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Ray equation for ray with position X(s), arc-length s, and slowness u(x)

d dx_

gud—s =Vu

Define: f =Inu so Vf =u"1Vu and the ray equation becomes:

d?x N dx (dx
ds? ds

& V)=V

Case 1: Cartesian coordinates (x, y):

Spatial variation of f and its gradient, in Cartesian coordinated, with € a small parameter:
f = fo + by (X)y + %hCyy (1)

db,/dx + (dC,, /dx)yl

Vf = el
by + Cyyy

Position vector for a ray that is initially parallel to the x-axis written inters of an unperturbed part
and a perturbed part. Note that since dx/ds is a unit vector that initially is [1  0]7, only its y-
component can have a first order perturbation.

_ xo(s)
*= [yo + ey (s)]
ax _ [ dx,/ds
ds ~ le(dy,/ds)
& B [ d?x,/ds?
ds?  le(d?y,/ds?)

Second term on L.h.s. of ray equation:

dx [ dx,/ds ] Idbx/dx + (dny/dx)yO + e(dny/dx)
- . Vf = &
ds e(dy;/ds) by + ny}’O + gnyyl

= e(dxo/ds)(dbx/dx + (dny/dx)yo) +0(€?)

g(gv ) _ [e(dxo/ds)2

ds \ds 0(£?) ] (dby/dx + (dCyy/dx)y,) + 0(e?)

Ray equation written to first order in &:



db,/dx + (dC,,/dx)y,

[ d?x,/ds? ]+ [‘s(dxo/ds)2
by, + Cyy¥o

e(d?y,/ds?) 0(e?)

Zeroth order ray equation:

] (db,/dx + (dCyy/dx)y,) = €

d?x,

0 =0 or x=s and dx/ds=1
ds?

E7L

Zeroth order ray equation for two rays, initially at y&' and y&, respectively:

dZyA

gl —dszl = by, + Cy, ¥
dZyB

et —=-=by +Cy¥5

Equation for the difference, Ay and its solution:

Ay =yB —yA = (f —y{) + e(y? —y{) = Ay, + ey,

d?Ay,
el ez = CyyAyo
dAy, s , ,
15 = Ayofo Cyy(s') ds

S
4
Ay, = Ayoj U Cyy (s ds"l ds’
0
0

Solution for constant Cyy:
Ay, = %Ay, Cyys?

An approximation that removes one integral. Using integration by parts we can write:

SI

NJ
]udv"=uv—] vdu with u = Cy,y and dv =1ds
0 0

st , ' dc dc
f Cyy 1ds" = sy (s") —f Sd—zy ds" = s'Cy,(s") when d—:y small
0 0

S
Ay, = Ay, f s'Cyy(s") ds’
0

An approximate solution (to first order in €) for Ay involving an exponential:

dAyl d Ay s

N
& dS = E = EAyOJO ny(S’) dS’ =~ Sij(; ny(sl) dS’




dAy Afsc (s") ds’
dS~£y0 yy(s) ds

dAy s n " I
A—y~£f0 Cyy(s") ds" ds

s st
In Ay = gf f ny(S") ds" ds’
0 J0

S S/ S
Ay = Ay, exp {s.f J. Cyy(s™) ds" ds’} ~ Ay, exp {ef s'Cyy(s") ds'}
0 J0 0

Proof that the approximate solution matches the exact solution to first order in &:
s ps'
Ay =~ Ay, <1 + s.f f Cyy(s") ds" ds’)
o Jo
s rs'
Ay — Ay, = €Ay, = sAyoj f Cyy(s") ds"ds’
o Jo

s ps'
Ay, = Ayof f Cyy(s") ds"ds’
o Jo

Given a point heterogeneity Cy, = C8(s — o), then for s > s,:

N N
S/
Ay, = CAyof l.f 6(s" — sp) ds"l ds' = CAy, f H(s'—sy)ds' = CAyy(s — sp)
0
0 0

Thus, Ay, grows linearly with distance from the heterogeneity. This effect corresponds to ray
divergence and convergence.
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Figure 1. Exact ray tracing through a

" medium with a Gaussian slowness anomaly.
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Figure 2. C,,,, for the medium with a
Gaussian slowness anomaly.
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Figure 3. Exact Ay; (black), the first order approximation (red) and the single-integral
approximation (green) at the ray endpoints. The correspondence is deceptively good. Placing
the anomaly closer to or further from to the ray endpoints leads to misprediction of the amplitude
of variation by a factor of two or more.

Case 2: Polar coordinates (1, 0):
Spatial variation of f and its gradient, in polar coordinates, with € a small parameter:
f = fo + Sbg(r)g + 1/28699(7')92

v = [ 0f /or 1 _ _[dbx/dr + (dCoo/dr)8
r=19f /08 r1b, + 17 1Cyq0



Position vector for a ray that is initially parallel to the r-axis written inters of an unperturbed part
and a perturbed part. Note that since dx/ds is a unit vector that initially is [1  0]7, only its 8-
component can have a first order perturbation.

(s)
[g] - [90 47:0821(5)] and dx = [r(iig

ax [ dry/ds

ds lerg(dO,/ds)

d_zx 3 [ d*ry/ds?

ds?  lery(d?y,/ds?) + e(dry/ds)(d6,/ds)

Second term on L.h.s. of ray equation:

ax o f o [ dry/ds ] ~[dbx/dr + (dCog/dr)By + £(dCog/dr)6;
ds ~ lery(d6y/ds) ¢ r71by, + 17 Coeb + €771 Chgby

= &(dry/ds)(db,/dr + (dCgg/dr)8,) + 0(£?)

g<gv ) _ [s(dro/ds)2

ds \ds 0(£2) ] (dby/dr + (dCgg/dr)6,) + 0(£?)

Ray equation written to first order in &:

[ d?ry/ds? ] N [s(dro/ds)2
ero(d?y,/ds?) + e(dry/ds)(dO,/ds) 0(g?)

_ dbx/dr + (ngg/dT')H
= ¢ T'_lby + T'_1C999

] (db.,/dr + (dCpy/dr)6y)

Zeroth order ray equation:

N
£ T =0 or ry=s and dry/ds=1
Zeroth order ray equation for two rays, initially at 8§ and 8, respectively:
y €q y yatbp 0 P y

d2ef dof _

el s I AT by + s Coeys
4267 doF

81: S F +K = by + S_lceeyg

Equation for the difference, Ay and its solution:
A0 =08 — 04 = (05 —68) + £(0F — 67") = AB, + €76,

d?A0, N dAO,
ds? ds

el s

= S_1C39A90



d?A0 dAfd

2 Lys—2
ds? ds

d dAe,
S ds S ds

S = CQQAHO

= ngAHO

N NY

AB; = AG, f(s’)‘lf(s")‘nggds" ds’

0 0
Defining Ay, = 15460, and Ay, = rpA8; and C,,, = 1éCgy, we find that:
N N
Ay, = Ay, f(s’)‘lf s"Cyyds"ds’
0 0

For a constant ny:

S S
Ay, = Ay, Cyy, f(s’)‘ll/z(s')2 ds' = Ay, nyf Ys'ds' = Yy, Cy,s*
0 0

which differs from the Cartesian result by a factor of two.

My thinking on this issue was inspired by Equation 3 of Dalton and Ekstrom (2006), Global
models of surface wave attenuation, JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 111,
B05317, doi:10.1029/2005JB003997. This paper cites Woodhouse, J. H., and Y. K. Wong
(1986), Amplitude, phase and path anomalies of mantle waves, Geophys. J. R. Astron. Soc., 87,
753—773, but I have not read that paper (yet).



