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Many textbooks derive ray theory for the wave equation D@ = MV?¢, where ¢ is the scalar field,
D is density, M is elastic modulus and velocity is ¢ = M”2D~". However, this equation is not a
good analogue of the vector seismic wave equation, because it does not arise from the underlying
physics when both D and M vary with position. For instance, for acoustic waves satisfy ¢ =
MD™1V?¢p + MVD™1-V¢ where ¢ is pressure and M = A is incompressibility and, under
appropriate assumptions, vertically-polarized shear waves satisfy ¢ = MD™1V?¢p + D"1VM - Vg,
where ¢ is vertical displacement and and M = p is rigidity.

Ray theory assumes that the wave field can be written as the Laurent series in angular frequency
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involving travel time function T(x) and amplitudes A,(x) (with only A, important at high
frequencies). Relevant derivatives of this function are
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Case 1: We insert the series into the wave equation
, : M
@ =c?V?@ + MVD™1-Vp with ¢? = o

And equate powers of frequency. The (iw)? term is

Ay = c?A VT - VT

which leads to the Eikonal equation ¢2VT - VT = 1. The (iw)® term is

Ay = 2¢?VAy - VT + c?24,V?T + ¢?A,VT - VT + ApMVD~1 - VT

The Eikonal equation is used to remove term containing A4, leaving the transport equation
0 = 2¢?VA, - VT + c24,V?T + AQMVD ™1 - VT

This equation can be rearranged
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Note that VA3 = 24,VA,, so 2VA, = VA3/A,. We can also define a local ray direction t that is
normal to a surface of equal travel time. From the Eikonal equation VT = t/c. The transport
equation then becomes:
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Applying the chain rule leads to
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Now let A3 = cDF where F will turn out to be energy flux.
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Applying the chain rule and the identity B~1VB = —BVB~1
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Canceling terms leads to
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Defining e = Ft, we note that this equation is equivalentto V- e = 0, as

V-e=0=V-(Ft)=VF-t+FV-t



So F « ¢"1D71A2 is a conserved flux, e.g. for acoustic waves, F « ¢"1p~1P2. We have used the
proportional sign because the VF /F term indicates that the flux is determined only up to an overall
constant.

Case 2: We insert the series into the wave equation

@ =D MV?¢p +D'VM-Vp with ¢2 =MD

and equate equal powers of frequency. The (iw)? terms is

Ay = MD™1A,VT - VT

Which again leads to the Eikonal equation ¢ ~2VT - VT = 1. The (iw)? term is
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Subtract A, times Eikonal equation leads to a different transport equation than for Case 1
0 =2MD™ VA, VT + MD 1A V?T + A,D~1VM - VT

Multiply by M~1DAg? yields
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Inserting the identity 2VA, = VA3 /A, yields
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We then introduce rat direction t, which satisfies VT = t/c = D*t/M"
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Multiplying by M D~ yields
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We apply the chain rule and simplify
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And apply the identities MVM ™1 = —M~1VM and ¢~ 1Vc = —cVc™1L. Yielding
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We define A% = cM~1F and apply the chain rule
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Consequently, the conserved flux is F = ¢"*MA% = D*M~"MA% = D" M"A3.

For shear waves M = u and the flux is F « p”u”U2?, where as in Case 1, the flux is determined
only up to a multiplicative constant.



