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Summary: We consider data d; (at x;) related to a field u by the linear functional d; = (h;, u).
Here the field u satisfies Uu = f. We show that the adjoint field A; part of the kernel calculation
is the only part that depends on h;, and that it does so through the adjoint field equation UTA; =
h;. The adjoint equation and adjoint field are the same, irrespective of whether the model
parameters m; parameterize the differential operator U or the source of the field f.

For differential data, h; = — ;—x 8 (x — x;); that is, the adjoint source is a dipole.

Consequently, a kernel G corresponding to differential data d can be calculated via a change to
the adjoint source. This method is different from post-facto calculation of G, where one starts
with a kernel for the original data, d’ = G'm and then multiplies by a differential operator D to
getd = Dd’ = (DG’)m = Gm. I think that the direct method is less affected by round-off error.

Furthermore, the adjoint field calculation is the only the part of the calculation of the gradient of
the total error that depends upon h;. The adjoint equation and adjoint field are the same (though
not the same as for the kernel), irrespective of whether the model parameters m; parameterize the

differential operator ‘U or the source of the field f.

(Part 1) Kernel when source depends on a model parameters m;

Data equation d; = (h;,u) and its derivative ;di = (h- d—u>

m] v dmj
Kernel equation dd; = ¥, 2% dm; with kernel G;; = <%
q t J dm]- J y dm]-

Field eqn: U u(m) = f(m) and its solution u(m) = U~ f(m)
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Field derivative: % = -1 3L
dm]- dm]-

Derivation of kernel:
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so the kernel is G;; = (/h%)
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suppose f = Y myd(x — &) so d%cj =68(x—¢)

then Gl] = (Ai,é‘(x — f]) ) = Al(f})
Differential data: d; = (du/dx)ly, = (—=-6(x —x),u) so h;=—=-8(x —x;)



and adjoint equation is UTA; = — :—x 5(x — x;)

In the case where d; = W (x)(du/dx)|y,, one could set h; = =W (x) ;—xd(x —x;) —
aw : d aw du
ES(X — x;) since then d; = [; (Wu) — Eu] |xi = [W E] |xi
(Part 2) Kernel when differential operator depends on parameters m;
Data eqn: d; = (h;, u) and its derivative C%ij = (hl-,;—:r;)

Fieldegn: Um)u(m) =f so u=U"1f

Field derivative du/dm; = (dU~'/dm;) f = —U~*(dU/dm;) U~f

du Uyt du

Derivation of kernel:
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suppose U = Y, mS(x — &) % + (terms not depending upon my,)

_ S(x—fj)dd? and (%)u = i6(x —§;)

J

Gij = (/’Li,iw(x - E]-)) = /'ll-(fj, t) * il(fj, t) (with * signifying time correlation)

du

then T

Differential data: d; = (d/dx)uly, = (—dd—x(S(x — xl-),u) so h; = —;—xd(x —x;)

and adjoint equation is UTA; = % §(x — x;) (same as in Part 1).

(Part 3) Equivalence in Part 1 to Green function integral

. du 1 d
Let’s write =% = -1 3L
dm]- dm]-

Uv(x) = @(x)
Standard Green function setup

v(x) = U o(x) = [ K(x, x)p(x) dx = (K(xi:x):(P(x))x
With Green function satisfying U, K(x;,x) = 6(x; — x) (datum at x;, source at x)
Adjoint method

v(x) = (80 — ), (), = (8(x — 1), U (), = (Us16(x — x), ()
= (A(x, X;), (p(x))x with ’LL;E Al x) = 6(x — x;)

as v =TU ¢ for short

X

interchanging x with x; in the differential equation ’Ll,ti Alx, x) = 6(x; — x)



Comparing inner products, we see that order of arguments of A and K are reversed, so A = K*
Comparing the differential equations, we also see that A = KT (see Part 4)
Thus, the result in Part 1 of G;; = (4;, @) is just a Green function integral

(Part 4) Standard proof for relationship between Green function of original and adjoint
equations

(uw,Uv) = (Utu,v) with u =GT(x,2z) andv = G(x,y)

and UTGT(x,z) =6(x—2z) and UG(x,y) =6(x—y)

(61(x,2),8(x —y)) = (6(x = 2),6(x,y)) = 0

GT(y,2) = G(zy)

(Part 5) Gradient of total error, following Part 1.

E =(ee) so d—E_= 2(6,£>

dm] dm]
de dd

e=d" —d so — =
dm] dm]

., dE dd . df
= (o) = (oo 50 )

using rule (a(xl-), (B(xi,x),c(x))x) ' = ((a(xl-),BT(x, xl-)) .,c(x)> (see Part 6)
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— (-1t (. ar) (9L : Ty = e
= (‘ux (e,h (xl,x))xi,dm)x = (A, dmj>x with UL = (e,h (xl,x))

dE df
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(Part 6) Standard proof of rule

(aGed, (B x),c(0),) = ((B*(x, xl-),a(xo)x,,c(x))

f.a(xi) (fB(xi,x)c(x)dx> dx; = f <f .B(xl-,x)a(xl-)dxl-> c(x) dx =

= 1, (f, BYGr,x) a(x)dx;) c(x) dx with B*(x,x)) = B(x,x)
(Part 7) Gradient of total error, following Part 2.
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