence be verified by multiplying out the expression and by applying 𝐃1
T ≈ −𝐃(1): 

𝐂𝑑
−1 = (𝛾√2𝑠)

−2
(𝐃1

T𝐃1 + 𝐃1
T𝑠 + 𝐃1𝑠 + 𝑠2𝐈) 



≈ (𝛾√2𝑠)
−2

(𝐃1
T𝐃1 − 𝐃1𝑠 + 𝐃1𝑠 + 𝑠2𝐈) = (𝛾√2𝑠)

−2
(𝐃1

T𝐃1 + 𝑠2𝐈) 

Consequently, 

𝐃 ≈ (𝛾√2𝑠)
−1

(𝐃1 + 𝑠𝐈) 

When the data are highly correlated, 𝑠 is small and 𝐃 ≈ (𝛾√2𝑠)
−1

𝐃1 (which is the anticipated 

result).  Then, 𝐂𝑑
−1 is then proportional to 𝐃(2), the matrix of second differences: 

𝐂𝑑
−1 = 𝐃T𝐃 = (𝛾√2𝑠)

−2
𝐃1

T𝐃1 = −(𝛾√2𝑠)
−2

𝐃2 

The formula for 𝑄𝑛𝑚 is derived as follows. In the limit where 𝑁 → ∞ and ∆𝑥 → 0, and for the 

unbounded interval −∞ < 𝑥 < +∞, the matrix equation becomes the differential equation: 

((
𝑑

𝑑𝑥
)

†

(
𝑑

𝑑𝑥
) + 𝑠2)𝑞(𝑥 − 𝑥0) =

1

2𝑠
𝛿(𝑥 − 𝑥0) 

(−
𝑑2

𝑑𝑥2
+ 𝑠2)𝑞(𝑥) = 𝛿(𝑥) 

(with boundary conditions, 𝑞(⌈𝑥⌉ → ∞) = 0. Here, † denotes adjoint and 𝛿(. ) is the Dirac 

impulse function.  After setting 𝑥0 = 0 and Fourier transforming spatial coordinate 𝑥 to 

wavenumber 𝑘, we find: 

(𝑘2 + 𝑠2) 𝑞(𝑘) = 1   and     𝑞(𝑘) =
2𝑠

(𝑘2 + 𝑠2)
  

Note that 𝑠 represents a “corner” wavenumber, in the sense that when 𝑘2 ≪ 𝑠2, 𝑞(𝑘) is constant, 

whereas when 𝑠2 ≪ 𝑘2 , 𝑞(𝑘) ∝ 𝑘−2. It is well-known that the Fourier transform of exp{−𝑠|𝑥|} 

is 2𝑠 (𝑘2 + 𝑠2)⁄ .  Consequently, after invoking stationarity so that we can reintroduce 𝑥0, we 

have: 

𝑞(𝑥, 𝑥0) =  𝛾2  exp{−𝑠|𝑥 − 𝑥0|} 

Part 4. We now contrast two approaches of solving for 𝐦: 

(A) The exact solution 𝐦(𝐝) = [ 𝐆T𝐂𝑑
−1 𝐆]−1𝐆T𝐂𝑑

−1𝐝 with 𝐂𝑑 a two-sided exponential 

(B) The approximate differential solution 𝐦(𝐝′) = [𝐆′T𝐆′]−𝟏𝐆′T𝐝′ with 𝐝′ = 𝐃1𝐝. 

We have deliberately omitted the factor of (𝛾√2𝑠)
−1

from 𝐝′, both because rarely is it used in 

practice, and because it cancels from the least-squares equation. Write 𝐦(𝐝) in terms of 𝐦(𝐝′): 



𝐦(𝐝) = [𝐆T𝐂𝑑
−1 𝐆]−1𝐆T𝐂𝑑

−1𝐝 

= [(𝐃1
−1𝐆′)T(𝐃1

T𝐃1 + 𝑠2𝐈) (𝐃1
−1𝐆′)]−1(𝐃1

−1𝐆′)T(𝐃1
T𝐃1 + 𝑠2𝐈)𝐃1

−1𝐝′ 

= [𝐆′𝑇𝐆′ + 𝑠2 𝐆𝑇𝐆]−1(𝐆′𝑇𝐝′ + 𝑠2𝐆𝑇𝐃1
−1𝐝′) 

= [𝐆′𝑇𝐆′ + 𝑠2 𝐆𝑇𝐆]−1(𝐆′𝑇𝐝′ + 𝑠2𝐆′𝑇𝐙𝐝′) 

= [𝐆′𝑇𝐆′ + 𝑠2 𝐆𝑇𝐆]−1𝐆′𝑇(𝐈 − 𝑠2𝐙)𝐝′ 

≈ ([𝐆′𝑇𝐆′]−1 − 𝑠2 [𝐆′𝑇𝐆′]−1[𝐆𝑇𝐆][𝐆′𝑇𝐆′]−1)𝐆′𝑇(𝐈 − 𝑠2𝐙)𝐝′ 

= [𝐆′𝑇𝐆′]−1𝐆′𝑇𝐝′ − 𝑠2[𝐆′𝑇𝐆′]
−1

{ [𝐆𝑇𝐆][𝐆′𝑇𝐆′]
−1

𝐆′𝑇 + 𝐆′𝑇𝐙}𝐝′ 

= 𝐦(𝐝′) − 𝑠2[𝐆′𝑇𝐆′]
−1

{ [𝐆𝑇𝐆]𝐦(𝐝′) + 𝐆′𝑇[𝐙𝐝′]} 

= {𝐈 − 𝑠2[𝐆′𝑇𝐆′]
−1

[𝐆𝑇𝐆]}  𝐦(𝐝′) − 𝑠2𝐦(𝐙𝐝′) 

(We have checked these formulas numerically). Here, we define 𝐦(𝐙𝐝′) ≡ [𝐆′𝑇𝐆′]
−1

𝐆′𝑇[𝐙𝐝′].  

We have used the first order approximation [𝐀 + ε𝐁]−1 ≈ 𝐀−1 − ε𝐀−1𝐁𝐀−1. 

As expected, the exact solution 𝐦(𝐝) differs from the approximate solution 𝐦(𝐝′) by very small 

“correction” terms of order 𝑠2.  Ironically, although this treatment began with a covariance 

function with a tunable scale parameter s, the approximate solution 𝐦(𝐝′) is not a function of s.  

Scale only enters through the corrections terms. 

Though small, the correction terms can have an important effect. Because the quantity 

𝐙𝐝′ = 𝐃1
−1𝑇𝐃1

−1𝐃1𝐝 = 𝐃1
−1𝑇𝐝 

is the acausal integral of 𝐝, it will tend to contain more long-wavelength features than does 𝐝′. 

Depending upon the structure of 𝐆′, these features may carry over into 𝐦(𝐃2
−1𝐝′).  Because it 

omits this term, the approximate differential solution may be deficient in long-wavelength 

features, compared to the exact solution. 

We conclude that the approximate differential solution 𝐦(𝐝′) is very close to the exact solution 

𝐦(𝐝).  Whether or not the former is more simply computed will depend upon the relative ease of 

computing 𝐆 and 𝐆′.  If 𝐆′ is computed by first computing 𝐆 and then applying 𝐆′ = 𝐃𝐆, no 

significant computational savings results.  On the other hand, if 𝐆′ can be computed directly, and 

with more ease than 𝐆, then the approximate solution will be more efficient. 



Part 5. We now demonstrate that the transformation 𝐝′ = 𝐃1𝐝 is not necessarily an appropriate 

choice to decorrelate spatially-correlated data. Our argument starts with the function: 

𝑞(𝑥, 𝑥0) =  [sin{−𝑠|𝑥 − 𝑥0|} + cos{−𝑠|𝑥 − 𝑥0|}] exp{−𝑠|𝑥 − 𝑥0|} 

Like the two-sided exponential, this function has a scale parameter 𝑠, but differs in that it has no 

cusp at 𝑥 = 𝑥0.  Its overall shape is reminiscent of a Gaussian function, except that its tails decay 

more slowly than a Gaussian’s and have a small degree of “overshoot”.  It is known to satisfy the 

“plate flexure” equation: 

[(
𝑑2

𝑑𝑥2
)

†
𝑑2

𝑑𝑥2
+ 4𝑠4 ] 𝑞(𝑥 − 𝑥0) = 8𝑠3 𝛿(𝑥 − 𝑥0) 

Consequently, the covariance matrix 𝐂𝑑 = 𝛾2𝐐 approximately corresponds to 𝐝′ ∝ 𝐃2𝐝; that is, 

a transformation involving second differences. 

The transformation 𝐃 corresponding to a Gaussian 𝐂𝑑 can be stated formally but has limited 

usefulness.  Let: 

𝐶𝑑(𝑥) =  exp{−½𝑠2𝑥2} 

Since the convolution of a Gaussian with itself is a Gaussian with twice the variance of the 

original, we can write:  

𝑞(𝑥) = exp {−½
𝑥2

𝑠−2
} = 𝐷−1(𝑥) ∗ 𝐷−1(𝑥)     with    𝐷−1(𝑥) = √𝜋𝑠 exp {−½

𝑥2

½𝑠−2
} 

Here 𝐷−1(𝑥) is the inverse operator to 𝐷(𝑥), in the sense that 𝐷−1(𝑥) ∗ 𝐷(𝑥) = 𝛿(𝑥). It follows 

that 𝑞(𝑥) = 𝐷−1†(𝑥) ∗ 𝐷−1(𝑥), since convolution with a symmetric function is self-adjoint. 

Now let us consider the equation 𝑑(𝑥) = 𝐷−1(𝑥) ∗ 𝑑′(𝑥).  Taking the Fourier transform yields 

𝑑′(𝑘) = 𝐷(𝑘) 𝑑(𝑘) where 𝐷(𝑘) is the reciprocal of 𝐷−1(𝑘). The Fourier transform of a 

Gaussian of variance 𝜎2 is a Gaussian of variance 𝜎−2, so: 

𝐷−1(𝑘) = √𝜋𝑠 exp {−½
𝑘2

2𝑠2
} = √𝜋𝑠 exp{−𝑠−2𝑘2}  

𝐷(𝑘) = (√𝜋𝑠)
−1

exp {½
𝑘2

2𝑠2
} = (√𝜋𝑠)

−1
exp{𝑠−2𝑘2} 

The power series for an exponential is exp(𝑥) = 1 + 𝑥 + ½𝑥2 + (
1

6
)𝑥3 + ⋯, so: 

𝑑′(𝑘) = 𝐷(𝑘)𝑑(𝑘) = (√𝜋𝑠)
−1

{1 + 𝑠−2𝑘2 + ½𝑠−4𝑘4 + (
1

6
)𝑠−6𝑘6 + ⋯ }𝑑(𝑘) 



Taking the inverse Fourier transform yields: 

𝑑′(𝑥) =  (√𝜋𝑠)
−1

{1 + 𝑠−2
𝑑2

𝑑𝑥2
+ ½𝑠−4

𝑑4

𝑑𝑥4
+ (

1

6
)𝑠−6

𝑑6

𝑑𝑥6
+ ⋯}𝑑(𝑥) 

Taking the discrete analog yields 𝐝′ = 𝐃𝐝 with: 

𝐃 = (√𝜋𝑠)
−1

{𝐈 + 𝑠−2𝐃2 + ½𝑠−4𝐃4 + (
1

6
)𝑠−6𝐃6 + ⋯} 

Formally, the transformation 𝐃 associated with a Gaussian covariance function is an infinite sum 

of even order-derivatives. The terms involve the length ratio 𝑠−1/∆𝑥 which, by inference, is 

greater than unity, implying that the sum diverges.  While the solution indicates that higher order 

derivatives can appear in 𝐃, the result does not appear to have practical application here. 

Part 5. Suppose that the data 𝑑𝑛 are irregularly distributed at positions 𝑥𝑛, with 𝑥𝑛+1 > 𝑥𝑛. It 

seems reasonable to consider the transformed data as 𝑑′1 = 𝑑1 and for 𝑛 > 1,  𝑑′𝑛 = 𝑑𝑛 − 𝑑𝑛−1. 

This is just the transformation 𝐃2 with ∆x = 1, which corresponds to covariance 𝐂𝑑 = 𝐃2
−1 

(again, with ∆x = 1).  Thus, covariance between two data, 𝑑𝑛 and 𝑑𝑚 falls off linearly with the 

number of intervening data (as contrasted to the physical distance ∆𝑥𝑛𝑚 = (𝑥𝑛 − 𝑥𝑚) between 

them. 

This behavior might be acceptable if the data are randomly-distributed along the 𝑥-axis, with 

some mean spacing, ∆𝑥. 

On the other hand, suppose that 𝑥𝑛 = 𝑏(𝑛 − 1)2, where 𝑏 is a constant, so that nearest-neighbor 

distances ∆𝑥𝑛+1,𝑛 = 2𝑛 − 1 grow linearly with 𝑛. The covariance matrix is: 

[𝐂𝑑]𝑛𝑚 = 𝛾2 exp{−𝑠|𝑥𝑛 − 𝑥𝑚|} 

While we are not able to derive analytically the corresponding transformation 𝐃, it easily can be 

computed.  Numerical experiments indicate that rows of 𝐂𝑑
−1 are very close to being proportional 

the rows of −𝐃2, but that the overall magnitude of the rows varies approximately as 1/𝑛. 

This last result can be explained by the following analysis. Suppose that the data 𝐝 are evenly 

spaced in 𝑥 and that their covariance matrix 𝐂𝑑 is a two-sided exponential function.  As shown 

previously, the transformation matrix 𝐃 such that 𝐂𝒅
−1 = 𝐃𝑇𝐃 completely decorrelates the vector 

of evenly spaced differences, 𝐝′ = 𝐃𝐝, so that 𝐂𝑑′ = 𝐈. Now suppose that we define a vector 

𝐝" = 𝐒𝐝′ = 𝐒𝐃1𝐝, of irregularly spaced differences between an ordered subset of 𝐝; for 

example, 𝑑1, 𝑑3 and 𝑑6.   The structure of the matrix 𝐒 can be ascertained through the following 

example: 

𝑑"1 = 𝑑′1 = 𝑑1 



𝑑"2 = 𝑑3 − 𝑑1 = (𝑑3 − 𝑑2) + (𝑑2 − 𝑑1) = (𝑑3 − 𝑑2) + (𝑑2 − 𝑑1) = 𝑑′
3 + 𝑑′

2 

𝑑"3 = (𝑑6 − 𝑑3) = (𝑑6 − 𝑑5) + (𝑑5 − 𝑑4) + (𝑑4 − 𝑑3) = 𝑑′
6 + 𝑑′

5 + 𝑑′
4 

Or: 

𝐒 = [

1 0 0 ⋯ ⋯ ⋯ ⋯ ⋯ 0
0 1 1 0 ⋯ ⋯ ⋯ ⋯ 0
0 0 0 1 1 1 0 ⋯ 0
⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯

] 

Here, the first row implements the boundary condition 𝑑"1 = 𝑑′1 = 𝑑1 and subsequent rows 

implement the non-adjacent differences. The rows of 𝐒 are mutually orthogonal, with the 𝑛th row 

consisting of, say, 𝑦𝑛 instances of unity (with 𝑦1 = 1).  Thus, 𝐒𝐒𝑇 = 𝐘, with 𝐘 ≡ diag(𝐲). Since 

𝐝" = 𝐒𝐃𝐝′: 

𝐂𝑑" = 𝐒𝐃𝐂𝑑𝐃𝑇𝐒𝑇 ≈ (𝛾√2𝑠)
−2

𝐒𝐃𝟏𝐂𝑑𝐃𝟏
𝑇𝐒𝑇 = 𝐒𝐒𝑇 = 𝐘 

(since 𝐂𝑑′ = 𝐃𝐂𝑑𝐃𝑇 = 𝐈).  Thus, when the data have a two-sided exponential covariance matrix, 

irregularly spaced first-difference are uncorrelated but have unequal variances proportional to 

their spacing.   

When the vector of irregularly spaced differences are defined as 𝐝∗ = 𝐘−½𝐒𝐃1𝐝, then 𝐝∗ is fully 

uncorrelated: 

𝐂𝑑" = (𝛾√2𝑠)
−2

𝐘−½𝐒𝐃1𝐂𝑑𝐃1
𝑇𝐒𝑇𝐘−½ = 𝐘−½𝐒𝐒𝑇𝐘−½T = 𝐘−½𝐘𝐘−½T = 𝐈 

This result justifies the use of first-differences for irregularly spaced data, but it emphasizes that 

they will not in general have uniform variance.  Instead, their variance increases with their 

physical separation.  Irregular first-differences data 𝐝" need to be properly normalized as 𝐝∗ =

𝐘−½𝐝" for them to be compatible with the assumption that the original data are stationary. 

 


