
(1) We are considering Rayleigh wave propagation in a uniform half-space.
(2) We quantize the horizontal wavenumber 𝑘𝑛 = ±2𝜋𝑛/𝐿 by making the model of finite length 𝐿 

with repeating boundary conditions.  Because of the ±, the modes occur as degenerate pairs, one 
right-propagating and the other left-propagating. However, nothing we will do here couples the 
two directions, so we can just ignore, say, the left-propagating modes.

(3) The horizontal wave-functions are exp 𝑖𝑘𝑛𝑥 .  The vertical wave-functions 𝑢𝑥
𝑛

𝑧  and 

𝑢𝑧
𝑛

𝑧  decreases with depth, with the lower wavenumbers extending deeper into the Earth model 
than the higher wavenumbers.

(4) Modal frequencies 𝜔𝑛 lie on line  𝜔𝑛/𝑘𝑛 = 𝑣𝑟 with Rayleigh phase velocity 𝑣𝑟.
(5) Spatially-uniform perturbations in 𝛼, 𝛽, 𝜌 can be chosen that lead to an increase in phase velocity 

to 𝑣𝑟 + 𝛿𝑣𝑟.  This perturbation does not change the wavenumber of any mode; it is always 𝑘𝑛 =
Τ2𝜋𝑛 𝐿, because wavenumber is controlled by the geometry of the model.

(6) Frequencies of modes change to 𝜔𝑛 + 𝛿𝜔𝑛, which lie on a line with phase velocity 𝑣𝑟 + 𝛿𝑣𝑟

(7) No mode mixing occurs, because all the overlap integrals are zero for a spatially-uniform 
perturbation; the modes preserve their shapes even though their frequencies change.

(8) For some sufficiently large perturbation, 𝜔𝑛−1 + 𝛿𝜔𝑛−1 = 𝜔𝑛. This can be interpreted as the 
wavenumber of the mode with frequency 𝜔𝑛 “decreasing” from 𝑘𝑛 to 𝑘𝑛−1.

(9) And the corresponding vertical wave-function extends deeper into the Earth model.
(10) As the length of the model 𝐿 is increased, the mode spacing of the modes decreases, so the effect 

of perturbations of any size can be assessed by choosing a model of appropriate length 𝐿.

Perturbation Theory Analysis of Rayleigh Wave Modes, Bill Menke. June 10, 2024



𝑘

𝜔

𝑘𝑛 𝑘𝑛+1𝑘𝑛−1

𝜔𝑛−1

𝜔𝑛−1 + 𝛿𝜔𝑛−1

𝜔𝑛+1

𝑧 𝑧 𝑧

𝑢𝑧
𝑛+1

𝜔𝑛

𝑢𝑧
𝑛−1

𝑢𝑧
𝑛



Continuum limit
𝜔𝑛 = 𝜔𝑛−1 + 𝛿𝜔𝑛−1

𝜔𝑛 − 𝜔𝑛−1 = 𝛿𝜔𝑛−1

approximate 𝜔𝑛 = 𝜔𝑛−1 − ቤ
𝑑𝜔

𝑑𝑘
𝑛−1
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𝑑𝑘 𝑛−1
∆𝑘 − 𝜔𝑛−1 = 𝛿𝜔𝑛−1

ቤ−
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−1
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Note that formula involves group velocity Τ𝑑𝜔 𝑑𝑘
We rewrite this relationship as

∆𝑘 = − ቤ
𝑑𝜔

𝑑𝑘
𝑘0

−1
𝜕 𝛿𝜔𝑘0

𝜕𝑚1
∆𝑚1

where 𝑚1 is a material property; that is, a change in 
material property shifts modal frequencies leading to a 
change in wavenumber ∆𝑘 from the reference value 𝑘0 
at constant frequency.

Vertically-stratified perturbation when mode 
mixing occurs. The analysis in the diagram basically 
is the same, except that the circled part of the plot:

needs to be interpreted as 𝑢𝑧
𝑛−1

+ 𝛿𝑢𝑧
𝑛−1

; that 
is the perturbed wave-function.  The mode mixture 
will contain not only other modes on the 
fundamental branch, but higher modes, too 
(though their contribution will be small). 

define ∆𝑘 as
the shift from
n to n-1
hence the
minus sign
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My idea is to consider separate unperturbed and perturbed models
positioned side by side.  If the amplitude of the perturbed mode is chosen
properly, then the energy flux at the join is continuous, and energy
“appear” to flow from the left model into the right model.  Thus, the
two models act as one single model.

𝐿 𝐿

1. Frequency 𝜔 is being held constant.
2. The amplitude of the modes are 𝐴0 

and 𝐴
3. The total energy of a mode of unit 

amplitude is chosen to be 𝐸𝑇0 =
𝐸𝑇 = 𝜔2

4. As energy of a mode is evenly 
distributed horizontally, the 
vertically-integrated energy density 
of a mode is 𝜔2/L

5. The vertically integrated horizontal 
energy flux is then 𝜔2/L times the 
velocity in the box.

6. The fluxes match when 𝜔2𝑣0𝐴0
2 =

𝜔2𝑣𝐴2.
7. Note that density does not explicitly 

appear in this equation, as it does in 
the shear wave case, 𝜔2𝜌0𝑣0𝐴0

2 =
𝜔2𝜌𝑣𝐴2, but that’s because it 
appears in the energy normalization 
of the mode. In essence, density is 
“still there”. (See note on last page).

constant frequency 𝜔 



1. For the Rayleigh wave mode, a 
perturbation in material properties leads 
to a change in wavenumber ∆𝑘.

2. At constant frequency, velocity shifts to 
𝑣 = Τ𝜔 𝑘 = 𝜔 𝑘0 + ∆𝑘 −1 = 𝑣0ሺ

ሻ
1 +

∆𝑘/𝑘0
−1 = 𝑣0 1 − ∆𝑘/𝑘0

3. So

𝜔2𝑣0𝐴0
2 = 𝜔2𝑣𝐴2

𝑣0𝐴0
2 = 𝑣0 1 − ∆𝑘/𝑘0 𝐴2

𝐴0
2 = 1 − ∆𝑘/𝑘0 𝐴2

𝐴2 = 1 + ∆𝑘/𝑘0 𝐴0
2
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2 = 1 + ∆𝑘/𝑘0
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= ½
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with ∆𝑘 = − ቤ
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So, the change in amplitude involves the group velocity.

4. However, keep in mind

that this is the change in amplitude of the mode
and not the change in amplitude of the

vertical component of displacement at 𝒛 = 𝟎

To get the latter you need to add two more derivatives

∆𝑈𝑧 =  ቤ
𝜕𝑈𝑧

𝜕𝐴
𝑘

∆𝐴 + ቤ
𝜕𝑈𝑧

𝜕𝑘
𝐴

∆𝑘

and we have not yet devised an (easy) way t calculate it.



Note:  Modes of the seismic wave equation obey a type of orthogonality 

in which density 𝜌 enters as a weighting factor in the volume integral:

ම 𝜌𝑢𝑖
𝑛

𝑢𝑖
𝑚 ∗

𝑑𝑉 = 𝛿𝑛𝑚 and ම 𝜏𝑖𝑗
𝑛

𝑢𝑖,𝑗
𝑛 ∗

𝑑𝑉 = 𝜔𝑛
2𝛿𝑛𝑚

The total energy in a properly normalized mode is

𝐸𝑇 ≡ ම ½𝜏𝑝𝑞
𝐴 𝑢𝑝,𝑞

𝐴∗ + ½𝜔𝐴
2𝜌𝑢𝑝

𝐴𝑢𝑝
𝐴∗ 𝑑𝑉 = ½𝜔𝐴

2 + ½𝜔𝐴
2 = 𝜔𝐴

2
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