Time and Frequency Domain Inversions for a Bateman-type Attenuation Operator
William Menke, March 4, 2021

(Drawing upon work that Levi Borevitz did for his 2020 Summer Intern Project)

I consider a causal Bateman-style attenuation operator with quality factor of the form:

Q) = Qo (150)

where Q, is the quality factor at reference frequency f; and 0 < @ < 1 is an exponent.
The following text is from Levi Borevitz’s Summer Intern Project (Borevitz and Menke, 2020):

[Start copied text]

Starting with u?S(t) we take its Fourier transform

+00
9P (w) = f udPs(t) exp{—iwt}dt
The unattenuated pulse iy (w) is changed into the attenuated pulse i, (w) through multiplication
by the Bateman function B (4, t,, ty, &, w), which we abbreviate as B(w):
5 (w) = B(w) 88" (w)

where B(w) = A exp{—a}exp{—iw(p +t;)} and
In) —-a
a=%wt* and ¢ = bc (a)_) and b =%t; and c = cot(ema)
0

The attenuated pulse ul °(t) is the inverse Fourier transform of 5 (w):

400
ub™e(t) = nf 20" (w, A) exp{+iwt} do = —f B(w, A) 1975 (w) exp{+iwt} dw

Differentiation with respect to parameters A4, t,, t, and « is performed inside the
integral. For example,
oub™ 1 [**0B

A= ) aA Uy (w) exp{+iwt} dw




Here, the derivative du, /0A is understood to be a function of time t and the derivative dB /dA is

understood to be a function of frequency w. Derivatives of B(w) with respect to 4, t,, t; and @

are:
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d ty
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[End copied text]

I recoded Levi’s MATLAB software into PYTHON. The function bateman() takes unattenuated
and undelayed u, (t), together with the four parameters 4, t,, t; and a, and return an attenuated

and delayed pulse u(t) and the four derivatives du/dA, du/dt,, ou/dt; and du/da (Figure 1).

unattenuated (black-blue) and delayed and attenuated (red) pulses

200 1

175 4

150 1

pulse
s
=]
=

0.50 1

0.25 1

0.00




Figure 1A. Unattenuated and undelayed pulse u,(t) (blue) and attenuated and delayed pulse
u(t) (red). This case if for A = %, t, = 5, t; = ¥ and a = 0.4 using a Gaussian pulse of
standard deviation g, = 0.25 and a f; = %(2mo,)~! (one half the bandwidth of the pulse).
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Figure 1B. The derivative du/dA, computed using the analytic formula in bateman() (black) and

via the finite difference method (red).
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Figure 1C. The derivative du/dt,, computed using the analytic formula in bateman() (black) and

via the finite difference method (red).
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Figure 1D. The derivative du/dt;, computed using the analytic formula in bateman() (black)

and via the finite difference method (red).
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Figure 1E. The derivative du/da, computed using the analytic formula in bateman() (black) and

via the finite difference method (red).

In all cases, the analytic calculation of the derivative matches the result of a finite difference
calculation very closely. Note that the shape of the derivatives du/dt, and — du/d«a are similar

to one another, implying that t, and a will trade off in an inversion.

I also coded frequency-domain versions of the derivatives in the function fbateman(): ds/dA4,

ds/0ty and ds/0a where s(f) = |(f)| is the amplitude spectral density (a.s.d.) (Figure 2).
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Figure 2A. Amplitude spectral density (a.s.d) of unattenuated and undelayed pulse uy(t) (black)
and attenuated and delayed pulse u(t) (red). This case if for A = %, t, =5, t; = % anda =

0.4 using a Gaussian pulse of standard deviation o, = 0.25 and a f, = ¥%(2m0o;)~ ! (one half the

bandwidth of the pulse).
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Figure 2B. The derivative ds/dA, computed using the analytic formula in fbateman() (black) and

via the finite difference method (red).



analytic (black) numerical (red)

tstarD derivative
=]

frequency f

Figure 2C. The derivative ds/dt;, computed using the analytic formula in fbateman() (black)

and via the finite difference method (red).
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Figure 2D. The derivative ds/da, computed using the analytic formula in fbateman() (black)

and via the finite difference method (red).




In all cases, the analytic calculation of the derivative matches the result of a finite difference

calculation very closely. The shapes are sufficiently dissimilar that an inversion should work

reasonably well.

Finally, I coded a test inversion that consisted of these steps:

(1) Estimate lag t, by cross-correlating pulse u(t) and u,(t).

(2) Estimate A by regressing u(t) against uy(t — tg).

(3) Estimate t; by regressing In s(f) against In sy (f) in the frequency band (f5, f) at fixed a =

Y.

(4) Refine estimates of A, t; and a using fbateman() and Newton’s method.

(5) Refine estimates of A, t, and t; using bateman() and Newton’s method

(6) Refine estimates of A4, t,, ty and « using bateman() and Newton’s method and prior

information that t, shouldn’t change much.

The inversion produces accurate results (Table 1 and Figure 3).

Table 1. Error improvement for each step in the inversion process.

A
trus 0.5000
lagged 1.0000
rgress 0.3073
logasd 0.3073
asd 0.5000
passl 0.5000
passl 0.5000

DTO

5.0000
2.3000
5.3000
2.3000
5.3000
2.0000
5.0000

t=tarld
0.5000
0.0000
0.0000
0.6075
0.5000
0.5000
0.5000

alpha

0.4000
.5000
.3000
.5000
.4000
.4000
.4000
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Error
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. 0000000
.2722248
.1401352
.6135334
.6246414
. 0000000
. 0000000
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Fig. 3A. Results of inversion, true pulse u(t) (black) and estimated pulse u(t) (red).
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Fig. 3B. Results of inversion, amplitude spectral densities of true pulse u(t) (black) and
estimated pulse u(t) (red).
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