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Consider a fluid containing a solute (dissolved substance), when the fluid is moving in the 𝑥-

direction. The amount of solute in the fluid is quantified by its concentration, 𝐸, measured in 

units of kg/m3.   The flux of the solute through the (𝑦, 𝑧) plane is 𝑒𝑥, measured in units of 

kg/m2s.  Now suppose that fluid motion is the only mechanism for moving the solute, with the 

horizontal velocity 𝑣𝑥 is measured in units of m/s. Velocity can also be considered to be the 

volume flux of fluid, measured in units of m3/m2s.  Then, the flux of solute is the volume flux of 

water times the concentration of solute in that fluid; that is, 𝑒𝑥 = 𝑣𝑥𝐸, again measured in usint of 

(kg/m3)(m3/m2s) = kg/ m2s.  

This scenario is not quite analogous to energy transport in a seismic wave, because while the 

energy is contained within the rock in the same way that the solute is dissolved in the fluid, the 

rock is not moving in the same sense that the fluid is.  Nevertheless, as we show below, the 

relationship can be shown to be true. 

We assume harmonic motion of the form exp(𝑖𝑘𝑥 − 𝑖𝜔𝑡), where 𝑘 is horizontal wavenumber 

and 𝜔 is angular frequency.  This wave moved in the positive 𝑥-direction at velocity 𝑣𝐻 = 𝜔 𝑘⁄ . 

Derivatives of a quantity, say 𝑢, with respect to horizontal position 𝑥 and time 𝑡 can be 

performed trivially, as �̇�,𝑥 = 𝑖𝑘𝑢𝑖 and �̇�𝑖 = −𝑖𝜔𝑢𝑖. 

Asuming that all motions and stresses are confined to the (𝑥, 𝑧) plane, the horizontal energy flux 

𝑒𝑥 = −𝜏𝑥𝑗�̇�𝑗  (Synge, 1956-1957) reduces to 

𝑒𝑥 = 𝑖𝜔[𝜏𝑥𝑥𝑢𝑥 + 𝜏𝑥𝑧𝑢𝑧]     so    [𝜏𝑥𝑥𝑢𝑥 + 𝜏𝑥𝑧𝑢𝑧] =
𝑒𝑥

𝑖𝜔
 

(A.1) 

As the wave is propagating horizontally, its vertical energy flux 𝑒𝑧 = −𝜏𝑧𝑗�̇�𝑗  is zero, and we can 

write 

𝑒𝑧 = 0 = 𝑖𝜔[𝜏𝑥𝑧𝑢𝑥 + 𝜏𝑧𝑧𝑢𝑧]      so      [𝜏𝑥𝑧𝑢𝑥 + 𝜏𝑧𝑧𝑢𝑧] = 0 

(A.2) 

The energy density equation  𝐸 = ½𝜏𝑖𝑗𝑢𝑖,𝑗 + ½ρ�̇�𝑖�̇�𝑖 (Synge, 1956-1957) becomes 

2𝐸 = 𝜏𝑥𝑥𝑢𝑥,𝑥 + 𝜏𝑥𝑧𝑢𝑥,𝑧 + 𝜏𝑥𝑧𝑢𝑧,𝑥 + 𝜏𝑧𝑧𝑢𝑧,𝑧 + ½ρ�̇�𝑥�̇�𝑥 + ½ρ�̇�𝑧�̇�𝑧 

(A.3) 

Performing the 𝑥-derivatives yields: 

2𝐸 = 𝑖𝑘[𝜏𝑥𝑥𝑢𝑥 + 𝜏𝑥𝑧𝑢𝑧] + [𝜏𝑥𝑧𝑢𝑥,𝑧 + 𝜏𝑧𝑧𝑢𝑧,𝑧] − ρ𝜔2[𝑢𝑥𝑢𝑥 + 𝑢𝑧𝑢𝑧] 

(A.4) 



Substituting Eqn. (A.1) yields 

2𝐸 =
𝑘

𝜔
𝑒𝑥 + [𝜏𝑥𝑧𝑢𝑥,𝑧 + 𝜏𝑧𝑧𝑢𝑧,𝑧] − ρ𝜔2[𝑢𝑥𝑢𝑥 + 𝑢𝑧𝑢𝑧] 

(A.5) 

We now differentiate Eqn. (A.2) with respect to 𝑧: 

[𝜏𝑥𝑧𝑢𝑥 + 𝜏𝑧𝑧𝑢𝑧],𝑧 = 0 = [𝜏𝑥𝑧𝑢𝑥,𝑧 + 𝜏𝑧𝑧𝑢𝑧,𝑧] + [𝜏𝑥𝑧,𝑧𝑢𝑥 + 𝜏𝑧𝑧,𝑧𝑢𝑧] 

[𝜏𝑥𝑧𝑢𝑥,𝑧 + 𝜏𝑧𝑧𝑢𝑧,𝑧] = −[𝜏𝑥𝑧,𝑧𝑢𝑥 + 𝜏𝑧𝑧,𝑧𝑢𝑧] 

(A.6) 

Substituting this result into Eqn. (A.5) yields 

2𝐸 =
𝑘

𝜔
𝑒𝑥 − [𝜏𝑥𝑧,𝑧𝑢𝑥 + 𝜏𝑧𝑧,𝑧𝑢𝑧] − ρ𝜔2[𝑢𝑥𝑢𝑥 + 𝑢𝑧𝑢𝑧] 

(A.7) 

The equations of motion are 

−𝜌𝜔2𝑢𝑥 = 𝜏𝑥𝑥,𝑥 + 𝜏𝑥𝑧,𝑧 

−𝜌𝜔2𝑢𝑧 = 𝜏𝑥𝑧,𝑥 + 𝜏𝑧𝑧,𝑧 

(A.8) 

Summing them yields: 

−𝜌𝜔2[𝑢𝑥𝑢𝑥 + 𝑢𝑧𝑢𝑧] = [𝜏𝑥𝑧,𝑧𝑢𝑥 + 𝜏𝑧𝑧,𝑧𝑢𝑧] + [𝜏𝑥𝑥,𝑥𝑢𝑥 + 𝜏𝑥𝑧,𝑥𝑢𝑧] 

−[𝜏𝑥𝑧,𝑧𝑢𝑥 + 𝜏𝑧𝑧,𝑧𝑢𝑧] = 𝜌𝜔2[𝑢𝑥𝑢𝑥 + 𝑢𝑧𝑢𝑧] + [𝜏𝑥𝑥,𝑥𝑢𝑥 + 𝜏𝑥𝑧,𝑥𝑢𝑧] 

(A.9) 

Substituting this result into Eqn. (A.7) yields 

2𝐸 =
𝑘

𝜔
𝑒𝑥 + [𝜏𝑥𝑥,𝑥𝑢𝑥 + 𝜏𝑥𝑧,𝑥𝑢𝑧] 

(A.10) 

Performing the 𝑥 derivatives yield 

2𝐸 =
𝑘

𝜔
𝑒𝑥 + 𝑖𝑘[𝜏𝑥𝑥𝑢𝑥 + 𝜏𝑥𝑧𝑢𝑧] 

(A.11) 

Substituting Eqn. (A.1) yields 



2𝐸 =
𝑘

𝜔
𝑒𝑥 + 𝑖𝑘

𝑒𝑥

𝑖𝜔
= 2

𝑘

𝜔
𝑒𝑥 

(A.12) 

 

Introducing the horizontal velocity a 𝑣𝐻 = 𝜔 𝑘⁄ , we arrive at the result that the horizontal energy 

flux is the energy density multiplied by the horizontal velocity. 

𝑒𝑥 = 𝑣𝐻𝐸 

(A.13) 
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