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Definitions 

 

Let 𝐦 be a length-𝑀 model parameter vector, 𝐆 be an 𝑁 × 𝑀 data kernel matrix satisfying 𝐆𝐦 = 𝐝, and 

𝐇 be an 𝐾 × 𝑀 prior information matrix satisfying 𝐇𝐦 = 0. The generalized least squares solution is 

𝐦 = 𝐆−g𝐝 where 𝐆−g ≡ [𝐆T𝐆 + ε𝐇T𝐇]−1𝐆T and where ε is a ratio of variances. The resolution matrix 

is 𝐑 ≡ 𝐆−g𝐆. 

Condition for which the resolution matrix has unit row sum 

Let 𝐦 be a length-𝑀 model parameter vector, 𝐆 be an 𝑁 × 𝑀 data kernel matrix satisfying 𝐆𝐦 = 𝐝, and 

𝐇 be an 𝐾 × 𝑀 prior information matrix satisfying 𝐇𝐦 = 0. The generalized least squares solution is 

𝐦 = 𝐆−g𝐝 where 𝐆−g ≡ [𝐆T𝐆 + ε𝐇T𝐇]−1𝐆T and where ε is a ratio of variances. The resolution matrix 

is 𝐑 ≡ 𝐆−g𝐆. Let 𝐰 = [1, 1, 1, ⋯ ,1]T be a length-𝑀 vector of all ones, so that the row sum of R is 𝐑𝐰. 

The resolution matrix, 𝐑, has unit row sum when the prior information matrix, 𝐇, has zero row sum; that 

is 𝐇𝐰 = 𝟎.  

𝐑𝐰 ≟ 𝐰 

[𝐆T𝐆 + ε𝐇T𝐇]−1𝐆T𝐆𝐰 ≟ 𝐰 

𝐆T𝐆𝐰 ≟ [𝐆T𝐆 + ε𝐇T𝐇]𝐰 ≟ 𝐆T𝐆𝐰 + ε𝐇T𝐇𝐰 

𝐆T𝐆𝐰 = 𝐆T𝐆𝐰 + 0 

Except when ε = 0 or 𝐾 = 0, this is a necessary as well as sufficient condition, (since 𝐇T𝐇 cannot be 

zero. 

The resolution matrix can always be adjusted to have unit row sum 

The key property of the resolution matrix, 𝐑, is that it must be built from the rows of the data kernel, 

so that the predicted data, 𝐦𝑒𝑠𝑡, in  𝐦𝑒𝑠𝑡 = 𝐑𝐦, when viewed as localized average of 𝐦, are unique.  

This condition implies that 𝐑 = 𝐆−𝑔𝐆, where 𝐆−𝑔 is some generalized inverse.  If some particular 

generalized inverse does not lead to an 𝐑 with unit row sum, one can always modify the definition of 𝐆−𝑔 

to some new generalized inverse, say (𝐆−𝑔), that it does.  Suppose 𝐑𝐰 = 𝐬, where 𝐬 is a vector of 

row sums.  Then, defining 𝐒 ≡ diag(𝐬): 

𝐑𝐰 = 𝐆−𝑔𝐆𝐰 = 𝐬 = 𝐒𝐰 

𝐒−1𝐆−𝑔𝐆𝐰 = 𝐰 

 𝐑′𝐰 = (𝐆−𝑔)′𝐆𝐰 = 𝐰    with    (𝐆−𝑔)′ =  𝐒−1𝐆−𝑔 

The new localized averages (rows of 𝐑) have the same shape as the old ones.  However, depending on 

how the spread functions are define, the spread of resolution may be different. The Dirichlet spread 

function: 



spread𝐷(𝐫′(𝑖)) = ∑(𝑠𝑖
−1𝑟𝑗 − 𝛿𝑖𝑗)

2
𝑀

𝑗=1

≠ ∑(𝑟𝑖 − 𝛿𝑖𝑗)
2

𝑀

𝑗=1

= spread𝐷(𝐫(𝑖)) 

and the Backus-Gilbert spread function: 

spread𝐵𝐺(𝐫′(𝑖)) = ∑(𝑠𝑖
−1𝑟𝑗)(𝑖 − 𝑗)2

𝑀

𝑗=1

= 𝑠𝑖
−1 spread𝐵𝐺(𝐫(𝑖)) 

are both different. The covariance changes, too: 

cov(𝐦𝑒𝑠𝑡) = 𝜎𝑑
2(𝐆−𝑔)′(𝐆−𝑔)′𝑻 = 𝜎𝑑

2𝐒−1𝐆−𝑔𝐆−𝑔𝑇𝐒−1 ≠ 𝜎𝑑
2𝐆−𝑔𝐆−𝑔𝑇 

 

Condition for which the Resolution Matrix is Symmetric 

 

A matrix is symmetric hen it is equal to its transpose. Note that 𝐆T𝐆 and 𝐇T𝐇 are always 

symmetric. 

 

𝐑 ≟ 𝐑𝑻 

[𝐆T𝐆 + ε𝐇T𝐇]−1𝐆T𝐆 ≟ 𝐆T𝐆[𝐆T𝐆 + ε𝐇T𝐇]−1 

𝐆T𝐆[𝐆T𝐆 + ε𝐇T𝐇] ≟ [𝐆T𝐆 + ε𝐇T𝐇]𝐆T𝐆 

𝐆T𝐆𝐆T𝐆 + ε𝐆T𝐆𝐇T𝐇 = 𝐆T𝐆𝐆T𝐆 + ε𝐇T𝐇𝐆T𝐆 

𝐆T𝐆𝐇T𝐇 = 𝐇T𝐇𝐆T𝐆 

So 𝐆T𝐆 must commute with 𝐇T𝐇.  In general, for two arbitrary matrices 𝑁 × 𝑀 and 𝐾 × 𝑀 matrices, 𝐆 

and 𝐇, 𝐆T𝐆 does not commute with 𝐇T𝐇.  Special cases in which they do commute include. 

(A) When 𝐆 and 𝐇 are diagonal matrices, so that 𝐆T𝐆 and 𝐇T𝐇 also are diagonal and commute. 

(B) When 𝐆 and 𝐇 are orthogonal matrices, so that 𝐆T𝐆 and 𝐇T𝐇 are diagonal and commute. 

(C) When 𝐆T𝐆 and 𝐇T𝐇 share the same eigenvectors, and so can be simultaneously diagonalized. 

(D) When, 𝐆 and 𝐇 are discrete convolutions (Toeplitz matrices), then 𝐆, 𝐇, 𝐆T𝐆 and 𝐇T𝐇 

asymptotically commute (commute in the limit, 𝑀 → ∞). 

 

Construction of the Resolution Matrix from Asserted-Predicted Solution Pairs. 

The resolution matrix relates a predicted solution, 𝐦𝑝𝑟𝑒, to an asserted solution, 𝐦, via 𝐦𝑝𝑟𝑒 =

𝐑𝐦.  Suppose that 𝑀 asserted solutions, 𝐦(𝒊), lead to 𝑀 predicted solutions, 𝐦𝑝𝑟𝑒(𝑖).  Then,  



[
𝑚1

𝑝𝑟𝑒(1)
⋯ 𝑚1

𝑝𝑟𝑒(𝑀)

⋯ ⋱ ⋯

𝑚𝑀
𝑝𝑟𝑒(1)

⋯ 𝑚𝑀
𝑝𝑟𝑒(𝑀)

] = 𝐑 [
𝑚1

(1)
⋯ 𝑚1

(𝑀)

⋯ ⋱ ⋯

𝑚𝑀
(1)

⋯ 𝑚𝑀
(𝑀)

] 

Then, as long as the asserted solutions are linearly independent, 𝐑 can be constructed as: 

𝐑 = [
𝑚1

𝑝𝑟𝑒(1)
⋯ 𝑚1

𝑝𝑟𝑒(𝑀)

⋯ ⋱ ⋯

𝑚𝑀
𝑝𝑟𝑒(1)

⋯ 𝑚𝑀
𝑝𝑟𝑒(𝑀)

] [
𝑚1

(1)
⋯ 𝑚1

(𝑀)

⋯ ⋱ ⋯

𝑚𝑀
(1)

⋯ 𝑚𝑀
(𝑀)

]

−1

 

since 𝐦𝑝𝑟𝑒(𝑖) = 𝐆−g𝐝(𝑖) and 𝐝(𝑖) = 𝐆𝐦(𝑖), we can also write 

𝐑 = 𝐆−g𝐆 [
𝑚1

(1)
⋯ 𝑚1

(𝑀)

⋯ ⋱ ⋯

𝑚𝑀
(1)

⋯ 𝑚𝑀
(𝑀)

] [
𝑚1

(1)
⋯ 𝑚1

(𝑀)

⋯ ⋱ ⋯

𝑚𝑀
(1)

⋯ 𝑚𝑀
(𝑀)

]

−1

= 𝐆−g𝐆𝐈 = 𝐆−g𝐆 

which recovers the usual formula for the resolution matrix. 

 


