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This is a quick modification to the previous note. Here I consider forward scattering, only. 

Summary: the 𝑃 → 𝑃 forward scattering is sufficient to solve for 𝛿𝛼 𝛼⁄ , 𝛿𝛽 𝛽⁄  and 𝛿𝜌 𝜌⁄  and the 

𝑃 → 𝑆 forward scattering is sufficient to solve for  𝛿𝛽 𝛽⁄  and 𝛿𝜌 𝜌⁄ .  When both are measured, 

one can also solve for  𝑟 = 𝛽/𝛼. 

Rondenay (2009, DOI 10.1007/s10712-009-9071-5, Equations 14-15) gives the scattering 

functions for P wave interacting with a point heterogeneity as 𝐟 = 𝐇𝐡: 
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with   𝑟 = 𝛽 𝛼⁄ . For forward-scattered waves −𝜋 2⁄ < 𝜃 < +𝜋 2⁄ .  The above angular 

functions 𝐡 are not orthogonal on this interval, but the functions 𝑔𝑛(𝜃), 𝑛 = 1…5 are: 
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By orthogonal, I mean∫ 𝑔𝑛(𝜃) 𝑔𝑚(𝜃) d𝜃
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2𝛿𝑛𝑚 with 𝑁𝑛 a normalization constant. I have 

verified the orthogonality numerically. We find the elements of 𝐆 by writing 𝐟 = 𝐆𝐠 and 

equating coefficients in 𝐇𝐡 = 𝐆𝐠 : 

first row: 

𝑓1 = 𝐻11ℎ1 + 𝐻12ℎ2 + 𝐻14ℎ4 = 𝐺11𝑔1 + 𝐺12𝑔2 + 𝐺14𝑔4 = 

= 𝐺11ℎ1 + 𝐺12(ℎ2 − 𝑐1ℎ1 − 𝑐4ℎ4) + 𝐺14ℎ4 = 

= 𝐺12ℎ2 + (𝐺11 − 𝐺12𝑐1)ℎ1 + (𝐺14 − 𝐺12𝑐4) 

𝐺12 = 𝐻12    and   𝐻11 = 𝐺11 − 𝐺12𝑐1    and   𝐻14 = 𝐺14 − 𝐺12𝑐4 

𝐺12 = 𝐻12    and   𝐺11 = 𝐻11 + 𝐻12𝑐1    and   𝐺14 = 𝐻14 + 𝐻12𝑐4 

second row: 



𝑓2 = 𝐻23ℎ3 + 𝐻25ℎ5 = 𝐺23𝑔3 + 𝐺25𝑔5 = 𝐺23(ℎ3 − 𝑐3ℎ5) + 𝐺25ℎ5

= 𝐺23ℎ3 + (𝐺25 − 𝐺23𝑐3)ℎ5 

𝐺23 = 𝐻23    and    𝐻25 = 𝐺25 − 𝐺23𝑐3    and   𝐺25 = 𝐻25 + 𝐻23𝑐3 

 

We now write the non-zero components of 𝐆 as: 
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Applying the integral to the equation 𝐟 = 𝐆𝐠 yields: 
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The non-zero elements provide five equations linking 
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Let’s assume that 𝑟 is known.  Then, the top three equations give: 
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And from the bottom two equations: 
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I have checked these five equations numerically. 

So, the 𝑃 → 𝑃 interaction (equations 1-3) are sufficient to solve for 𝛿𝛼 𝛼⁄ , 𝛿𝛽 𝛽⁄  and 𝛿𝜌 𝜌⁄  and 

that the 𝑃 → 𝑆 interaction (equations 4-5) are sufficient to solve for  𝛿𝛽 𝛽⁄  and 𝛿𝜌 𝜌⁄ .  In order to 

solve for 𝑟, one must eliminate it from equations 3 and 5, and then solve the resulting equation 

for 𝛿𝛽 𝛽⁄ : 
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Eliminating 𝑟 yields a quadratic equation for 𝛿𝛽 𝛽⁄ : 
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𝑠𝑜 𝐴 = 4   and   𝐵 = (4𝑑12 − 2𝑐)   and    𝐶 = ((𝑑12)
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The discriminant, 𝐷2 = 𝐵2 − 4𝐴𝐶 is 
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and the solution is 
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The −𝑑12 2⁄  solution is unphysical, because it leads to a singular value of 𝑟 when inserted into 

the original equations.  Hence: 
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The quantity 𝛿𝛼 𝛼⁄  can then be determined using the first equation. Thus, when both P and S 

wave forward scattering is measured, the data can also determine 𝑟. 

I’ve not checked the last half of this note. 

 


