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Many textbooks derive ray theory for the wave equation 𝐷𝜑̈ = 𝑀∇2𝜑, where 𝜑 is the scalar field, 

𝐷 is density, 𝑀 is elastic modulus and velocity is 𝑐 = 𝑀½𝐷−½.  However, this equation is not a 

good analogue of the vector seismic wave equation, because it does not arise from the underlying 

physics when both 𝐷 and 𝑀 vary with position.  For instance, for acoustic waves satisfy 𝜑̈ =

𝑀𝐷−1∇2𝜑 + 𝑀∇𝐷−1 ∙ ∇𝜑 where 𝜑 is pressure and 𝑀 = λ is incompressibility and, under 

appropriate assumptions, vertically-polarized shear waves satisfy 𝜑̈ = 𝑀𝐷−1∇2𝜑 + 𝐷−1∇𝑀 ∙ ∇𝜑, 

where 𝜑 is vertical displacement and and 𝑀 = 𝜇 is rigidity. 

Ray theory assumes that the wave field can be written as the Laurent series in angular frequency 

𝜔 

𝜑(𝐱, 𝑡) = ∑(𝑖𝜔)−𝑛𝐴𝑛(𝐱) exp{𝑖𝜔𝑇(𝐱) − 𝑖𝜔𝑡}

∞

𝑛=0

 

involving travel time function 𝑇(𝐱) and amplitudes 𝐴𝑛(𝐱) (with only 𝐴0 important at high 

frequencies). Relevant derivatives of this function are 

𝜑̈(𝐱, 𝑡) = ∑(𝑖𝜔)−𝑛(𝑖𝜔)2𝐴𝑛(𝐱) exp{𝑖𝜔𝑇(𝐱) − 𝑖𝜔𝑡}

∞

𝑛=0

 

∇𝜑 = ∑(𝑖𝜔)−𝑛{∇𝐴𝑛 + (𝑖𝜔)𝐴𝑛∇T}𝑒𝑖𝜔𝑇−𝑖𝜔𝑡

∞

𝑛=0

 

∇2𝜑 = ∑(𝑖𝜔)−𝑛{ 

∞

𝑛=0

∇2𝐴𝑛 + (𝑖𝜔)∇𝐴𝑛 ∙ ∇T + (𝑖𝜔)∇𝐴𝑛 ∙ ∇T + (𝑖𝜔)𝐴𝑛∇2T + (𝑖𝜔)2𝐴𝑛∇T ∙ ∇T }𝑒𝑖𝜔𝑇−𝑖𝜔𝑡 

Case 1: We insert the series into the wave equation 

𝜑̈ = 𝑐2∇2𝜑 + 𝑀∇𝐷−1 ∙ ∇𝜑     with   𝑐2 =
𝑀

𝐷
 

And equate powers of frequency.  The (𝑖𝜔)2 term is 

𝐴0 = 𝑐2𝐴0∇T ∙ ∇T 

which leads to the Eikonal equation 𝑐2∇T ∙ ∇T = 1.  The (𝑖𝜔)1 term is 

𝐴1 = 2𝑐2∇𝐴0 ∙ ∇T + 𝑐2𝐴0∇2T + 𝑐2𝐴1∇T ∙ ∇T + 𝐴0M∇𝐷−1 ∙ ∇T 

The Eikonal equation is used to remove term containing 𝐴1, leaving the transport equation 

0 = 2𝑐2∇𝐴0 ∙ ∇T + 𝑐2𝐴0∇2T + 𝐴0M∇𝐷−1 ∙ ∇T  

This equation can be rearranged 



0 = 2∇𝐴0 ∙ ∇T + 𝐴0∇2T + 𝑐−2𝐴0M∇𝐷−1 ∙ ∇T 

(
2∇𝐴0

𝐴0
) ∙ ∇T = −∇2T − 𝑐−2M∇𝐷−1 ∙ ∇T 

Note that  ∇𝐴0
2 = 2𝐴0∇𝐴0, so 2∇𝐴0 = ∇𝐴0

2 𝐴0⁄ .  We can also define a local ray direction 𝐭 that is 

normal to a surface of equal travel time.  From the Eikonal equation ∇T = 𝐭 𝑐⁄ .  The transport 

equation then becomes: 

(
∇𝐴0

2

𝐴0
2 ) ∙ (

𝐭

𝑐
) = −∇ ∙ (

𝐭

𝑐
) − 𝑐−2M∇𝐷−1 ∙ (

𝐭

𝑐
) 

(
∇𝐴0

2

𝐴0
2 ) ∙ 𝐭 = −𝑐∇ ∙ (

𝐭

𝑐
) − 𝑐−1M∇𝐷−1 ∙ (

𝐭

𝑐
) 

Applying the chain rule leads to 

(
∇𝐴0

2

𝐴0
2 ) ∙ 𝐭 = −∇ ∙ 𝐭 − 𝑐∇ (

1

𝑐
) ∙ 𝐭 − 𝑐−2M∇𝐷−1 ∙ 𝐭 

(
∇𝐴0

2

𝐴0
2 ) ∙ 𝐭 = −∇ ∙ 𝐭 + 𝑐−1∇c ∙ 𝐭 − (

𝐷

𝑀
) 𝑀∇𝐷−1 ∙ 𝐭 

(
∇𝐴0

2

𝐴0
2 ) ∙ 𝐭 = −∇ ∙ 𝐭 + 𝑐−1∇c ∙ 𝐭 − 𝐷∇𝐷−1 ∙ 𝐭 

Now let 𝐴0
2 = 𝑐𝐷𝐹 where 𝐹 will turn out to be energy flux. 

(
∇(𝑐𝐷𝐹)

𝑐𝐷𝐹
) ∙ 𝐭 = −∇ ∙ 𝐭 + 𝑐−1∇c ∙ 𝐭 − 𝐷∇𝐷−1 ∙ 𝐭 

Applying the chain rule and the identity 𝐵−1∇B = −𝐵∇𝐵−1 

(
𝑐𝐷∇𝐹

𝑐𝐷𝐹
) ∙ 𝐭 + (

𝐹𝐷∇𝑐

𝑐𝐷𝐹
) ∙ 𝐭 + (

𝑐𝐹∇𝐷

𝑐𝐷𝐹
) ∙ 𝐭 = −∇ ∙ 𝐭 + 𝑐−1∇c ∙ 𝐭 − 𝐷∇𝐷−1 ∙ 𝐭 

(
∇𝐹

𝐹
) ∙ 𝐭 + (

∇𝑐

𝑐
) ∙ 𝐭 + (

∇𝐷

𝐷
) ∙ 𝐭 = −∇ ∙ 𝐭 + 𝑐−1∇c ∙ 𝐭 + 𝐷−1∇𝐷 ∙ 𝐭 

Canceling terms leads to 

(
∇𝐹

𝐹
) ∙ 𝐭 = −∇ ∙ 𝐭 

Defining 𝐞 = 𝐹𝐭, we note that this equation is equivalent to ∇ ∙ 𝐞 = 0, as 

∇ ∙ 𝐞 = 0 = ∇ ∙ (𝐹𝐭) = ∇𝐹 ∙ 𝐭 + 𝐹∇ ∙ 𝐭  



So 𝐹 ∝ 𝑐−1𝐷−1𝐴0
2 is a conserved flux, e.g. for acoustic waves, 𝐹 ∝ 𝑐−1𝜌−1𝑃2.  We have used the 

proportional sign because the ∇𝐹 𝐹⁄  term indicates that the flux is determined only up to an overall 

constant. 

Case 2: We insert the series into the wave equation 

𝜑̈ = 𝐷−1𝑀∇2𝜑 + 𝐷−1∇M ∙ ∇𝜑     with   𝑐2 = 𝑀𝐷−1 

and equate equal powers of frequency.  The (𝑖𝜔)2 terms is 

𝐴0 = 𝑀𝐷−1𝐴0∇T ∙ ∇T 

Which again leads to the Eikonal equation 𝑐−2∇T ∙ ∇T = 1. The (𝑖𝜔)1 term is 

 𝐴1 = 2𝑀𝐷−1∇𝐴0 ∙ ∇T + 𝑀𝐷−1𝐴0∇2T + 𝑀𝐷−1𝐴1∇T ∙ ∇T + 𝐴0𝐷−1∇M ∙ ∇T 

Subtract 𝐴1 times Eikonal equation leads to a different transport equation than for Case 1 

0 = 2𝑀𝐷−1∇𝐴0 ∙ ∇T + 𝑀𝐷−1𝐴0∇2T + 𝐴0𝐷−1∇M ∙ ∇T 

Multiply by 𝑀−1𝐷𝐴0
−1 yields 

0 = (
2∇𝐴0

𝐴0
) ∙ ∇T + ∇2T + 𝑀−1∇M ∙ ∇T 

Inserting the identity 2∇𝐴0 = ∇𝐴0
2 𝐴0⁄  yields 

(
∇𝐴0

2

𝐴0
2 ) ∙ ∇T = −∇ ∙ ∇T − 𝑀−1∇M ∙ ∇T 

We then introduce rat direction 𝐭, which satisfies ∇T = 𝐭 𝑐⁄ = 𝐷½𝐭 𝑀½⁄  

(
∇𝐴0

2

𝐴0
) ∙

𝐷½𝐭

𝑀½
= −∇ ∙ (

𝐷½𝐭

𝑀½
) − 𝑀−1∇M ∙ (

𝐷½𝐭

𝑀½
) 

Multiplying by 𝑀½𝐷−½ yields 

(
∇𝐴0

2

𝐴0
) ∙ 𝐭 = −𝑐∇ ∙ (𝑐𝐭) − 𝑀−½𝐷−½∇M ∙ (𝑀−½𝐷½𝐭) 

We apply the chain rule and simplify 

(
∇𝐴0

2

𝐴0
) ∙ 𝐭 = −∇ ∙ 𝐭 − 𝑐∇𝑐−1 ∙ 𝐭 − 𝑀−1∇M ∙ 𝐭 

And apply the identities 𝑀∇𝑀−1 = −𝑀−1∇M and  𝑐−1∇c = −𝑐∇𝑐−1. Yielding 

(
∇𝐴0

2

𝐴0
) ∙ 𝐭 = −∇ ∙ 𝐭 + 𝑐−1∇c ∙ 𝐭 + 𝑀∇𝑀−1 ∙ 𝐭 

We define 𝐴0
2 = 𝑐𝑀−1𝐹 and apply the chain rule 



(
∇(𝑐𝑀−1𝐹)

𝑐𝑀−1𝐹
) ∙ 𝐭 = −∇ ∙ 𝐭 + 𝑐−1∇c ∙ 𝐭 + 𝑀∇𝑀−1 ∙ 𝐭 

(
∇𝐹

𝐹
) ∙ 𝐭 + 𝑐−1∇𝑐 ∙ 𝐭 + 𝑀∇𝑀−1 ∙ 𝐭 = −∇ ∙ 𝐭 + 𝑐−1∇c ∙ 𝐭 + 𝑀∇𝑀−1 ∙ 𝐭 

And cancel terms 

(
∇𝐹

𝐹
) ∙ 𝐭 = −∇ ∙ 𝐭 

Consequently, the conserved flux is 𝐹 = 𝑐−1𝑀𝐴0
2 = 𝐷½𝑀−½𝑀𝐴0

2 = 𝐷½𝑀½𝐴0
2. 

For shear waves 𝑀 = 𝜇 and the flux is 𝐹 ∝ 𝜌½𝜇½𝑈𝑧
2, where as in Case 1, the flux is determined 

only up to a multiplicative constant.  

 


